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Chapter

Preface

It seems that my PhD thesis is finished. It feels strange to realise this fact: I actually
put together a more or less coherent book of more than 200 pages, most of which even
have content that makes sense. Before starting with those, though, let me briefly look
back at how this came to be.

When I was in primary school, arithmetic was easily my least favourite subject.
I remember that each year there was a new book, its pages filled with countless
additions, multiplications, divisions, and similar operations, neatly aligned in rows
and columns. Each equation would look something like “108− 29 =” or “7× 31 =”.
I believe the idea was that I had to copy these equations to my exercise book, and
then write down a number behind each “=” sign, to make the equation true. I
could never see the point in doing this, and have spent a lot of time staring at these
pages, wondering why we couldn’t be spending that time doing something fun like
handenarbeid1 instead. I remember that in the eighth year, the children who finished
their arithmetic work within the assigned time were allowed to play a game on
the school computer. However, this was never an option for me because I was still
working in the book of year six. When I was twelve years old, though, everything
changed. I advanced to secondary school, and there we did not learn arithmetic, but
mathematics. Suddenly a door was opened for me into the wondrous world of logic,
of abstract thoughts, relations and riddles, of algebra and number theory, and, not
unimportantly, of geometry. I was instantly hooked.

I first learnt to program about four years later. We did have a computer at home as
well, and when my sister and I were small children, my father had been experimenting
with computer programming, and made a few games for us to play. Of course, at the
time I never guessed that he had made them himself. Then, one day he decided to

1Literally, “handenarbeid” translates to “hand labour” or “manual labour”, but the kind taught at Dutch
elementary schools is more about being creative with carton and glue than about, say, cutting down trees.
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teach me the basics of a computer language called “BASIC”. Computers were already
fairly common in those days, and I had been working (or rather, playing) with them
all my life, but the idea that I could make a computer do virtually anything I wanted
it to, by simply typing in a few words, had never really crossed my mind. After
this introduction, though, I soon had balls flying around the screen, and in no time
at all I had written elaborate interactive stories, and implemented several intricate
strategic games. Looking back at them now, I must admit that these products of my
creativity were not all that impressive, but I clearly remember the excitement with
which I laboured on those projects at the time. It was the discovery of computer
programming that made me doubt my implicit decision to study mathematics after
school for the first time.

Fortunately, by the time I had to choose the Direction of my Future, a programme
called “TWINFO” (TWIN WIskunde and INFOrmatica) was being offered by the
university of Utrecht, which promised to combine both studies in a single curriculum.
This turned out to be the case only during the first year, after which it was left to
my own creativity and organisational skills to complete the remaining four years
of both studies; but, it was enough to lure me in. Though I encountered some
very different branches of mathematics during my studies that I liked, somehow
the courses that involved geometry in some form always specifically interested me.
Visual drawings could directly transfer an idea to my mind, and I found them more
appealing than formulae involving endless strings of these funny

∫ ∫ ∫
symbols, that

require significant staring at before they start making anything resembling sense. The
computer science programme, though, did not offer many courses that were supplied
with nice pictures. Instead, I was led astray by the intricacies of compiler construction,
and at the end of my third year, I wrote what was the equivalent of my Bachelor
thesis about generating error messages in a compiler for the functional programming
language “Haskell”.

However, in my fourth year, the university was just in the process of introducing
the Bachelor/Master system, and I had to choose a Master programme, even though
technically I was still a student in the old Propedeuse/Doctoraal system. Although I
had enjoyed my two months of work in the software technology lab, I was intrigued
by a programme called “GIVE” (Geometry, Imaging and Virtual Environments). I
decided to take this direction, and as the name suggested it included several computer
science courses that were rather more visual in nature than any I had seen so far. I
particularly enjoyed a course on “geometric algorithms”, which nicely combined the
two main directions that my interest had taken. I decided that I wanted to write my
Master thesis on some topic in this field. Probably due to the fashion of the moment, I
ended up studying the effects of data imprecision on the computation of the convex
hull, a topic which turned out to be conceiling many intriguing puzzles for me to
unveil and solve. In fact, one of the results from that thesis is repeated in this one,
in Chapter 4. After I finished my studies, I was offered the option to continue for a
PhD on the same topic, on the “GOGO” (Geometric Optimisation with Geometric
cOnstrants) project. During this time, I was able to get to know the subject better, and
it has always provided me with more than enough nice, challenging, and perhaps
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most importantly, unsolved problems.

And that is how I ended up writing a PhD thesis about data imprecision in computa-
tional geometry. For those who do not immediately appreciate the implications of the
last sentence, I would like to point ahead to Chapter 1, where the topic is discussed in
some detail. When I had finished my Master thesis about imprecision in convex hulls,
of course I proudly showed it to many of my friends, family, and other acquaintances.
Most of them would, after the obligatory praising words, invariably ask the same
question in the end: “What is it about?” Since they would not be satisfied with the
obvious answer, “imprecision in convex hulls”, I thought it was nice to make things a
little more concrete by explaining the elastic band analogy: the convex hull of a set of
points is what you get when releasing an elastic band around a bunch of nails sticking
out of a flat surface. I then proceeded to describe the problems that arise when the
locations of the nails are unknown, but this is where I usually lost my audience. Since
then, there have been persistent rumours in certain circles that everything I do all day
long at my work is put nails into every available flat surface, and wrap elastic bands
around them. I want to use this opportunity to stress that this is really not the case,
and that there are still several undamaged flat surfaces left in my office.

I hope you enjoy reading this thesis.

Maarten Löffler
Wageningen, September 2, 2009
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Chapter One

Introduction

This thesis is about the issue of imprecision in the field of computational geometry. In a
single sentence, this field deals with the development of provably correct and efficient
solutions to geometric problems, or the construction of mathematical proofs that
no such solutions exist. Geometric problems are all around us, and such solutions
are in high demand. However, an important obstacle to the practical application of
techniques from computational geometry is the presence of imprecision. In order to
be able to give mathematical guarantees, these techniques assume that the data they
work with is correct, with absolute certainty and infinite precision. In practice, this is
often not the case, and as a result the value of these guarantees is questionable.

In this first chapter, we will look into this issue in some more detail. We will overview
the history and development of computational geometry, and how imprecision is
fundamentally related to it. Then we will give a broad overview of how these
problems can be dealt with. In the next chapter, we give a detailed overview of how
imprecision can be modelled mathematically, and how this changes the problems
studied in computational geometry.

1.1 Computational Geometry

Computational geometry is the branch of theoretical computer science that is con-
cerned with developing provably efficient algorithms for solving geometric problems.
Such algorithms are also called geometric algorithms.
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(a)
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Figure 1.1 The height of a tree can be computed by measuring its shadow length,
and the height and shadow length of a (smaller) reference object.

1.1.1 Geometry

Geometry is the science of shapes, of properties and relations of spatial objects such as
points, lines, circles, planes, balls, etc. It is one of the oldest sciences that exist, dating
back to the ancient Egyptians and possibly earlier. The word geometry comes from the
ancient Greek γεωμετρία, which literally means “earth measure”. We live in a spatial
world, and geometry came into existence out of the practical need to understand that
world, and to measure and analyse it.

The first systematic scientific treatment of geometry is due to Euclid of Alexandria
(∼300 BC), who in his Elements [44] builds a formal theory based only on the concepts
of points and lines, and five axioms or postulates that describe their properties and
relations. This theory shows a remarkable likeness to the real world, and has been the
standard model for many centuries. After the Greeks, geometry became an integrated
part of analytical mathematics, and was not studied as a discipline of its own until
Jacob Steiner (1796-1863) revived the so-called synthetic geometry in Euclid’s style
in his Systematic Development of the Dependencies of Geometric Objects [123]. Though
several other geometric models have been developed since then, Euclid’s model is
still the most common even today.

Geometry is interesting by itself as an abstract branch of mathematics, in which
countless nice properties and relations have been discovered throughout the ages.
However, one may argue that the main reason for its continued popularity is still its
original purpose: as a tool to analyse the world we live in. But, as the Greek word
already suggests, before we can analyse it, we first have to measure it. To be more
precise: in order to use geometry as a tool, we have to measure the locations of our
points of interest with respect to each other, or with respect to something else. In the
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Figure 1.2 Ptolemaeus’ map of the known world.

early days of geometry, such measurements took two forms: distances and angles.

As an example of a simple problem that can be solved with geometry, consider the
situation in Figure 1.1(a). Suppose you want to know how high a tall tree is. You
may not be able to measure the height of the tree directly, but you can compute its
height instead by using the geometric law of similarity: if two triangles have the same
angles, then the proportions of their side length are the same. In this example, the
proportions between the height and shadow length of the tree and the stick are the
same, see Figure 1.1(b). So by measuring the height h1 of the stick, and the shadow
lengths s1 of the stick and s2 of the tree, we can determine the height h2 of the tree
indirectly by computing h2 = s2 × h1/s1.

After these initial simple uses, many other methods of measuring locations have
been developed. Perhaps the most literal application of geometry is the attempt to
measure the location of important features of the world itself. Because the distances
that are involved are very large, it is much harder to make precise measurements.
One of the first systematic efforts to measure many locations of interest and map
them onto a geometric space is due to Claudius Ptolemaeus (∼90-168), who in his
Geographia [110] provides one of the first world maps. Figure 1.2 shows a 15th century
reproduction of this early map. The map looks quite different from what we are
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used to today. Over the centuries, methods for measuring locations have improved
tremendously, providing us with a much more precise image of the world now.
However, imprecision remains inherent in measuring anything. We will look into this
more in Section 1.2.

1.1.2 Algorithms

An algorithm is a step-by-step description of how to do something, a recipe to
accomplish something complex. In that sense, algorithms have existed as long as
intelligent humans exist, for example as cooking recipes. The first known algorithms
in a mathematical context, however, were developed by the Babylonians, who had
methods to compute the square root of a positive integer (whole) number or to
factorise an integer number into prime numbers. A famous early algorithm is due
to Euclid of Alexandria, who devised a very simple way to compute the greatest
common divisor of two integer numbers. When we are given two positive integer
numbers A and B, and we perform the following steps, we are guaranteed to end up
with the correct answer.

step 1: If A = B, then A (and B) is the greatest common divisor, and we can stop the
algorithm.

step 2: If A > B, then subtract B from A and go back to step 1.
step 3: If B > A, then subtract A from B and go back to step 1.

The word algorithm comes from Muhammad ibn Musa al-Khwārizmı̄ (∼780-850),
whose On Calculation with Hindu Numerals [5] is the foundation of our current decimal
number system. His name evolved through several transliterations into the current
“algorithm”. Algorithms have always been useful to do complicated computations
in a systematic way, but have become much more important with the introduction
of computers in the second half of the twentieth century. Computers can execute
algorithms much faster and more reliably than humans can.

Before an algorithm to solve a problem can be designed, the problem needs to be
stated formally. Such a problem statement must specify an input and an output. The
input is what goes into the algorithm, and the output is what should come out of
it. In the example above, the input is a pair of integer numbers, and the output is
the greatest common divisor of these numbers. The essence of an algorithm is that
it can be executed without “understanding” why each step is needed; for a given
input it should always create the required output. This means that the user of the
algorithm has to trust that the algorithm indeed does what it is supposed to do. For
this purpose, an algorithm is often accompanied by a proof of correctness.

Since the introduction of computers, algorithms have become gradually more com-
plicated, and proofs of correctness are also becoming much more involved. These
proofs are studied by the branch of theoretical computer science called analysis of
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algorithms. Apart from the correctness of an algorithm, another important property is
its time complexity. A given algorithm in principle works on any input, but the time it
takes to complete usually depends on the size of the input, generally denoted by n.
Two algorithms may solve exactly the same problem, but one could be much faster
than the other. An algorithm is considered more efficient if it takes less time for large
values of n. For example, an algorithm takes linear time if the time it takes to complete
grows proportionally to n, and quadratic time when it grows proportionally to n2.
This can be made mathematically precise by using the so-called big O-notation: an
algorithm has a time complexity of, for example, O(n) or O(n2). In the last few years,
methods for acquiring and storing large amounts of data have advanced a lot, and as
a consequence, efficiency analysis of algorithms is becoming more important than
ever.

1.1.3 Geometric Algorithms

A geometric algorithm is an algorithm to solve a geometric problem. In a geometric
problem, the input is some spatial object, for example, a set of points in 2-dimensional
space. The output could also be a spatial object, or just a simple number. Although
geometric algorithms have been used since the first geometric problems were con-
sidered, their popularity increased tremendously after the introduction of computers.
On the one hand, this is because they are tedious to execute, and on the other hand,
because for many geometric problems on small instances humans can just “see” the
solution. However, the introduction of computers changed this: computers can
handle much larger problems because of their speed, but on the other hand are not
very good at “seeing”. In many different fields across science, some aspect of reality
is studied by using a geometric model, which then has to be analysed, processed, or
otherwise computed on. These fields can benefit from computers by using geometric
algorithms.

As a classical example of a geometric algorithm, consider the convex hull of a set of
points in the plane. A subset of the plane is said to be convex when for every two
points p and q in the set, all points on the line segment between p and q are also in
the set. The convex hull, then, is the smallest convex set that contains a given set of
input points. Consider the set of ten points in Figure 1.3(a). For a human, it is easy
to see what the convex hull of these points is, namely as in Figure 1.3(f). But if the
set does not contain ten but one million points, or if we have not one but a hundred
thousand sets of ten points, then we need a computer to solve it, and a computer
needs an algorithm. A possible algorithm to solve the problem is outlined below.

step 1: Sort the points from left to right.1

step 2: Connect the points by a chain, as shown in Figure 1.3(b).
step 3: Remove any point where the chain turns left, as in Figure 1.3(c).

1We assume that there are no two points with the same x-coordinate. If there are, we can still use the
algorithm if we first rotate the input point set until this assumption is met.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3 (a) A set of points. (b) The chain that connects the points from left to
right. The first point where the chain makes a left turn is marked. (c) The chain with
one point removed. (d) The top half of the convex hull of the points. (e) The bottom
half of the convex hull of the points. (f) The convex hull of the points.

step 4: Repeat step 3 until there are no such points left.
step 5: The resulting chain, shown in Figure 1.3(d), is the top half of the convex hull.
step 6: Repeat steps 1 to 4, but this time remove points where the chain makes a

right turn instead of a left turn.
step 7: The resulting chain in Figure 1.3(e) is the bottom half of the convex hull.
step 8: Connect the two chains together to get the final result in Figure 1.3(f).

Many application fields for geometric algorithms exist. In most cases, there is an
obvious link between the Euclidean space of the geometric model and the real world
that we live in. For example, in Computer Aided Design, a real-world object is
designed on a computer. In Computer Graphics, an artificial 3-dimensional world is
created, which is then processed into images that should look like what the real world
looks like as seen from a human eye. In Geographic Information Systems, a usually
2-dimensional model of the surface of the earth is stored in a computer, on which
analysis is done. In Integrated Circuit Design, the layout of an electrical circuit is
studied geometrically, before being printed. In Molecular Biology, complex molecules
and their interaction are studied using a model in 3-dimensional space.

However, there are also application domains that use a geometric space that is not
directly linked to the real world. In Databases, entries with multiple numeric at-
tributes (such as the age and salary of employees) can be represented as points in a
higher-dimensional Euclidean space. In Robotics, computations are usually done in
the so-called configuration space, where a set of parameters that determine the position
of, for example, a robot arm, defines a higher-dimensional Euclidean space.
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In each of these fields, computations are done in a geometric domain, for which
geometric algorithms are used. Originally, though, many of these algorithms were
designed by specialists of the respective fields. As the computer applications grew
more complex, so did the algorithms, and as a result they are often not as fast as
possible, or even do not produce the correct result in certain rare situations. To
solve these issues, the art of analysis of algorithms had to be applied to geometric
algorithms.

The first systematic analysis of geometric algorithms is due to Michael Ian Shamos.
In 1978, his thesis entitled Computational Geometry [120] opened up a field that has
become ever more popular since. By explicitly studying the geometric properties
of problems, it is often possible to discover algorithms that are provably correct,
and often much faster than those that are used in practice. By now, many intricate
and very interesting results are known. However, in order to make such theoretical
guarantees, certain simplifying assumptions about reality were made.

1.2 Imprecision

In order to use geometric algorithms to study and analyse the world around us,
the world must first be observed and data about it recorded, then this data must
be represented in a meaningful mathematical model, and finally this model must
be made accessible to a computer. Ideally, this would provide the computer with a
correct description of the world, on which it can do its computations. However, in
practice there are several places in this data flow where the data is distorted, resulting
in an incorrect, or uncertain, description of the world.

There are many aspects of uncertainty in data, but the most important ones are
accuracy and precision.2 Accuracy is a measure of the “correctness” of uncertain data;
it captures how close the stored data is to the “true” value that it is supposed to
represent. Precision, on the other hand, is a property of uncertain data that exists
independent of the “true” value: it is the extent to which the data is known or stored,
for example the resolution of a bitmap, the number of digits in numerical values, or
the number of points used to represent a curve as a polygonal line.

Accuracy and precision are independent concepts, that is, data can be precise but
inaccurate or accurate but imprecise. However, precise but inaccurate data does not
have much value, and, if this is known to be the case, is often deliberately made less
precise to reduce storage space until the level of precision matches the accuracy. In
this thesis, we will focus on the issue of imprecision, that is, we assume that data is
accurate (at least to the degree of the precision) but imprecise.

2Other terms used in the literature to describe aspects of uncertainty include vagueness, reliability,
fuzzyness, consistency, as well as a host of others, often with subtle differences in meaning. We will not
consider these concepts in this thesis.
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1.2.1 Sources of Imprecision

At the highest level, we can distinguish three types of imprecision, corresponding to
three different phases in the data flow of a geometric application. Firstly, there is the
phase of observing real-world objects and translating them into geometric objects.
Secondly, there is the phase of modelling the part of the world we are interested in
as objects in a geometric space. Lastly, there is the computation inside the geometric
model.

The first and most direct source of imprecision is introduced when observing the
world. Input data has to be collected using measuring equipment. Devices such as
altimeters, laser scanners, or GPS receivers return the coordinates of a point, but this
is only an approximation of the real location. The reason for this is that the device
was not precise enough, and the amount of imprecision depends on the quality of
the measuring device. Measuring equipment quality improves continually. But even
modern devices used today are not always very precise, for example because a lot of
data is collected at low cost, or because techniques are not yet developed far enough.
In fact, the so-called observer effect states that it is theoretically not even possible to
measure a location exactly, without altering it.

A popular method of measuring locations today is the Global Positioning System (GPS).
In this system, a location is computed by measuring the distance to a number of
satellites orbiting the earth, see Figure 1.4(a). These distances determine spheres with
certain radii, and the measuring device should be at the intersection of those spheres.
However, the distance to a satellite cannot be measured exactly, but can have any
value within a certain error interval. As a result, the spheres actually become shells
with a certain width, and the location of the receiver could be anywhere in the region
that is the intersection of those shells. The precision error of the location this results
in may be up to 20 meters, although an increase in the number of satellites and the
use of a technique called differential GPS have reduced this error significantly. Before
the year 2000, it was even worse because the signal was intentionally degraded for
non-military uses.

As another example, height information used to construct digital terrain models is
often collected by airplanes flying over the terrain and sampling the distance to the
ground, for example using a technique called Light Detection and Ranging (LIDAR),
see Figure 1.4(b). The data collected by these methods is also imprecise, for example
because of imprecision in the plane’s flying altitude, or because of artefacts on the
ground. In high-resolution terrains distributed by the United States Geological Survey,
it is not unusual to have vertical errors of up to 15 meters [126], although other data
sets achieve a precision in the order of centimeters.

The second and perhaps the most fundamental source of imprecision lies in the actual
geometric model used to describe the world. We usually model the space we live in as
a 3-dimensional Euclidean space. However, an old discussion is whether the formal
geometric model by Euclid is actually a valid description of the real world. Immanuel
Kant (1724-1804) first argues in his Critique of Pure Reason [72] that Euclidean geometry
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(a) (b)

Figure 1.4 (a) A location is computed by a GPS receiver by measuring its distance
to a number of satellites orbiting the earth. (b) In a LIDAR system, an airplane flies
over the earth surface and shoots laser rays vertically down to measure its distance
to the ground.

is not based on observations, but instead is a synthetic a priori construction, and
therefore there is no reason why it should be the “right” model. Shortly afterwards,
various alternative geometries were introduced. Ever since Albert Einstein (1879-1955)
published his Theory of Relativity [42], it is commonly believed that the structure of the
universe does indeed not follow Euclid’s model. However, what the “true” model
should then be and whether it is even possible to construct one, remains a difficult
and mostly philosophical discussion.

Even when one does accept Euclidean geometry as the way to model the world, it is
still not always possible to translate real-world objects into geometric models. One
problem is that of interpolation: even if we could make precise measurements of some
quantity, we could not measure it at every single point in our domain, since there
are infinitely many such points. As a result, data always has to be interpolated. As
another example, in a GIS application we may wish to represent a shoreline by a
geometric curve. However, the shoreline is not completely well-defined: it moves
back and forth with the tides, and even on a smaller time scale it changes with every
wave. This presents an inherent imprecision into the model. Or consider an area
of land classified as “forest”. What exactly is the boundary of such a forest? How
many trees are needed for a group of trees to be called a forest? Such classification
problems also give rise to imprecision. Jingxiong Zhang and Michael Goodchild
extensively discuss imprecision of this kind in their book Uncertainty in Geographical
Information [131].

Finally, a third source of imprecision is the way present-day computers are built.
Computers store the data they work on as a sequence of bits, which is inherently a
discrete model. However, Euclidean geometry works on a continuous space of points.
In two dimensions this would be R2, the space of all pairs of two elements from R, the
so-called Real numbers. To be able to work with this, Real numbers are approximated
by nearby points that can be described by the computer. On the other hand, geometric
algorithms usually assume the so-called Real RAM (Random Access Machine) model:
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they assume that a computer can perform exact operations directly on Real values.
This can cause problems when executing the algorithms, since the computer has to
convert the values to be able to use them, while the algorithms do not anticipate this.

1.2.2 Effects of Imprecision

Together, the sources of imprecision described above can lead to unexpected results
when executing theoretically correct algorithms in real life applications, varying
from slightly different output values or longer computations times to outright wrong
answers or crashing programs.

As an example, consider the following situation. Suppose we have a set of points in
the plane, and we are interested in the convex hull of these points. To compute it,
we use a provably correct and efficient algorithm, for example the one described in
Section 1.1.3. Still, we may end up with the wrong hull.

First, assume we have named (or numbered) the points of interest. Figure 1.5(a) shows
the points, named A to I, in reality. Next, we measure the points with a measuring
device which has a small error. This results in another set of points, similar to the
real one but still different, as shown in Figure 1.5(b). This set of points is stored in
the computer memory and used as the input to the algorithm. Now, we apply an
algorithm and it provides us with the correct convex hull of the measured points,
see Figure 1.5(c). We can concisely describe this convex hull by outputting the order
in which the points appear on the hull, in this case D − E− J − C − G − A− F −
D. However, if we look at this sequence in the true space, before the points were
perturbed due to erroneous measurements, we see in Figure 1.5(d) that it is not at all
the right hull. The resulting polygon is not convex (at point A), it does not contain all
points (point H is not inside the hull), and it even intersects itself (close to C and J).

In this example, we assumed that the imprecision came from the measuring equip-
ment, but all sources of imprecision described in the previous section can have similar
effects. Depending on how the output is further processed, the consequences of the
imprecision can vary from a slight error in some numeric output value, to a program
crash because a subsequent algorithm is assuming a consistent state of the data which
is not the case.

It should be noted here, though, that the example above was especially constructed
to show what can go wrong, and that in practice imprecision does not always cause
serious issues. That is why people have been able to successfully use algorithms
despite ignoring imprecision. However, it is possible that things do go wrong, and
it does happen occasionally. It will be clear that in certain applications this is not
acceptable, and that looking only at theoretical guarantees within the mathematical
model where they are defined and proven may be misleading.



1.2. IMPRECISION 13

I

B

A

F

D

H

E

G

C
J

(a)

I

B

A

F

D

H

E

G

C
J

(b)

I

B

A

F

D

H

E

G

C
J

(c)

I

B

A

F

D

H

E

G

C
J

(d)

Figure 1.5 (a) A set of points in the plane. (b) A slightly perturbed version of the
point set. (c) The convex hull of the perturbed points. (d) The hull of the perturbed
points translated back to the original points.

1.2.3 Dealing with Imprecision

One of the earliest records of an approach to handle geometric imprecision is due
to Carl Friedrich Gauss (1777-1855), who was able to accurately predict the location
of the dwarf planet Ceres in 1801 after it had disappeared from sight for a while.
In his Theory of Celestial Movement [52], he describes how to extrapolate the location
of a satellite from a limited number of imprecise measurements. His method, now
known as the least squares method, fits a polynomial curve in the best possible way
through a set of points. He proves that this curve has high probability of being close
to the correct curve, if the errors of the points are distributed according to what we
now call the normal distribution. The probability and accuracy increase when more
points are used. This general principle of countering imprecision by making multiple
measurements forms the base for statistical methods. This principle has proven useful
in situations where detailed information about the distribution of errors is available,
it is possible to make large numbers of measurements, and computation time is not
too limited.

A modern approach to capture imprecision caused by the modelling of the world was
introduced by Lotfali Asker Zadeh. In 1965, he defined in his book Fuzzy Sets [130] a
framework where each element of a set is in the set with a certain probability. This
allows for modelling spatial regions with unclear, or “fuzzy”, boundaries. Many
operations for classical geometry have been defined and studied for fuzzy geometry
as well [115].

Imprecision caused by the third phase, that of translating a geometric model to
something a computer can work with, has been studied extensively and is quite well
understood. Since this source of imprecision lives entirely within a theoretical model,
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it is possible to study exactly what causes errors and how these can be avoided. As
one would expect, if a computer is allowed to use more bits for each point, then the
approximation becomes better and the imprecision is less severe, but in some cases
additional techniques are needed to prevent wrong answers. An alternative approach
is to actually simulate a computer that can work with a Real RAM on an existing
computer, but this is not done very often in practice because the extra translation
makes it much slower. By now, there is a good understanding of these methods
and their advantages and disadvantages [129], and extensive software libraries are
available, such as LEDA [96] and CGAL [22], that can automatically switch between
the two approaches depending on what is needed.

Today, geometric algorithms are used extensively in practice. Most of these algorithms,
however, do not take imprecision into account at all, and if they do, they are usually
heuristics that have been tested in practice, rather than algorithms with guaranteed
behaviour.

1.3 Imprecision and Computational Geometry

Computational geometry is a relatively young field. In the early years virtually all
attention has gone to solving the geometric problems themselves, and not much
thought has been given to imprecision. In the beginning, this could be justified
in several ways. Firstly, there is not much point in considering imprecision when
there are not even any known algorithms to solve a problem when the input is
precise. Secondly, in the early years of computing, data sets were often small (because
computers were not fast enough to handle large data sets), and computing was
expensive, so imprecision in the data could for a large part be removed by hand, or at
least investigated by humans.

In the last twenty years, however, approaches to deal with imprecision algorithmically
have slowly started to emerge. In 1989, David Salesin, Jorge Stolfi and Leo Guibas
introduced epsilon-geometry [61] as a way to cope with computational imprecision
in geometric algorithms. It defines a way to reason about the truth of geometric
predicates, when each input point is certain to have an imprecision of at most ε: each
point could be somewhere else, but not too far away. Figure 1.6 illustrates this model.
This simple model has proven very fertile, not only for modelling computational
imprecision but also imprecise input data.

After that, many other people have adopted the same model or presented new ones,
and many approaches to deal with imprecision have been suggested. Still, these
results are mostly scattered individual attempts, compared to the vast body of precise
geometric algorithms that are available within computational geometry. By now,
many different ways to model imprecision and to tackle its consequences have been
introduced. In general, we can say that the more intricate models may resemble
the truth more closely, but require a more detailed knowledge of reality and are
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Figure 1.6 (a) A precise point. (b) An imprecise point, modelled as a disk of radius
ε. (c) The real point could be anywhere inside the disk.

computationally harder to handle. On the other hand, simpler models often allow
fast and accurate computations, but make assumptions that we may know to be
inaccurate. In Chapter 2 we will study these possible models and the results that are
available in detail.

1.4 Contribution of this Thesis

In the next chapter, we will give an overview of how imprecision can be modelled in
the context of computational geometry. We specifically focus on data imprecision, that
is, imprecision caused in the first phase of the data flow described above: observing
and measuring the world. Important questions to be answered are: What can we
actually assume about the input data, when we acknowledge that it is imprecise?
How can this data and its imprecision be described? What kind of output do we want
algorithms to produce, when there is no longer a single unquestionable true answer?
These questions have been answered differently by various people, and indeed the
right answers will often depend on the application at hand.

In the remaining parts of this thesis, several detailed solutions to specific problems
dealing with data imprecision are presented. It is hard to provide the exact problem
definitions here since they depend on modelling issues that are discussed in Chapter 2,
but we will give an informal overview of the main ideas.

In Part II, we consider the problem of computing upper and lower bounds on the
outcome of a geometric algorithm, when the input is an imprecise set of points. If a
certain geometric problem has a single number as answer, then traditionally we are
interested in algorithms that produce that number. However, when the input points
are imprecise, then the value of the answer depends on where exactly the points are.
In this case, we need algorithms that find the range of possible values of the answer.
In particular, in Chapter 3 we consider three shape fitting problems: the smallest
enclosing axis-aligned bounding box containing the points, the smallest enclosing
circle containing the points, and the narrowest strip (in any direction) containing the
points. In Chapters 4 and 5, we consider the problem of computing the convex hull of
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the points, first in an exact and then in an approximate setting. Finally, in Chapter 6
we consider the problem of computing the diameter of a set of points.

In Part III, we take a different approach to dealing with imprecision. Instead of
computing bounds on the outcome of an algorithm, we now assume that even though
we have an imprecise set of points, we will later obtain a (more) precise representation
of the points. We also assume that once we get the precise points, we want to do some
computation on them as fast as possible. The challenge, in this case, is to do as much
of that computation as possible now already, while we know only approximately
where the points are going to be. In Chapter 7, we show that under certain conditions
it is possible to preprocess a set of imprecise points such that when we later get the
real points, a triangulation of those points can be computed faster, namely in O(n)
time instead of best possible time of O(n log n) for direct computation. In Chapters 8
and 9, we show that the same result is possible for the Delaunay triangulation, though
with more severe restrictions on the input model.

In Part IV, we move away from imprecision in point sets and discuss problems that
take a set of lines or a polygon as input. For lines, the question of how to model
imprecision becomes more complicated, especially since there is no good definition of
a “convex set of lines”. In Chapter 10, we discuss the problems of linear programming
and vertical extent, both of which take a set of lines as input and produce a single
value as output. We present algorithms for computing upper and lower bounds on
these values. With more complicated input data such as a polygon, an interesting
issue appears when modelling imprecision. It is very common to assume certain
properties of composite structures such as a polygon. For example, we may know that
it does not intersect itself, or that it is convex. Now, when we try to model imprecision
in such a structure, the first thing to deal with is whether these properties are always
observed in every possible instance of the input. In Chapter 11 we study the problem
of computing bounds on the length of an imprecise polygon, and in Chapter 12 we
consider the issue of avoiding self-intersection.

This thesis does not solve the problem of imprecision in computational geometry,
but makes a useful contribution to this growing new field. Despite what theoretical
computer scientists like to see, this problem cannot be fully captured in mathematics
and we cannot hope to solve it completely; it is intrinsic in the world we live in.
However, it is certainly possible to produce more meaningful output than simply
ignoring imprecision.



Chapter Two

Modelling Imprecise Data

As we have seen in the previous chapter, data imprecision is a serious issue in the
design and application of geometric algorithms. In this chapter we will discuss
different ways to model this imprecision, and how these modelling choices affect
efficiency and correctness.

In the next section, we discuss conceptually what modelling choices there are. In the
sections after that, we investigate in more detail the problems that certain modelling
choices lead to, and review what results are known about them.

2.1 Imprecision in Input and Output

In essence, there are two important modelling decisions that need to be made. An
algorithm has an input and an output. Traditionally, these are both precise and well-
defined geometric structures, or sometimes, in the case of the output, numeric or
Boolean values. Now, however, we acknowledge that there is imprecision in the input.
Therefore, there is also imprecision in the output. Both of these need to be modelled.
That is, we need to define and describe what exactly we know or do not know about
the input, and also what exactly we want to know about the output.

2.1.1 Input

In order to define imprecise input data, let us first revisit what precise input data is. We
are interested in geometric input data. This means the data consists of geometric prim-
itives such as points, lines, line segments, circles and curves, or higher-dimensional
equivalents such as planes, balls, etc. Furthermore, there may be relations between
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Figure 2.1 (a) A set of disjoint disks of radius ε. (b) A set of disks of different radii.
(c) A set of convex regions of different polygonal shapes. (d) A set of partially
overlapping disks.

these primitives specified in the input, in order to create composite structures such as
polygons, geometric graphs, arrangements, subdivisions, etc.

Now, an imprecise object is an object of which we do not know where it is, what shape
it has, how big it is, etc. This seems to imply that we cannot do anything useful with
it in any event, but fortunately, we usually do have some idea about all these things.
We know approximately where the object is, or approximately how big it is, just not
exactly. How can we model this?

Let’s focus on the simplest possible geometric object first: a point in the plane. A
point has a location, but nothing else: size and shape are not sensible properties of
a point. Now, an imprecise point is a point of which the location is not known, but
we do have some idea about it. Perhaps the simplest way to model this is to assign
to the point a set of possible locations, or in other words, a region in the plane. The
epsilon-geometry model mentioned in the previous chapter is a special case of this,
where the regions are disks of radius ε. But it is also possible to use different shapes
for the regions; for example, a square or rectangle may be more suitable when the
imprecision in the x- and y-direction comes from different sources.

Usually, the input of a geometric problem consists of a set of n points, and not just
a single one, since there is not much to compute about that. Therefore, restrictions
on the set of regions may exist, such as that they all have the same shape and size, or
that they are not allowed to overlap. These restrictions could also be parametrised.
In Figure 2.1 some different sets of regions are shown. Of course, combinations of
the restrictions could also occur. In general, which model to use depends on the
application at hand, and whether the data can be reasonably assumed to comply with
a certain restriction or not. This simple model will be used most in this thesis. In
Section 2.2 we give some more insight into it.

When the input data is more complicated than a point set, some additional choices
have to be made. When the input consists of a set of other primitives, such as lines,
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we can use the same approach and model each line as a set of possible lines; see also
Section 2.4.1.

In principle, it is also possible to model composite structures in the same way as
points or lines. For example, an imprecise triangulation could be represented as a
subset of the “set of all possible triangulations”. However, such a model is not a easy
to handle since it is unclear how to concisely represent such a set. Alternatively, we
may present an imprecise triangulation by defining imprecision on the primitives
it is built from, and fixing the combinatorial structure. But when we do this, not all
inputs may be valid triangulations. We give some more insight into this problem in
Section 2.4.2.

Until now, we described imprecision only by saying that something is an element of
a given set of possibilities. This imprecision model has the benefit that it is simple,
and therefore easy to handle, which may result in efficient algorithms. On the other
hand, it may sometimes be too restrictive, since it is not always possible to capture
the nature of data imprecision by simply stating the possible values of something.
Focussing on point data once again, a more elaborate possibility is to describe each
point not as a single region but a set of regions, each with a different likelihood of the
point being in that region. Or, one step further, to describe each point by a probability
distribution over the entire plane. Then, again we can restrict the model by assuming
that all distributions have the same shape, or that they do not overlap too much, etc.
We might additionally require the distributions of the points to be independent. Some
further discussion of this is given in Section 2.3.2.

In general, a more elaborate model of imprecision can give a more accurate description
of the input data, which leads to more precise results, but when modelling imprecise
data there are two things to keep in mind. First, we can only model as much as
we know, and the more elaborate a model is the harder it becomes to acquire this
information. Second, more elaborate means more complicated, thus algorithmically
harder, to compute things on it.

2.1.2 Output

Once we have decided on the model of our imprecise input data, the question arises
what we want to obtain as output. While the input to geometric algorithms is almost
always geometric, the output is often not: it may be just a number, or even a Boolean
answer to a decision problem. On the other hand, the output could be a full-fledged
geometric data structure too. Clearly, these are quite different scenarios and what we
want to obtain as output when there is imprecision in the data will vary a lot.

Generally speaking, what we really want is “the real” output, that is, the output that
we would have obtained if we had used “the real” input, without any imprecision.
Unfortunately, we cannot get this. So, one logical thing to compute instead is “the
most likely” output. However, that alone is often not enough: we would also like to
have some measure of how reliable this output is. We can compare this to other fields
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where imprecise values play a role, such as probability theory or statistical analysis.
When we draw a random number from a distribution or a set, the most likely value is
represented by the mean or average, while a measure of reliability can be supplied by
the variance or the standard deviation.

One way to get a “likely” output is to use somehow the most likely input, and just
compute the precise output on that. This is an approach that is often used, because it
is very simple; it is the equivalent of ignoring the imprecision in the input data. It
will be clear though, that this yields no guarantees to either the value or reliability of
the output. On the other hand, strictly following probability theory and computing
the average value of all parameters of the output based on probability distributions
of all parameters on the input is often computationally infeasible, and also requires
very detailed knowledge of the imprecision at hand. Still, we would like to return
some reasonably likely output or small set of likely outputs.

To determine the reliability of an output, we need a way to measure the distance
between the reported output and the true output. When such a measure is available
we could again try to compute the equivalent of the standard deviation, that is, the
expected deviation of the expected value. Alternatively, we could simply output a set
of possible outputs, or explicit bounds on the possible deviations of the output.

It is hard to say much more in general about what output is interesting to compute,
since there is such a large variety of things to compute, and even for one specific
construction, there are often many different aspects that one could be interested in.
Therefore, let us look at a concrete example.

2.1.2.1 Example: Smallest Enclosing Circle

Consider the geometric structure known as the smallest enclosing circle (SEC) of a
set of points, as shown in Figures 2.2(a) and 2.2(b). The input to this problem is
a set of points, and the output is a circle. This is a very basic geometric structure,
and algorithms for it have been studied since the beginning years of computational
geometry. A classical result is that the SEC can be computed in O(n) time [93].

The output, as mentioned, is a circle. However, there are several ways to describe
this circle. One way is by three real numbers, two defining the location of (the centre
point of) the circle, and the third defining its size (radius). But, alternatively, we could
output the indices of the points in the input that “define” the smallest enclosing circle,
that is, the points that lie on this circle. When the input points are in general position,1

there are always two or three defining points, and the receiver of the output can easily
reconstruct the actual circle through these points if he or she so desires. We could say
that the first type of output is the numeric type, while the second is the combinatorial
type. When the input is precise, it does not really matter which way we choose, since

1Assuming general position is a common way in computational geometry to avoid special cases (such
as, in this case, four points that happen to lie on one circle) that complicate algorithm descriptions, thus
allowing the algorithm to focus on the fundamental part of the problem.
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Figure 2.2 (a) A set of precise points. (b) The smallest enclosing circle (SEC) of the
points, with three points on the circle and with the circle centre shown. (c) A set
of imprecise points, modelled as disks. (d) A classification of the disks specifying
which disks are certain (dark), possible (light) or impossible (white) to define the
SEC. (e) The smallest and largest possible values for the radius of the SEC. (f) The
region of possible locations of the centre point of the SEC. (g) The boundary of the
union of all possible SECs. (h) The boundary of the intersection of all possible SECs.

there is no difference in computational cost and the user of the algorithm simply uses
whatever information he or she is interested in. But when defining imprecise output,
these different viewpoints actually lead to problems that have very different solutions
and complexities.

When the input is imprecise, both types of output become imprecise as well. Con-
sider imprecise input under the simplest model available, namely a set of disjoint
disks of equal radius (say ε). Figure 2.2(c) shows such a set of regions. When we
look at the combinatorial elements of the output, these can be classified as certain,
uncertain/possible or impossible to be part of the output. In the example, the SEC is
defined by three of the input points. For all points, we can indicate that they are
either certain, possible, or impossible to be one of those three. Figure 2.2(d) shows
this classification for the example set of regions.

Numeric values, on the other hand, have a range of possible values. In the example:
the radius of the SEC becomes an interval of possible radii. Figure 2.2(e) shows
the smallest and largest possible SEC of the set of imprecise points. Similarly, the
centre of the SEC becomes a region of possible locations (you could say: an imprecise
point), see Figure 2.2(f). Additionally, a combination of combinatorial and numeric
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information could be interesting. We could also view the output of the SEC problem
as a subset of the plane: the set of all points inside the SEC of the input points. In this
case, when the input is imprecise, we can compute the regions in the plane consisting
of all points that are certain or impossible to be inside the SEC. Figure 2.2(g) and 2.2(h)
show this for the example regions.

One might argue that the problem of computing the smallest enclosing circle of a set
of imprecise points is solved only when all these things have been computed explicitly.
However, the computational complexity for computing these properties may differ,
and a user of the algorithm may not care about one or more of them. Therefore, what
we need is a thorough investigation into the computational complexities of these
things, so that the user can decide what he or she wants and whether he or she finds
the time investment worth it or not.

This example shows a basic geometric problem in the simplest imprecision model
available. It will be clear that with more elaborate input models, or more complicated
geometric structures, the possibilities only increase. This makes the analysis of
geometric algorithms with data imprecision such a complicated and challenging task:
it may be impossible to ever provide a complete classification of all possible variants.
The challenge, then, is to identify which variants are most important and useful and
tackle them first. In the remainder of this chapter, we will survey what results have
already been obtained in the ten or twenty years that people have studied these
problems, and see how they relate to each other.

2.2 Imprecise Points Modelled as Regions

The simplest form of geometric data is a point. And the simplest way to represent
an imprecise point is by a region. Not surprisingly in a relatively new direction
of research, and considering the vast number of interesting problems that even a
construction as simple and long-solved as the smallest enclosing circle already give,
most attention has gone to this simplest setting.

Additionally, this simple model has the advantage that once the input and desired
output are specified, the problem becomes a classical geometric problem again. This
means that we do not have to rebuild our techniques from scratch, but can build upon
the existing wealth of geometric techniques. Even more interestingly, some problems
that arise from imprecision have already been solved by people who studied the
resulting algorithic problems from a very different motivation.

As described in the previous section, there are several different types of output that
one could be interested in. We now review them in more detail.
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2.2.1 Boolean Output

The most basic type of output an algorithm can have is a single Boolean value. Such
algorithms, called decision algorithms, answer a single question about the input data:
does a certain property hold or not? This question has only two possible answers: yes
or no. However, when the input is imprecise, there are three possible answers: yes,
no, or maybe. This corresponds to the situations where the property is certain to be
true, certain to be false, or either is possible depending on the precise locations of the
points.

Problems of this kind have not been studied extensively in the presence of data
imprecision, but they are often so fundamental that they have been solved as abstract
problems already. For example, consider the question whether the points in a given
set are collinear or not. When the points are imprecise, this can be formulated as
whether there exists a line that intersects all input regions. This is known in the
literature as the transversal or stabber problem, on which a lot of results are available,
see e.g. Edelsbrunner [38].

As another example, consider the question whether a set of points is in convex
position. Goodrich and Snoeyink [55] study a problem where they are given a set
of parallel line segments, and must choose a point on each segment such that the
resulting point set is in convex position. This corresponds to the question whether a
set of points that have 1-dimensional imprecision is in convex position. They present
an algorithm that determines whether solutions exist, and finds one if they do, in
O(n log n) time.

2.2.2 Combinatorial Output

Often, the output of a geometric algorithm can be specified in terms of relations
between the input points alone, without specifying any actual numerical information.
In this case, when the input is imprecise, we may answer a decision question for each
possible combinatorial feature, or equivalently, enumerate all features that could have
a certain property.

Not much work has been done in this direction. One notable exception is formed
by Bandyopadhyay and Snoeyink [10, 11], who compute for a given set of points all
triplets (in the planar case) that could form a Delaunay triangle when the points are
moved by at most ε. They call these sets the almost-Delaunay simplices of the point
set, which can be seen as the possible triangles in the Delaunay triangulation of a
set of imprecise points modelled as disks of radius ε. They show applications to the
problem of folding proteins.
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2.2.3 Numeric Output

Another type of output that a geometric algorithm can have is a single numeric value
(or possibly multiple numeric values). If the input is a set of imprecise points modelled
as regions, such a value is no longer precise, but becomes a set of possible values.
This set is usually a continuous interval of values, although this is not necessarily the
case. In this situation, we would like to compute the bounds of this interval, that is,
the smallest and largest possible values that the function under study can attain.

There are several measures that aim to capture the extent of a point set, including
the diameter, the width, the radius of the smallest enclosing circle, and the perimeter
of the smallest enclosing bounding box. For each of these, it would be interesting to
compute the smallest and largest possible value. For some of these problems, existing
results are already available. For example, the smallest possible radius of the smallest
enclosing circle of a set of regions, is known as the intersection radius of these regions.
Jadhav et al. [70] show how to compute this for a set of polygonal regions in O(n)
time. Similarly, Colley et al. [32] compute the smallest area axis-aligned rectangle that
intersects a set of convex polygons in O(n log n) time. Robert and Toussaint [113]
develop an algorithm for computing the smallest strip that intersects a set of convex
regions, while surveying several facility location problems. Such stabbing and facility
location problems can also be translated to minimisation problems of functions on
imprecise points. Van Kreveld and Löffler [90] study these extent measures from
the viewpoint of imprecision, and provide several additional algorithms, as well
as hardness results. Kruger and Löffler [78, 79] study the same problems in higher
dimensions.

Another basic geometric measure is the closest pair in a point set, that is, the smallest
distance between any pair of points among the input. Fiala et al. [45] consider the
problem of finding distant representatives in a collection of subsets of a given space.
In particular, they prove that maximising the smallest distance in a set of n imprecise
points, modelled as disks or squares, is NP-hard. Cabello [20] gives approximation
algorithms for this case. When two distinct point sets are given, a popular way of
computing the “difference” between them is the Hausdorff distance. Knauer et al. [77]
compute upper and lower bounds on the directed Hausdorff distance between two
point sets, one or both of which can be imprecise.

An important geometric structure is the convex hull. This is not something that can
be fully described by a single number, but its size can be measured by computing, for
example, its area or perimeter. Van Kreveld and Löffler [87, 89] study the problem
of computing upper and lower bounds on these measures. Ju and Luo [71] improve
one of these results, and also consider some variations in the model of imprecision.
Some of the resulting problems here have also been studied in a different context.
Mukhopadhyay et al. [98, 99] study the largest area convex polygonal stabber of a set
of parallel or isothetic line segments, and similarly, Hassanzadeh and Rappaport [64,
112] study the shortest perimeter convex polygonal stabber of a set of line segments.
Boissonnat and Lazard [17] study the problem of finding the shortest convex hull of
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Figure 2.3 The regions are the sets of points that are certain to be in the Voronoi
cells of the given imprecise points. Note that two of the disks intersect, and their
corresponding cells are empty.

bounded curvature that contains a set of points, and they show that this is equivalent
to finding the shortest convex hull of a set of imprecise points modelled as circles that
have the specified curvature. They give a polynomial-time approximation algorithm.

In Part II of this thesis, we present detailed solutions to the problem of computing
upper and lower bounds on several geometric measures.

2.2.4 Combination of Numeric and Combinatorial Output

Many geometric algorithms return a certain region in the plane, or a subdivision of
the plane into regions. In these cases, a natural way of representing imprecise output
is by providing two boundaries of such a region: an inner boundary that encloses all
points that are certain to be in the region, and an outer boundary that encloses all
points that could be in the region. Such a pair of boundaries is sometimes referred to
as a fuzzy boundary.

Nagai and Tokura [103] follow this approach for the convex hull by computing the
union and intersection of all possible convex hulls. As imprecision regions they use
disks and convex polygons, and they give an O(n log n) time algorithm for computing
both boundaries.

When the output is a subdivision of the plane rather than a single region, the most
interesting task is probably to compute the inner boundaries of all regions. Figure 2.3
shows an example for the Voronoi Diagram. Khanban [73] develops a theory for
returning such partial subdivisions, for Delaunay triangulations and Voronoi dia-
grams. This is based on a redefinition of the in-circle test, introduced by Khanban and
Edalat [74], for imprecise points modelled as rectangles. Ely and Leclerc [43] study



26 CHAPTER 2. MODELLING IMPRECISE DATA

similar problems for circular imprecision regions, and Sember and Evans [119] also
define partial Voronoi diagrams, similar to Khanban.

2.3 Other Models for Imprecise Points

Sometimes, a single region of possible locations for a point is too restrictive as a
model. In some applications, more information is known about the imprecision,
such as dependence on a limited number of parameters, or (estimated) probability
distributions over the locations of the individual points.

In these cases, the methods for models based on regions could still be used by choosing
an error distance beyond which the probability is below a certain threshold, and using
the remaining part of the plane as region. However, the disadvantage of this is that
the solutions produced by those methods will depend on the choice of this threshold.
Furthermore, the solutions depend heavily on the boundary cases of the error model,
while it is reasonable to expect the points are more likely to appear near the “centre”
of the regions.

Working directly with more involved models of imprecision can provide more accur-
ate answers to geometric questions about such sets of points. Of course, the downside
is that algorithms become more complicated, and probably take longer to run.

2.3.1 Dependence

One assumption that we have made so far about imprecise points is that the impreci-
sion of all points is independent. This may be true in some situations, or we may not
know anything better than that. In certain situations, though, we do know that the
positions of points are correlated, for example when they have been measured with a
consistently erroneous measuring device. In such cases, it is good if this dependence
can be incorporated in the imprecision model, since this should yield much more
accurate results.

Myers and Joskowicz introduce the linear-parametric geometric uncertainty model [101,
102], where the positions of imprecise points within their regions depend on a small set
of common parameters. Within this model, they study the maximum and minimum
values of geometric measures, such as the diameter and closest pair of a set of points.
In an earlier work, Ostrovsky-Berman and Joskowicz [107] study the union of all
possible convex hulls when the imprecision of the points depends linearly on a limited
number of parameters.
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Figure 2.4 (a) The shape inclusion probability for the smallest enclosing ball, for
points uniformly distributed inside the circles. (b) The same, but showing the
smallest enclosing axis-aligned bounding box.

2.3.2 Probability Distributions

Instead of modelling imprecise points by a small region of possible locations, it is also
possible to describe such a point by a probability distribution over the whole plane,
which specifies for every point in the plane the exact chance that the real point is at
that location. If such information is available, it is possible to compute more precise
information about the output than with the simple region-based models.

One approach, inspired by the statistical law of large numbers, is to solve the problem
by just sampling many input point sets, run a deterministic algorithm on these, and do
a statistical analysis on the results, for example, computing the average and standard
deviation of some measure. This is of course a randomised approach, but can be
expected to work well. The drawback is that it may take a lot of computation time.

If the output is a numeric value, though, we can even go one step further and provide
a complete probability distribution of this value based on the distributions of the input
points. To compute this exactly is infeasible for almost all interesting measures, but it
is possible to compute approximations of these distributions. Löffler and Phillips [85]
provide simple randomised algorithms to compute such distributions. Furthermore, if
the output is a region in the plane, they compute shape inclusion probability functions: a
density function over the plane that assigns to every point in the plane the probability
that that point is inside the region. This corresponds to the partial diagrams discussed
in Section 2.2.4. Figure 2.4 shows two examples of such shape inclusion functions,
depicted using isolines of the distributions.
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2.3.3 Preprocessing

Often, the outputs produced by repeatedly generating an input according to the same
probability distributions will be very similar. Sometimes it is possible to remem-
ber some information about earlier outputs, and use this to speed up the precise
computation on the next inputs. Clarkson and Seshadri introduce the notion of en-
tropy [31] as a way to measure the similarity between various Delaunay triangulations
of point sets drawn from the same distribution. They show how information about
the triangulations can be stored and used to eventually speed up the computation
time.

If the distributions are restricted to regions in the plane, it is also possible to prepro-
cess these regions explicitly, such that when a point set drawn from the distributions
is given, some structure can be computed faster than when redoing the whole com-
putation each time, independent of the distribution. Held and Mitchell [65] study
a problem of this type, which they call input-constrained geometry. Given a set of
disjoint unit disks in the plane, they show how to preprocess them in O(n log n) time
into a data structure, such that a point set drawn from the disks can be triangulated
in linear time given this data structure. Van Kreveld et al. [127] generalise this result
to any set of disjoint regions in the plane.

Löffler and Snoeyink [86] study the same problem for the Delaunay triangulation.
They show how to preprocess a set of disjoint unit disks in O(n log n) time so that the
Delaunay triangulation can be computed in linear time, and they also remark that this
result cannot be generalised to general disjoint regions. However, Buchin et al. [19]
show that for several realistic input models, such as partially overlapping or “thick”
regions, the same time bounds can still be obtained using randomised algorithms,
with optimal dependency on the realism parameters. In Part III of this thesis, we
provide the details of some of these algorithms.

These results are also related to the update complexity model. In this model, a set of
imprecise points is given, but it is assumed that the points can be obtained during the
execution of the algorithm with higher precision (that is, a smaller region), at a certain
cost. The goal is then to compute a certain combinatorial structure while minimising
the cost of updates [18, 47].

2.3.4 Outliers

A somewhat different way to model imprecision in point sets is to represent each
point by an exact point, but accompanied by a probability p that it really is where we
think it is. Then, with probability 1− p it is elsewhere, and we make no assumption
on where. This is useful, for example, for modelling measuring equipment that can
make very big errors, but does so only rarely. This results in the theory of outliers.
When the set of input points is large, we expect a fraction p of them to be measured
correctly, while the remaining k = n− pn points could be anywhere.
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When describing the shape of a point set with traditional geometric objects such
as a bounding box, a minimum enclosing circle, or the convex hull, such outliers
can greatly disturb the shape. This leads to problems of this type: find the smallest
possible box/circle/convex polygon such that at most k of the input points are not in
this region. Har-Peled and Wang [63] study this problem for many different geometric
shapes, and provide a general framework for solving such problems. The theory of
outliers in computational geometry is extensive, and actively being developed [4, 8].

While the model of a point being really correct with probability p may not be the most
suitable error model in most applications, even if we allow less strict distributions of
the points, such as, for example, normal distributions, it may still be a good idea to
develop algorithms that take outliers into account, since this may help to make, for
example, the computation of the average more stable.

2.4 Imprecision in Other Types of Input

So far, all models discussed are for problems where the input is a set of points (either in
the plane or in higher dimensions). However, many real-world applications provide
more structured input, or work on other geometric primitives. Even though most
attention by far has gone to the imprecision in points, there are also some results
available in other areas.

2.4.1 Lines

Apart from points, perhaps the next most basic geometric object is a line. To model
an imprecise line, we could follow the same approach as with points, and represent
each line as a set of possible lines. However, to make this a practical model, it would
be good to put some restrictions on the shapes of these sets of lines. In the case of
points, one often assumes that these sets are connected and perhaps convex. Additional
properties to make the regions easier to handle may include constant description size,
or piecewise linear (polygonal) boundaries. We would like to have similar properties
for imprecise lines.

We will distinguish between lines and directed lines. Problems that take a set of lines as
input usually treat them as either directed or undirected lines. There is an important
topological difference between the set of all lines in R2 and the set of all directed lines
in R2: the former is isomorphic to the Möbius-strip, while the latter is isomorphic to a
cylinder.

Connectedness is natural to define for a set of lines: if two lines can be transformed
into each other by a continuous movement inside the set, then they are connected.

Convexity of sets of lines is harder to define. This subject has been studied by various
people, and several different definitions have been proposed. A first approach is to
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Figure 2.5 A “convex” set of lines. The set contains all lines that stay completely
within the grey area.

define convexity based on point-line duality [39] and the concept of convexity for
point sets. The straightforward way to do this has the drawback that vertical lines
cannot be represented. Rosenfeld [114] proposes a definition that gets around this
problem and has nice properties, but which is not translation-invariant. Goodman [54]
argues that no natural definition can exist, and gives a definition that drops the
property of connectedness of convex sets. Gates [51] defines convexity for sets of
directed lines in a natural way. Bhattacharya and Rosenfeld [16] give an extensive
comparison between the various definitions.

With the idea in mind that we want to represent imprecise lines with our convex sets,
it seems reasonable to assume that for a given imprecise line, there is at least one
direction in which the line certainly does not lie. Van Kreveld and Löffler [88] suggest
a definition that takes this into account, which corresponds to the duality-based
definition except that the “vertical” direction can be different for each line. They also
show that such a set can be represented in a natural way as the set of all lines that lie
completely within the portion of the plane bounded by two curves. Figure 2.5 shows
a convex set of lines under this definition.

The other properties we mentioned, constant description size and piecewise linear
boundaries, are now also easy and natural to define for convex sets of lines: if the
defining curves are of constant description size or polygonal, then so is the set of lines.
Van Kreveld and Löffler [88] study the problems of linear programming and vertical
extent under this model. These results are presented in detail in Chapter 10.

There are of course also different possibilities to naturally describe imprecise lines.
Another natural model would be the set of lines stabbing two given regions (imprecise
points) in order. Imprecise linear programming also occurs in other fields, for example
in biology [13, 69] These uses suggest the axis-model: an imprecise line is the collection
of lines that intersect the x- and y-axes in certain fixed intervals.

2.4.2 Composite Structures

When dealing with composite geometric structures, it is less clear how to model an
imprecise instance. Perhaps the simplest composite geometric structure is the polygon:



2.4. IMPRECISION IN OTHER TYPES OF INPUT 31

(a) (b) (c)

Figure 2.6 (a) A set of imprecise points, with an additional graph structure on them.
(b) A possible instance of the graph. (c) Another possible instance. Note that this
one intersects itself.

a sequence of points connected by line segments. Other examples are geometric
graphs or triangulations, planar subdivisions, or higher-dimensional constructions.

Analogously to points, we could model an imprecise polygon by the set of all possible
polygons. However, the question then becomes what such a set looks like, and
whether it can be represented and stored concisely. Alternatively, we could model
such a polygon by defining imprecise versions of the components of the structure:
the points and the line segments. If we do that, though, it may be hard to ensure that
all possible resulting composites are consistent. For example, a geometric graph may
be required to have no self-intersections.

Somehow, both of these viewpoints come down to the same thing, if we describe the
set of “possible graphs” as the subset of the set of graphs that arises from making
the vertices imprecise and that satisfies a set of additional properties that we require
the graph to have. Figure 2.6 shows an example of such an imprecise geometric
graph where the vertices are modelled as imprecise points. Two possible instances
are shown, one of which has self-intersections.

One fundamental geometric graph is the polygon. Finding an instance of an imprecise
polygon corresponds to finding a path that visits a number of regions in the correct
order. Dror et al. [37] study the problem of computing the shortest path that visits a
number of regions in order. They give an O(n2 log n) time algorithm if the regions
are disjoint convex polygons, and prove that it is NP-hard for non-convex regions.
Polishchuk and Mitchell [109] extend this result to higher dimensions. Arkin et al. [6]
study the same problem for line segments and the L1 metric. In these problems, a
fixed starting point for the path or tour is required. These problems are also related to
the Safari Keepers problem [105, 125], where all regions are required to be inside a
polygonal domain, and adjacent to its boundary.

In these results, the tour is often seen as a path that is traversed by something or
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somebody. Conversely, when the tour is used to model an imprecise polygon, we
often assume that this polygon should be simple: there should be no intersections
between its edges. A fundamental question then becomes, when the vertices are
imprecise, whether the corresponding imprecise polygon is still simple. Löffler [84]
studies this question and shows that deciding whether it is possible to place the
vertices such that the resulting polygon is simple, is NP-hard. In Part IV of this thesis,
some results regarding this are given in detail.

When the imprecise polygon is indeed simple, we can start solving problems on
simple polygons. Cai and Keil [21] study visibility in an imprecise simple polygon,
where each vertex lies in a disk of radius ε. They define the visibility skeleton as the
graph that has an edge between two vertices if these two vertices can see each other
in any instance of the polygon, and show that this can be used to compute constant-
factor approximations of shortest paths. Stewart [124] studies how to do robust point
location in imprecise polygons, although he is mainly concerned with computational
imprecision rather than data imprecision.

Another fundamental geometric graph is the triangulation. When the input is a
triangulation but the vertices are imprecise, we need to ensure that the resulting graph
is indeed a valid triangulation. For the Delaunay triangulation, the combinatorial
structure of the triangulation may change as the points move, even without causing
intersections. Abellanas et al. [1] and Weller [128] define the tolerance of a geometric
structure as the largest perturbation of the vertices such that the topology of the
structure is guaranteed to stay the same. They focus mainly on the planar Delaunay
triangulation, and show that its tolerance can be computed in linear time. They also
study several subgraphs of the Delaunay triangulation.

2.4.3 Imprecise Attributes

Often, a geometric data set consists not only of a set of points, but a set of points
with certain attributes on them. For example, we may measure the soil humidity on
several locations in the plane, or the elevation above sea level. In this case, not only
the position of a point may be imprecise, but also the value of the attribute. In such a
case, we may view the attribute value as an extra dimension, so a point set in Rd with
imprecise attributes becomes an imprecise point set in Rd+1.

In fact the imprecision of the attribute is often far greater than that of the locations.2

For example, in high-resolution terrains distributed by the United States Geological
Survey, it is not unusual to have vertical errors of up to 15 meters [126]. This suggests
that we could assume that the locations are actually precise, and only the attribute
values are imprecise. The regions of the imprecise points in Rd+1 then becomes a set
of vertical line segments. Figure 2.7 shows an example.

In a way this is no different from the models in the previous section, since we are
still dealing only with points sets. But, the imprecision is of a very specific kind.

2In a relative sense, since the error of attribute values cannot be directly compared to the error in space.
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(a) (b)

Figure 2.7 (a) A set of points in the plane with a numeric attribute can be interpreted
as a set of points in R3. (b) When the attribute value is imprecise, the point set
becomes a set of vertical line segments.

Furthermore, often not only a point set is given but also some structure on it, such as
a triangulation. In this case we get what we may call an imprecise polyhedral terrain.

Gray and Evans [58] propose a model where an interval of possible heights is asso-
ciated with every vertex of a triangulation. They study the problem of computing
the shortest non-ascending path between two points on the terrain, where the path
has to stay inside the height interval of every vertex it visits. Kholondyrev and
Evans [75] also study this model. Silveira and Van Oostrum [121] study the problem
of removing local minima in a terrain by moving the vertices up and down, but this
model is slightly different since they assume no bounds on the imprecision, but rather
minimise the total displacement of the vertices. Gray et al. [59, 60] study the problem
of finding the “smoothest” instance of an imprecise 1.5-dimensional terrain.

2.5 Closing Remarks

Many different ways of making data imprecision in geometric problems mathem-
atically precise have been studied. The two main modelling questions are how to
describe the imprecision in the input, and what we want to know about the resulting
imprecision in the output. The different answers to these questions lead to an array
of algorithmic problems, most of which have never been considered yet. Nonetheless,
the number of results, especially concerning imprecise points, is growing steadily.

This finishes the introductory part of this thesis. In the remainder, detailed algorithms
and hardness proofs for several of the problems mentioned in this chapter are presen-
ted. In Part II, we consider computing upper and lower bounds on geometric prob-
lems that have a numeric value as output, when the input is a set of imprecise points.
In Part III, we investigate whether it is possible to preprocess a set of imprecise points
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such that when the real points become available later, certain computations can be
speeded up. Finally, in Part IV, we study problems that take a set of imprecise lines
or an imprecise polygon as input.



PART II

Bounds on Output Imprecision





Chapter Three

Bounds on Shape Fitting

In this part of this thesis, we consider the problem of computing lower and upper
bounds on the possible output values of geometric problems that take a point set
in the plane as input and produce a single number as output, when the points are
imprecise. This was also described in Section 2.2.3.

We assume that the “real” input point set P = {p1, . . . , pn}; pi ∈ R2 is unknown,
and that instead we are given a set of regions R = {R1, . . . , Rn}; Ri ⊂ R2 and the
guarantee that for every i we have pi ∈ Ri. We are interested in the value of a certain
function µ that takes a point set as input and produces a single number as output, that
is, we want to know µ(P). Since P is unknown, what we want to compute instead
is the smallest and largest possible value that µ can attain on any point set P that
complies withR, that is, we want to find point sets Pmin and Pmax that each consist
of one point from every region in R, such that µ(Pmin) is the smallest value that µ
attains on any such set and µ(Pmax) is the largest such value. Note that such point
sets are generally not unique: often the value of µ is only defined by a small number
of points, and is not influenced by the precise location of the rest of the points.

We restrict the regions of the points to have the same shape, and in particular study
the case where these shapes are squares or disks1. These shapes are arguably the most
natural choices that occur in practice. The circular model occurs when the points are
accompanied by a single error parameter ε, and there is no reason to assume that one
direction of error is more likely than another. The square model could occur when
points have been stored as floating point numbers, where both the x and y coordinates
have an independent uncertainty interval, or with raster to vector conversion. Aside
from this practical motivation, these shapes are easier to handle and already provide
sufficient challenge, as will become clear later.

1Or, if the reader prefers, balls in the L1 and L2 metric.
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problem model largest smallest
smallest bounding box squares O(n) O(n)

disks O(n) O(n2)
smallest enclosing circle squares O(n) O(n) [70]

disks O(n) O(n)
minimum width strip squares — O(n log n) [113]

disks — O(n log n)
line segments NP-hard O(n log n) [113]

Table 3.1 New and known results on shape fitting problems.

One common operation in computational geometry is to capture the “shape” of a set
of points by fitting a simple predefined geometric object around it. In this chapter,
we study three basic shape fitting problems on point sets in the plane: the smallest
enclosing axis-aligned bounding box, the smallest enclosing circle, and the minimum
width enclosing strip in any direction. Each of these definitions implies a notion of size
to define the “smallest” or “minimum” shape. We measure the size of a bounding box
by its area, the size of a circle by its radius, and size of a strip by its width. Now, the
size of the smallest shape that fits around a set of points is an example of a function µ
as described above.

For each of the three classes of shapes, we study the algorithmic questions of maxim-
ising and minimising the size of the smallest shape. Furthermore, we consider two
different models for the imprecise points: squares and disks. This leads to a total of
12 different problems, which are shown in Table 3.1, together with the efficiency of
our solutions. Some of those problems have already been studied with a different
motivation. For most of the other cases we were able to construct efficient algorithms.
The exception is the problem of computing the largest possible width. For this, we
have not found any satisfying result for the square or disk model, although we can
prove that the problem is NP-hard when the imprecise points are modelled as line
segments.

3.1 Axis-Aligned Bounding Box

We start with a relatively simple problem. Given a set of points P, the axis-aligned
bounding box (AABB) is the smallest axis-parallel rectangle that contains P, see Fig-
ure 3.1(a). In an imprecise context, we are given a setR of regions, and we want to
place a point in each region such that the bounding box of the resulting point set is as
large or as small as possible, see Figures 3.1(b) and 3.1(c). We will measure the size of
a rectangle by its area.
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(a) (b) (c)

Figure 3.1 (a) The axis-aligned bounding box of a set of points in the plane. (b) The
largest possible AABB of a set of imprecise points. (c) The smallest possible AABB
of the same set of imprecise points.

3.1.1 Largest Possible AABB

In this section, we consider the following problem:

Problem 3.1 Given a set of disks or squares in the plane, place a point in each region such
that the area of the axis-aligned bounding box of these points is maximised.

The largest possible AABB can be computed in linear time for both the square and
disk model (or, in fact, any other constant-complexity model). LetR′ ⊂ R be the set
of the four farthest regions fromR in each of the four axis-parallel directions, making
sixteen elements in total.

Lemma 3.1 The largest possible AABB ofR′ is equal to the largest possible AABB ofR.

Proof Suppose this is not the case. Then there is a region l inR \R′ that contributes
to the AABB ofR, say to the top boundary. However, there are at least four regions in
R that extend higher than l, of which only three can contribute to another boundary.
That means we can place the point of the fourth at its topmost position, and we have
a larger AABB. This contradicts the assumption. �

The AABB of R′ can be determined by four points each lying on one of the sides
of the bounding box, or by only three or two points when one or two points lie on
corners. Since R has only constant size, we can try all possibilities and report the
largest one. For a set of at squares with the extreme points of the bounding box
assigned to them, it is trivial to compute the largest box; for a set of discs this involves
solving a polynomial of degree at most 4.

Theorem 3.1 Let R be a set of n disks or squares in the plane. We can compute in O(n)
time a point set P containing one point from each region in R, such that the area of the
axis-aligned bounding box of P is maximised.
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3.1.2 Smallest Possible AABB

In this section, we consider the following problem:

Problem 3.2 Given a set of disks or squares in the plane, place a point in each region such
that the area of the axis-aligned bounding box of these points is minimised.

We will first define a rectangle R that has to be in the interior of any solution. Let the
left extreme line be the leftmost of the lines through the rightmost points of all regions.
Similarly we define the right, top and bottom extreme lines. When the left extreme line
is to the right of the right extreme line, or the top extreme line is below the bottom
extreme line, there exists a zero area solution. We can check this easily in linear time,
so from now on we assume that this is not the case. Then, the for extreme lines define
a rectangle R.

The smallest possible AABB is the smallest rectangle that contains at least one point
of each region, so it is actually the smallest rectangle that intersects all regions. Note
that this rectangle must indeed contain R.

3.1.2.1 Squares

When the points are modelled as squares, we know that every square must intersect
R. Therefore, R is already the smallest AABB.

Theorem 3.2 Let R be a set of n squares in the plane. We can compute in O(n) time a
point set P containing one point from each region inR, such that the area of the axis-aligned
bounding box of P is minimised.

3.1.2.2 Disks

When the imprecise points are modelled as disks, R does not necessarily intersect
all disks, see Figure 3.2(a). Colley et al. [32] study the same problem for a set of
convex polygons, and they obtain an O(n log n) time algorithm. We can use similar
techniques to get a quadratic-time algorithm for the disk case.

We do know that R needs to be contained in the smallest AABB, and therefore we no
longer need to consider the disks that intersect R. The centre points of the remaining
disks lie outside the two strips between the extreme lines; this partitions them into
four groups. Consider the top right group; the other groups are treated symmetrically.
For each disk in that group, we define the region where the top right corner of the
AABB must lie so that the AABB intersects the disk. Take the bottom left quarter-disk
boundary, and extend it to an infinite curve using a half-line vertically upwards from
the topmost point and a half-line horizontally rightwards from the rightmost point.
This results in the boundary of a rounded quadrant; the curve divides the locations
of the top right corner of the AABB into the interior, where the AABB intersects this
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Figure 3.2 (a) The disks that intersect the rectangle R (bounded by the extreme lines)
are always accounted for. (b) The remaining disks form four chains of circular arcs.

disk, and the exterior, where it does not. We compute this curve for each disk in the
top right group, and then compute the boundary of the common interior, giving the
top right chain. We perform symmetric steps for the other three groups. Each of the
four chains is a convex chain of O(n) circular arcs and two half-lines, see Figure 3.2(b).
We can compute these chains in O(n log n) time by first computing the common
intersection of the disks in each group.

The corners of the smallest AABB must lie on or behind those four chains. This means
that either the top left and bottom right corners lie on their respective chains, or the
bottom left and top right corners lie on their respective chains, otherwise we could
shrink the solution. We can try both of these options, so suppose the top left and
bottom right corners lie on the chains.

For any pair of a circle segment on the top left chain and a circle segment on the
bottom right chain, we can compute the smallest rectangle with a corner on both
segments in constant time. However, we need to ensure that the resulting bottom
left and top right corners are on or beyond their chains as well. We will maintain
the horizontal projection of the endpoints of the circle segment of the top left chain
on the top right chain, and the vertical projection of these endpoints on the bottom
left chain. In the same way, we keep track of the projections of the endpoints of the
circle segment of the bottom right chain on the top right and bottom left chains, see
Figure 3.3(a).

For every circle segment ctl on the top left chain, we go over every circle segment cbr
on the bottom right chain from left to right, and treat this pair. We first determine the
intersections of the projections of ctl and cbr on the bottom left and top right chains.
Observe that the projection of cbr moves only from left to right on the top right chain
and only from right to left on the bottom left chain. If the intersection on a chain
is empty, say, on the top right chain, then there are two possibilities: either there
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Figure 3.3 (a) The endpoints of one arc of the top left chain and one arc of the
bottom right chain are projected on the top right and bottom left chains. (b) The
unrestricted smallest AABB with corners on ctl and on cbr.

is no rectangle with its top left corner on ctl and its bottom right corner on cbr that
intersects all disks of the top right group, or every rectangle with its top left corner
on ctl and its bottom right corner on cbr intersects all disks of the top right group (as
in Figure 3.3(a)). Both cases are easy to handle, so assume that the intersection of
the projects of ctl and cbr is not empty on the bottom left chain (as in Figure 3.3(a)).
Assume it consists of m circle segments. We compute the unrestricted optimal solution
for the two circle segments, see Figure 3.3(b), and test whether it is valid in O(m) time.
If it is not valid, then the optimal rectangle must have a corner on the bottom left
chain as well. In this case, we have three chains with a point on them, and a corner on
the bottom left chain defines a rectangle immediately which we must check against
the top right chain. Hence, we can find the optimal solution by walking over the
O(m) parts of the bottom left chain from right to left and maintaining how the top
right corner of the rectangle moves with respect to the top right chain. In the process,
we determine the smallest valid rectangle.

Because we go over the circle segments of the bottom right chain from left to right,
the projections move in only one direction on the other two chains. Hence, the total
complexity of the circle segments we encounter among all cases cannot be more than
O(n) for one circle segment of the top left chain.

Theorem 3.3 Let R be a set of n disks in the plane. We can compute in O(n2) time a
point set P containing one point from each region inR, such that the area of the axis-aligned
bounding box of P is minimised.
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(a) (b) (c)

Figure 3.4 (a) The smallest enclosing circle of a set of points in the plane. (b) The
largest SEC of a set of imprecise points. (c) The smallest SEC of the same set of
imprecise points.

3.2 Smallest Enclosing Circle

We move on to another problem. Given a set of points P, the smallest enclosing circle
(SEC) is the smallest circle that contains P, see Figure 3.4(a). The SEC of a set of points
was already briefly discussed in Section 2.1.2.1. In this section, when we are given
a set R of imprecise points, we want to place a point in each region such that the
radius of the SEC of the resulting point set is as large or as small as possible, see
Figures 3.4(b) and 3.4(c).

3.2.1 Largest Possible SEC

In this section, we consider the following problem:

Problem 3.3 Given a set of disks or squares in the plane, place a point in each region such
that the radius of the smallest enclosing circle of these points is maximised.

3.2.1.1 Squares

The largest smallest enclosing circle of a set of squares (or constant size convex
polygons) can be computed by first computing the smallest enclosing circle of the set
of corners of all squares, using an existing SEC algorithm in O(n) time (e.g. [93]). If
the three points that determine this circle belong to different squares, we are done.
Otherwise, there is one square of which multiple corners contribute to the smallest
enclosing circle, and we know that this square has to contribute to the optimal solution.
So we just try all corners of this square and compute the smallest enclosing circle of
this single point and all other corners of the other squares.
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Figure 3.5 The LSEC (black) of a set of disks. (a) All disks are completely within the
LSEC. (b) There is one disk containing all others.

If the point p we chose does not lie on the resulting circle, then we clearly chose the
wrong point. If p does lie on the circle, we do not yet know whether we chose the
right point, but we proceed by computing the largest smallest circle through p of the
remaining squares in the same way. Since a square has four corners, and at most
three points can define a circle, we inspect at most 43 possible solutions. We report
the largest among these.

Theorem 3.4 Let R be a set of n squares in the plane. We can compute in O(n) time a
point set P containing one point from each region inR, such that the radius of the smallest
enclosing circle of P is maximised.

3.2.1.2 Disks

To compute the largest possible smallest enclosing circle of a set of disks, we observe
that there are only two possibilities. Either the largest SEC contains all disks, or it
does not, see Figure 3.5. If it does, then the largest SEC is just the smallest circle
containing a set of disks, which can be computed in O(n) time [95]. If it does not, this
means that there must be one disk D among the input disks that contains all other
disks. In this case, the largest SEC is determined by the point p in the union of all
other disks closest to the boundary of D, and the point q on D furthest away from p.
This case can clearly also be solved in linear time.

Theorem 3.5 LetR be a set of n disks in the plane. We can compute in O(n) time a point
set P containing one point from each region inR, such that the radius of the smallest enclosing
circle of P is maximised.

3.2.2 Smallest Possible SEC

In this section, we consider the following problem:
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Problem 3.4 Given a set of disks or squares in the plane, place a point in each region such
that the radius of the smallest enclosing circle of these points is minimised.

The smallest possible SEC for a set of imprecise points is the smallest circle that
intersects all regions. This is also called the intersection radius of a set of regions. When
the regions are squares (or other convex polygons), it can be computed in linear time
[70].

3.2.2.1 Disks

When the points are modelled as disks, the problem of finding the smallest SEC
becomes a so-called LP-type problem [28]. An LP-type problem is defined on a set of
objects H and a function w : 2H →W, where W is some totally ordered set of possible
values. The goal is to compute w(H). To be LP-type, two axioms must hold, namely
monotonicity:

∀F⊆G⊆H : w(F) ≤ w(G)

and locality:

∀F⊆G⊆H, h∈H : w(G) = w(F) < w(F ∪ {h}) −→ w(G) < w(G ∪ {h})

LP-type problems can be solved in linear expected time using a generic algorithm [92].

Lemma 3.2 Problem 3.4 is LP-type, when the regions are disks.

Proof In our case, H = R is the set of disks, and w gives the radius of the smallest
possible SEC, that is, of the smallest circle that intersects all disks. The monotonicity
axiom clearly holds. For the locality axiom, let F and G be two collections of disks
with the same radius of the smallest SEC, such that F ⊆ G. Let C be the smallest SEC
of F: C will be tangent to two or three disks of F, and intersect all others. Any other
circle of the same radius as C cannot intersect all of these two or three defining disks.
Therefore, the smallest SEC of F must be the same circle C. Then, let h be disk of H
outside G, such that w(F) < w(F ∪ {h}). Clearly h must lie fully outside C. But now,
w(G) < w(G ∪ {h}) as well. �

Theorem 3.6 LetR be a set of n disks in the plane. We can compute in O(n) expected time
a point set P containing one point from each region inR, such that the radius of the smallest
enclosing circle of P is minimised.

3.3 Width

Given a set of points P, the width of P is the smallest distance between any pair of
parallel lines that contains P, see Figure 3.6(a). Examples of the imprecise case are
given in Figures 3.6(b) and 3.6(c).
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(a) (b) (c)

Figure 3.6 (a) The width of a set of points in the plane. (b) The largest possible
width of a set of imprecise points. In this example, it is reached at two different
locations. (c) The smallest possible width of the same set of imprecise points.

3.3.1 Largest Possible Width

In this section, we consider the following problem:

Problem 3.5 Given a set of disks or squares in the plane, place a point in each region such
that the width of these points is maximised.

This problem seems to be hard, although we do not have any result on this problem.
However, when the points are modelled as line segments, we can show the problem
is in fact NP-hard. Therefore, we deviate from the structure of the chapter so far and
give a result for line segments.

3.3.1.1 Line Segments

Computing the largest possible width of a set of imprecise points modelled as ar-
bitrarily oriented line segments is NP-hard. We prove this by reduction from SAT.
The construction is similar to the one used to prove NP-hardness of computing the
largest possible convex hull of a set of line segments [87], but the nature of the width
measure requires some new ideas.

Given a SAT instance, let k be odd and larger than the number of clauses and variables
in the instance together. We base the construction on a regular 2k-gon. We place k
precise points distributed evenly on the vertices of the 2k-gon, see Figure 3.7(a). Let
the furthest distance between two of these precise points be d. The imprecise points
that we will place later will all be completely within the 2k-gon. This ensures that the
largest width can at most be d, because the width of the 2k-gon itself is d. We will
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Figure 3.7 (a) A regular 2k-gon with width d. (b) A curve of constant width, formed
by k arcs.
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Figure 3.8 (a) A part between the 2k-gon and the curve of constant width. (b) A
variable inside a part. (c) A clause inside a part.

make a construction such that a width of d arises if and only if the SAT instance can
be satisfied.

Now, for each of the k precise points we draw an arc with that point as centre between
its two opposite points. These arcs together form a curve of constant width, see
Figure 3.7(b). This is the smallest possible region within the 2k-gon that contains the k
precise points and has width d. As a consequence, a solution of width d is possible if
and only if the imprecise points can be placed in such a way that the convex hull of the
points completely contains this curve of constant width. The area between the 2k-gon
and the curve of constant width is divided into k parts, as shown in Figure 3.8(a),
which we will use to construct variables and clauses.

Lemma 3.3 A set of points P inside the 2k-gon has width d if and only if the convex hull of
P completely contains the curve of constant width.

Proof If the convex hull of P completely contains the curve of constant width, its
width must be at least d. On the other hand, it is still completely contained in the
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2k-gon, which also has width d, so its width is at most d. Therefore, it is d.

If the convex hull of P does not completely contain the curve of constant width, there
is some point p in the interior of the curve of constant width that is not inside the
convex hull. This means that there is a line l through p that does not intersect the
convex hull, and therefore does not intersect the k-gon formed by the k precise points.
Because k is odd, there is a line parallel to l through one of the k precise points that
does not intersect the 2k-gon anywhere else, and since this point is part of the curve
of constant width the distance between these two lines is less than d. Since the convex
hull is completely between them, the width of the placed points is also less than d. �

For each Boolean variable in the SAT instance, we will build a variable gadget by taking
an empty arc and adding the configuration of Figure 3.8(b) inside. This configuration
consists of two precise points p and q that were already added, a segment parallel
to pq with endpoints t and f , and two sets of points T and F. The points of T are
placed in such a way that the convex hull of {p, q, t} ∪ T contains the circular arc.
Furthermore, removing any point from that set makes the convex hull intersect the
arc, even when adding one or more points from F instead. Symmetrically, the points
of F are placed such that the convex hull of {p, q, f } ∪ F contains the circular arc.
The whole configuration is symmetric by design. By Lemma 3.3, in order to make
the width larger than d, we need to use either t and all points in T, or f and all
points in F. The first situation will represent the value true for this variable, and the
second situation represents the value false. The points in T and F are endpoints of
segments that have their other endpoint in a clause gadget.

For each clause we add a single point s at the top of an empty part, see Figure 3.8(c).
We include a line segment (an imprecise point) between s and every variable in this
clause. If the variable occurs normally, the other endpoint is in the T-group, and if
it is negated the other endpoint is in the F-group of that variable gadget. Since we
can use only one endpoint of every segment, we can place a point at s only if at least
one of the variables of the clause is in the right state. Therefore, we can make a point
set whose convex hull contains the curve of constant width if and only if the SAT
instance is satisfiable, and together with Lemma 3.3 this implies NP-hardness of the
width problem.

Theorem 3.7 Let R be a set of n line segments in the plane. Computing a point set P
containing one point from each region in R, such that the width of P is maximised, is
NP-hard.

3.3.1.2 Squares or Disks

There can be many points that contribute to the width of a set of points in the plane.
Figure 3.9(a) depicts an example where removing any point would result in a smaller
width. Note that this is not an issue of degeneracy. In an imprecise context, this
means we cannot look only at constant size subsets of the regions. Furthermore, it can
happen that many points define in the optimal width, see Figure 3.9(b). This makes
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(a) (b)

Figure 3.9 (a) A set of n points, such that the width changes when any of them is
removed. (b) Many triples of points define the width.

maximising the width of a set of imprecise points a hard problem. However, the
hardness proof of the previous section does not work when the imprecision regions
are squares or disks, thus the status of the problem remains open.

3.3.2 Smallest Possible Width

In this section, we consider the following problem:

Problem 3.6 Given a set of disks or squares in the plane, place a point in each region such
that the width of these points is minimised.

The smallest width of a set of imprecise points can be computed efficiently. For
squares (or any polygonal regions), the problem can be solved in O(n log n) time
[113].

For disks, we can solve the problem by computing the critical sequence of the regions.
Recall that a region R ∈ R is called extreme in a direction if, when we sort the regions
by their points least far in that direction, R is (one of) the farthest. In almost every
direction, there is exactly one extreme region, except for the critical directions where
a line perpendicular to the direction is tangent to two regions simultaneously. If we
rotate through all directions, we find the critical sequence of the regions, as introduced
by Rappaport for a set of line segments [112]. Figure 3.10 shows an example of
a critical sequence. When the regions are circles or squares, this sequence can be
computed in O(n log n) time [104]. The smallest width must have a critical line on
one side, so we can find it by using rotating callipers.

Theorem 3.8 LetR be a set of n disks in the plane. We can compute in O(n log n) time a
point set P containing one point from each region inR, such that the width of P is minimised.
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Figure 3.10 The critical sequence of a set of disks.

3.4 Closing Remarks

In this chapter, we studied three different shape fitting problems, namely the smallest
enclosing axis-aligned bounding box, the smallest enclosing circle, and the narrowest
strip containing a set of points. We presented algorithms for computing the upper
and lower bound on their size when the points are imprecise, modelled as either
squares or disks. We can compute most of these bounds efficiently, with the exception
of the upper bound on the width, which seems to be a much harder problem. The
exact results are summarised in Table 3.1.

The results in this chapter can also be found in [90], along with the results in Chapter 6.
These results all apply only to the planar case. However, most of the results in this
chapter have been extended to higher dimensions by Kruger [78], see also Kruger
and Löffler [79]. Most polynomial-time solutions extend in the sense that they stay
polynomial in n when studied in Rd, though the dependency on d varies signific-
antly between the different shapes. A notable exception is the smallest axis-aligned
bounding box of a set of hyperspheres; this can be done in polynomial time in R3 but
remains an open problem for d > 3.



Chapter Four

Bounds on the Convex Hull Area

Consider the same model as in the previous chapter: we are given a set of regions
R, and we want to place one point in each region to maximise or minimise some
function µ. In this chapter, we let µ(P) denote the area of the convex hull of P. The
convex hull is defined as the smallest convex set that contains a given input set. In our
case, the input set is a finite point set in R2. Computing the convex hull can also be
seen as a shape fitting problem, but there is one notable difference with the problems
studied in the previous chapter. The shapes there were simple, in the sense that the
description complexity of the output shape was always constant. The convex hull, on
the other hand, can have a linear output description size.

The convex hull is one of the oldest geometric constructions studied, and can be
computed in O(n log n) time, for example by sorting the points on their x-coordinate
and then applying the algorithm described in Section 1.1.3, which was originally
designed by Graham [57]. Apart from some direct applications, the convex hull is
most often used as a subroutine in other algorithms. One example of a basic algorithm
that uses the convex hull as a subroutine is an algorithm for computing the diameter
of a set of points; more details on this can be found in Chapter 6.

As before, we consider both the square and disk model for imprecise points. However,
the increased complexity of the convex hull causes algebraic issues when the regions
are modelled as disks. We discuss this is some more detail in Section 4.4; for the
rest of the chapter we assume that the regions are squares. For the square model, it
appears that computing the lower bound of the convex hull area is much easier than
computing the upper bound. We give a O(n2) algorithm that can compute the lower
bound on any set of squares. For computing the upper bound, however, we have
only an O(n7) algorithm, which furthermore works only when the input squares are
disjoint.
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Figure 4.1 (a) The largest convex hull for a set of line segments. (b) The polygon Pi j.

4.1 Largest Convex Hull of Parallel Line Segments

Even though we consider the regions inR to be squares or disks, in this section we
will first discuss the case where the regions are parallel line segments. Without loss of
generality we will assume that they are vertical. This algorithm will later be reused in
the other cases.

Problem 4.1 Given a set of parallel line segments in the plane, place a point in each region
such that the area of the convex hull of these points is maximised.

Figure 4.1(a) shows an example. First we will show that we can ignore the interiors of
the segments in this problem, that is, we have to consider only the endpoints.

Observation 4.1 There is an optimal solution to Problem 4.1 such that all points are chosen
at endpoints of the line segments.

Proof Let H be an optimal solution. If p is a vertex of H, and we move it over its
segment while maintaining the combinatorial structure of H, the area of the polygon
changes as a linear function. The maximum of this function occurs when p is at one
of the endpoints, so we can move it there. It is possible that the polygon is no longer
convex or that some points of P no longer lie within the polygon, but correcting this
can only increase the area of the convex hull. We repeat this for all points in P. �

LetR = {l1, l2, . . . , ln} be a set of n vertical line segments, where li lies to the left of l j

if i < j. Let l+i denote the upper endpoint of li, and l−i denote the lower endpoint of
li. Now we need to pick one of each pair of endpoints to determine the largest area
convex hull. We use a dynamic programming algorithm that runs in O(n3) time and
O(n2) space. The key element of this algorithm is a polygon that is defined for each
pair of line segments.

For i 6= j, define the polygon Pi j as the largest possible polygon that is the convex
hull of some choice of endpoints to the left of li and l j, and uses the top of li and
the bottom of l j, see Figure 4.1(b). In other words, it is the convex hull of a set of
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endpoints l+k for some values k ≤ i, and endpoints l−k for some values k ≤ j, where
not both l+k and l−k can occur for the same k, such that the area of this convex hull is
maximised. Note that Pi j is defined both for the case i < j and i > j.

Now, we will show how to compute all Pi j using dynamic programming. The solution
to the original problem will be either of the form Pkn or Pnk for some 0 < k < n, and
can thus be computed in linear time once all Pi j are known.

With some abuse of notation, we use + to denote the addition of a triangle to a
polygon, and we maximise over the area of the result. When 1 < i < j, then we can
write

Pi j = max
k< j;k 6=i

(
Pik +4l+i l−j l−k

)
Of course we maximize over the area of the polygons. In words, we choose one of
the lower points to the left of l j, and add the new point l−j to the polygon Pik that

optimally solves everything to the left of the chosen point l−k . Analogously, when
1 < j < i, we can write

Pi j = max
k<i;k 6= j

(
Pk j +4l+i l−j l+k

)
When i = 1 or j = 1, we can use the same formulas to compute Pi j, but we need the

additional option to just choose the line segment l+i l−j with area 0, in case there are
no more points to the left of the new one.

The algorithm runs in O(n3) time and requires O(n2) space. This is because we do
not have to actually store the entire polygon Pi j for each i and j, but only the next
point on the upper chain when i > j or the lower chain when i < j, and the area
of the polygon. When we scan the known polygons while determining a new one,
we just add the area of a triangle to the stored area, and take the maximum of those
numbers. We do not need to enforce convexity, because a non-convex solution can
never be optimal.

Theorem 4.1 Let R be a set of n parallel line segments in the plane. We can compute in
O(n3) time a point set P containing one point from each region in R, such that the area of
the convex hull of P is maximised.

4.2 Largest Convex Hull of Squares

The problem we discuss in this section is the following:

Problem 4.2 Given a set of squares in the plane, place a point in each region such that the
area of the convex hull of these points is maximised.

Figure 4.2(a) show an example output. As in the case of line segments, we again ob-
serve that it suffices to consider only the corners of the squares as possible placements.
The proof is analogous to that of Observation 4.1.
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Figure 4.2 (a) The largest area convex hull for a set of squares. (b) The four extreme
points narrow down the possible structure of the optimal convex hull.

Observation 4.2 There is an optimal solution to Problem 4.2 where all points lie at a corner
of their square.

Now, let P∗ be the (unknown) set of optimal placements of the points in R. We
define the four extreme points pr, pt, pl , pb ∈ P∗ to be the rightmost, topmost, leftmost
and bottommost points of P∗. These will be present on the convex hull of P∗, and
divide the hull into four chains. If we know the extreme points, the rest of the hull is
restricted to stay within four triangular regions, as shown in Figure 4.2(b). We can
make another observation about the nature of the points on the four chains.

Observation 4.3 All vertices on the top left chain are points chosen at top left corners of
their squares. The same holds for the other three chains/directions.

The general strategy will be to first find the four extreme points of the optimal solution,
and then using the additional structure to place the rest of the points. Unfortunately, it
is not easy to find the extreme points. For example, there is no direct relation between
the extreme squares in the input and the extreme points in the optimal solution, see
for example Figure 4.3.

4.2.1 Algorithm for Disjoint Squares

When we restrict the problem to disjoint squares, we can solve the problem in O(n7)
time. The idea behind the solution is to divide the squares into groups of squares of
which we know that only two of their corners are feasible for an optimal solution, and
then to use the algorithm for parallel line segments (Problem 4.1) on these groups.

When the four extreme points are known, we can use this information to solve the
problem in O(n3) time. However, how to find those points still remains a difficult
problem, so we try all possible combinations, hence the total of O(n7).
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(a) (b)

Figure 4.3 A situation where none of the four extreme points appear on an extreme
input square. (a) Ten input squares. The big ones are top and bottom extreme, while
the medium-sized squares are left and right extreme. (b) The optimal (largest area)
solution. All the extreme points are corners of the small squares.
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Figure 4.4 The four extreme points can divide the plane in two different ways.

The four extreme points pl , pt, pr and pb divide the plane as shown in Figure 4.4.
From pl we draw a line to the right, from pb one upwards, from pr one to the left and
from pt one downwards. These four lines intersect at four intersection points. For a
square to be able to have its point on the top left chain, its upper left corner needs to
be in the rectangle between pl and pt (actually even in the upper left triangle). An
analogous property holds for the other chains. If a square has the potential to be
included on more than two chains, this means that it must have at least one of the
four intersection points in its interior. Since the squares do not overlap, there can be
at most four such squares. Of these squares we simply try every possible combination
of corners, of which there are only constantly many, so we can assume from now on
that every square has at most two potential corners.

Now that all squares have only two potential corners, we can represent them by line
segments. We see that a segment can be of six possible kinds, as there are six ways
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Figure 4.5 The squares can be divided into five groups of parallel line segments.

of picking two of four points. However, only five groups can appear together, since
diagonal segments cannot occur in both directions without intersecting each other,
see Figure 4.5. Furthermore, all line segments have to reach over the quadrilateral
3pl pt pr pb, and endpoints of line segments of the same kind must be on the same
chain. Therefore, all line segments of the same kind must be close to each other, that
is, their intersection intervals have to be consecutive.

We will now solve the situation of Figure 4.5 in O(n3) time. The bases L, R, T, B, and
M stand for the left, right, top, bottom, and middle (diagonal) sets of line segments.
The superscripts denote the endpoints of these segments.

Note that any convex hull of a choice of points in this situation must follow these
sets of endpoints in the correct order. That is, it starts at the left extreme point, then
goes to a number of points of LB, then to a number of points of BL, then to the bottom
extreme point, and so on. It cannot, for example, go to a point of LB, then to a point
of BL, and then back to a point of LB.

The algorithm will repeatedly take two of the ten sets of endpoints, and for each
combination of a point in one and a point in the other set, compute the optimal
subsolution connecting those points in linear time, based on earlier results. The
subsolutions are computed in the following order:

• For each pair of points in LT and LB, compute the optimal solution connecting
them around the left side, using the algorithm for parallel line segments.

• For each pair of points in BL and BR, compute the optimal solution connecting
them around the lower side, using the algorithm for parallel line segments.

• For each pair of points p ∈ MTL and q ∈ LB, compute the optimal chain
connecting them that does not use any other point of MTL. This can be done by
trying a linear number of points r ∈ LT as the point to connect p to, and using
the known optimal chain between r and q.

• For each pair of points p ∈ MTL and q ∈ BL, compute the optimal chain
connecting them around the left side that does not use any other points of MTL
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and BL. We do this by trying a linear number of points r ∈ LB as the point to
connect q to, and combining this with the known optimal chain between p and
r, computed in the previous step.

• For each pair of points p ∈ MBR and q ∈ BL, compute the optimal chain
connecting them that does not use any other point of MBR. This can be done by
trying a linear number of points r ∈ BR as the point to connect p to, and using
the known optimal chain between r and q.

• For each pair of points p ∈ MTL and q ∈ MBR, compute the optimal chain
connecting them around the lower left side that does not use any other points
of MTL and MBR. We can do this by trying a linear number of points r ∈ BL as
the leftmost point of BL that is used, and then combining the chains between p
and r and between q and r that we computed in the two previous steps.

• For each pair of points p ∈ MTL and q ∈ MBR, compute the optimal chain
connecting them around the lower left side, which is allowed to use other points
of MTL and MBR. We do this by using an adjusted version of the algorithm for
parallel line segments. The optimal chain connecting p to q either uses another
point from MTL or MBR, or it does not and uses the chain computed in the
previous step. This means we must take the maximum of the formula given in
Section 4.1, and the optimal chain of the previous step.

• In a symmetrical way, for each pair of points in MTL and MBR, compute the
optimal chain connecting them around the upper right side that does not use
any other points of MTL and MBR.

• Finally, check a quadratic number of pairs of a point from MTL and a point
from MBR, and for each pair combine the chains of the previous two steps. The
optimal solution is the maximum of these pairs.

All steps can be carried out in O(n3) time. The algorithm given above works when
we assume that each set of endpoints is used at least once by the optimal solution. Of
course, that need not be the case. But if from a certain group no point is used, then
we also know that all points of the opposite group may be used, and we are left with
a smaller problem that can be solved in a similar way as described above. This means
we can just try solving the problem under the assumption that one or more of the
groups do not appear in the optimal solution, and then pick the best solution without
increasing the time bound.

Theorem 4.2 Let R be a set of n disjoint squares in the plane. We can compute in O(n7)
time a point set P containing one point from each region inR, such that the area of the convex
hull of P is maximised.

4.3 Smallest Convex Hull

The problem we discuss in this section is the following:
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Figure 4.6 The smallest convex hull for a set of squares.

Problem 4.3 Given a set of squares in the plane, place a point in each region such that the
area of the convex hull of these points is minimised.

Figure 4.6 shows an example. In contrast to the problem of maximising the convex
hull area, we now do not have the property that all points have to be chosen at corners
of their squares. An example where four vertices of the smallest hull are not at corners
is shown in Figure 4.7(a). However, these four points are in fact the four extreme
points of the convex hull. We can show that this is true in general.

Observation 4.4 In the optimal solution, every vertex of the convex hull that is not an
extreme point must be at the corner of its square.

Proof Suppose some other vertex of the convex hull is not at the corner of its square.
Suppose for example that this vertex lies between the leftmost and the topmost
vertices. This means that moving the vertex either down or to the right will decrease
the area of the convex hull. Since the vertex is not at a corner, it can move in at least
one of those directions. Thus the convex hull cannot be optimal. �

Note that it is possible that other points have to be placed in the interior of their
squares, for example when one very big square contains all others. The lemma
describes only those points that become a vertex of the solution.

Now, again different from the previous section, the squares that provide the extreme
points are known. They are the square with the rightmost left edge, topmost bottom
edge, etc. These four squares will be called the axis-extreme squares, and we call them
Sl , Sr, St and Sb. We define the four chains that connect the corners of the squares.
The top left chain, for example, will be the chain connecting the bottom right corner of
Sl to the bottom right corner of St, via other bottom right corners of squares, such
that the region to the lower right of the chain is convex and contains a point of every
square. In the same way we can define the top right chain, the bottom right chain, and
the bottom left chain. An example is shown in Figure 4.7(b).

For every location of the point pl , there is a tangent point alt(pl) on the top left chain
such that the line through pl and alt(pl) does not go through the region to the lower
right of the top left chain. When there are more than one such points we choose the
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(a) (b)

Figure 4.7 (a) Up to four vertices of the smallest convex hull may not be corners of
any of the squares. (b) The top left, bottom left, top right, and bottom right chains.

one that lies most to the upper right. Similarly, we define alb(pl) as the tangent point
on the bottom left chain. For every point pt we define tangent points atl(pt) and
atr(pt) on the top left and top right chains, for every pr we define two tangent points
art(pr) and arb(pr) on the top right and bottom right chains, and finally we define for
every point pb two tangent points abl(pb) and abr(pb) on the bottom left and bottom
right chains. All those tangent points are vertices of the chains. Note that they may
also be corners of the extreme squares.

Lemma 4.1 If the points pl , pt, pr and pb are known, in the optimal solution the point pl
is connected to pt by a straight line segment if this segment does not intersect the top left
chain, and otherwise via the piece of the top left chain between alt(pl) and atl(pt). Similarly
pt is connected to pr by a straight line segment or via the piece of the top right chain between
atr(pt) and art(pr), pr is connected to pb by a straight line segment or via the piece of the
bottom right chain between arb(pr) and abr(pb), and pb is connected to pl by a straight line
segment or via the piece of the bottom left chain between abl(pb) and alb(pl).

Proof The optimal solution H contains the convex hull of pl , pt, pt and pb. If there
is a vertex q of the top left chain that is to the top left of the segment pl pt, but is not
contained in the optimal solution, then the solution is invalid. This is because q is
a bottom right corner of its square, so the whole square is disjoint from H. Similar
reasoning applies to the other three chains. �

In the degenerate case where the squares Sl , St, Sr and Sb are just points, this implies
that the four chains together form the optimal solution.

Finally, we observe that we can find out if a zero area solution exists in linear time,
since a solution of zero area corresponds to a stabber of a set of squares, which can be
computed in O(n) time if it exists [38]. Therefore, we assume for the remainder of
this section that the optimal solution has a positive area.
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(a) (b)

Figure 4.8 (a) The lower left and the lower right chains divide the upper edge of Sb
into a linear number of intervals. (b) The area of a solution can be decomposed into
triangles that depend on at most two variables.

4.3.1 Naive Algorithm

Each of the four extreme points can move over an edge of its square. We divide
this edge into a linear number of intervals. Within each interval, if the point would
be chosen there, the vertices on the chains the point would be connected to are the
same. This means the endpoints of the intervals are exactly the points that lie on a
line through two consecutive vertices of one of the chains. The resulting intervals are
shown in Figure 4.8(a).

Assume we know for each of the four extreme points the interval on which they must
be in the optimal solution. We then know the tangent points on the chains they must
be connected to if we do not look at the other extreme points. Since we know this
for each extreme point, we can see whether they will be connected to each other or
to a chain. For example, the left point pl has a point alt(pl) on the top left chain it
could be connected to, and the upper point pt has a point atl(pt) on the top left chain
it could be connected to. If alt(pl) lies to the lower left of atl(pt), then pl and pt will
be connected to their tangent points, and not to each other. If alt(pl) lies to the upper
right of atl(pt), then pl and pt will be connected by a straight line segment. If alt(pl)
is equal to atl(pt), then we do not know yet.

We can now write the area of the convex hull as a polynomial in four variables that
specify the exact locations of the extreme points within their interval. This polynomial
will have degree at most 2, because we can decompose the area into triangles that
depend on at most two of the variables, as shown in Figure 4.8(b). We can find the
minimum of this polynomial within the bounds given by the intervals on which the
points can move, in constant time. In the case where we do not know whether two
points will be connected by a straight line segment or via a point on a chain, we
simply try both and add an extra restriction to the variables in the one case.
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(a) (b) (c) (d)

Figure 4.9 The points can be connected either (a) directly, (b) just touching a point
on the chain, (c) via multiple points of the chain. (d) Several cases can appear
together.

We can now easily solve the problem in O(n4) time. In the optimal solution, each of
the four extreme points needs to be on one of the intervals of its segment. This means
a total of O(n4) possible combinations of intervals, and for each combination the
solution requires solving a polynomial that does not depend on n. However, many of
the combinations of intervals seem to be redundant, because a solution using them
can clearly be seen not to be optimal. Indeed we can show that we do not need to
spend O(n4) time to solve this problem, and improve it to O(n2).

4.3.2 Improved Algorithm

We observe that each connection between two of the extreme points must be one of
three types. We call the connection of type 0 if the points are connected by a single line
segment that does not touch the respective chain in the optimal solution. We call the
connection of type 1 if the points are connected by a single line segment that touches
the respective chain. We call the connection of type 2 if they are not connected by a
single line segment. In Figure 4.9 examples are shown of only type 0 connections, only
type 1 connections, only type 2 connections, and an example with two connections of
type 0, one of type 1, and one of type 2.

There are only a constant number of possible combinations of connections between
the four extreme points. If we can compute the optimal solution for each type (that is,
the best solutions among all solutions that have that type) in less than O(n4) time in
total, then we can just pick the best one and we have a faster algorithm. To do this,
we define three patterns, each of which allows us to solve the problem faster for a
different reason.

• Each connection of type 1 reduces the number of possible combinations of
intervals by a linear factor.
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• Every pair of connections of type 2 divides the problem into two independent
subproblems.

• Every pair of adjacent connections of type 0 removes the need to divide one of
the extreme squares into intervals, reducing the number of possible combina-
tions of intervals by a linear factor.

The first pattern reduces the time by a linear factor, because there is only a linear
number of pairs of intervals for the two extreme points in question for which the
point to which they can be connected on the chain is the same, and this is required for
a type 1 connection.

The second pattern also reduces the time by a linear factor. Since we know by
assumption that the two connections are of type 2, the optimal subproblems together
have to be the optimal solution for the complete problem. The two connections
could be adjacent, giving one subproblem of linear complexity and one of potentially
cubic complexity, or they could be opposite to each other, giving two problems of
potentially quadratic complexity.

Finally, the third pattern also reduces the time by a linear factor: if one of the extreme
points has only connections of type 0, there is no need to divide its edge into intervals,
since the structure of the convex hull, and therefore the polynomial describing the
area, will be the same.

These patterns can occur together, potentially saving multiple linear factors. As an
example, take type 0-1-2-2. This type contains two type 2 connections, and also a
type 1 connection. The type 2 connections divide the problem into two independent
subproblems. The smallest subproblem can be solved in linear time, by just choosing
the best out of a linear number of intervals. For each interval we know their tangent
points on the chains, so it can be solved in constant time. The larger subproblem
contains a type 1 connection. This means there is only a linear number of combinations
of intervals such that the connection is really of type 1. We can find them and store
them easily in quadratic time. Now we look at a quadratic number of groups of three
intervals; one combination of two that we just stored, and one from the remaining
extreme point (the one between the type 0 and type 2 connections). For each three
intervals, we can solve the problem in constant time since all tangent points are
known. We can also check in constant time whether all connections are of the correct
types (in particular the type 0 connection), by looking at the tangent points. We have
now solved both subproblems in O(n2) time. We finally need to check whether the
subsolutions together yield a convex shape. If they do not, then the type was not
0-1-2-2. If they do, then it is a potential optimal solution.

There are 34 possible types, but after removing symmetries only 21 remain, see
Table 4.1. Note that in all 21 types at least one of these three patterns has to occur, and
thus every type can be solved in O(n3) time. Furthermore, in all but one case (and
its symmetric variants), actually two of these patterns occur together, and they can
be solved in O(n2) time. All these types can be solved in a similar way to the one
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0-0-0-0 0-0-0-1 0-0-0-2 0-0-1-1 0-0-1-2 0-1-0-1 0-1-0-2
1-1-1-1 1-1-1-2 1-1-1-0 1-1-2-2 1-1-2-0 1-2-1-2 1-2-1-0
2-2-2-2 2-2-2-0 2-2-2-1 2-2-0-0 2-2-0-1 2-0-2-0 2-0-2-1

Table 4.1 The 21 possible types.
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Figure 4.10 (a) The special case 0-1-0-2. (b) Expanded view of the bottom left part.

described above. The one exception is type 0-1-0-2, of which an example is shown in
Figure 4.9(d).

This type has only one of the three patterns. However, we will analyse it separately
and show that we can in fact solve this type in linear time.

Lemma 4.2 The pattern with a type 0 connection, a type 1 connection, a type 0 connection
and a type 2 connection, in that order, can be solved in O(n) time.

Proof We assume the types of connections to be as in Figure 4.9(d); other cases are
symmetric. Since the top right and bottom left connections do not touch the chains,
we do not need to look at these two chains any more. There will be one point p on
the top left chain that is the tangent point of the top left connection. Now the top left
connection is a single line segment from the leftmost extreme point to the topmost
extreme point, and is still allowed to rotate around p within some interval such that it
does not intersect the top left chain, see Figure 4.10(a).

For a fixed position of the top left connection, and therefore the points pl and pt,
the optimal solution is easy to see. Find the two consecutive points on the bottom
right chain such that the leftmost extreme point has its y-coordinate between the
y-coordinates of those two points. The bottommost extreme point will be on the line
through these two points, because moving it in either direction from that position
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would increase the area. In the same way, the rightmost point must be on the line
through the two points that have their x-coordinates closest to that of the topmost
extreme point, as in Figure 4.10(a).

Now if we start with p as the bottom leftmost point on the top left chain, and rotate
the line connecting the leftmost extreme point to the topmost extreme point around
it in clockwise direction, the bottommost two points of the bottom right chain that
determine the position of the bottommost extreme point will move only upwards,
while the two points that determine the position of the rightmost extreme point will
also move only upwards, see Figure 4.10(b). When the line rotates far enough, p will
change to the next point of the top left chain, but still the points on the bottom right
chain move only towards the upper right. This means that after a linear number of
steps we have tried all possibilities and found the optimal solution.

Because we assumed the type is 0-1-0-2, we still have to make sure that the solutions
we check are indeed of this type. This means that we have to check that the lower left
and upper right connections do not intersect their respective chains. We can easily
check this in linear time. Also, the points on the lower right chain have to be in the
correct order, otherwise the resulting polygon is not convex and may even intersect
itself. We can check this in linear time as well. �

We conclude that every situation can be solved in O(n2) time, and therefore the whole
problem can be solved in O(n2) time.

Theorem 4.3 Let R be a set of n squares in the plane. We can compute in O(n2) time a
point set P containing one point from each region inR, such that the area of the convex hull
of P is minimised.

4.4 Disks

Perhaps the most natural way of modeling imprecision is by allowing every point to
be inside a disk. Figure 4.11 shows an example of the resulting problem for computing
bounds on the convex hull:

Problem 4.4 Given a set of disks in the plane, place a point in each region such that the area
of the convex hull of these points is minimised or maximised.

Two difficulties are introduced by using circular regions. The first difficulty is that the
combinatorial complexity of the problem increases. In the square model we can use
the notion of extreme points in some directions. With disks this is not possible, since
there are no special directions.

The second difficulty is of an algebraic kind. Even when we know which disks have
to be chosen to obtain the largest/smallest area/perimeter, it is not easy to find out
where exactly in the disks the points should be. For example, in the case of the
smallest perimeter, even in a simple situation with only three disks, the coordinates
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Figure 4.11 The largest area convex hull for a set of circles.

of the optimal points within the disks will generally be the roots of polynomials
of degree six. These roots cannot be computed exactly, only approximated. Such
algebraic difficulties are present in many geometric problems [9], and will appear
more often in this thesis. Often, these issues are ignored in computational geometry,
and a theoretical model of computation that can handle them is assumed, since in
practice there are good numerical methods to solve such algebraic problems as a last
step. However, this does mean that the result is not exact anymore, and we could
say that an approximation is the best we can get in any case, and therefore a good
polynomial-time approximation is a good solution.

One case Problem 4.4 has been studied before. When given a set of unit size disks,
Boissonnat and Lazard [17] show that the smallest perimeter of a set of points chosed
from the disks can be approximated in polynomial time. The question of whether
it can be solved exactly in polynomial time is left open, and has to our knowledge
not yet been answered. The same problem for smallest area is also stated as an open
problem.

4.5 Closing Remarks

In this chapter, we presented algorithms for computing the upper and lower bound
on the area of the convex hull of a set of imprecise points, modelled as squares. The
algorithm for computing the lower bound runs in O(n2) time and works for any set
of squares, while the algorithm for computing the upper bound requires the squares
to be disjoint and takes O(n7) time.

These results are a selection from the results in the author’s Master thesis [83], and
later appeared in [89]. In those places, additional algorithms are given, in particular
an algorithm that computes the upper bound for a set of overlapping unit squares in
O(n5) time, and one for disjoint unit squares that runs in only O(n3) time. The setting
where the squares are arbitrary remains an open problem. However, the problem of
maximising the convex hull of a set of line segments is proven to be NP-hard, using a
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construction very similar to that shown in Section 3.3.1.1 of this thesis. Finally, all of
these problems are also studied in the setting where the perimeter of the convex hull
is measured, rather than the area, with similar results, though the exact exponents of
the polynomial time bounds differ.

All these results apply only to squares; as mentioned in the previous section there
is no hope for solving the problem exactly for disks. As mentioned, approximation
algorithms for computing the smallest convex hull of a set of disks already exist.
Approximation algorithms for computing the largest convex hull are the topic of the
next chapter.



Chapter Five

Approximate Largest Convex Hull

In the previous chapter, we studied the computational complexity of computing the
largest and smallest convex hull of a set of imprecise points modelled as a set of
squares. While the result for computing the lower bound was reasonably efficient,
computing the largest convex hull seems to be much harder. Firstly, the time bound
of the algorithm of O(n7) is too high to be useful in practice, even though it is
polynomial. Secondly, the algorithm works only when the input regions are disjoint,
which may be too restrictive in practical situations. Also, for the disk model we were
unable to provide any exact algorithms at all, due to algebraic difficulties.

At the same time, we are dealing with imprecise points, and it is reasonable to assume
that the squares or disks in the input are themselves approximations of the “real”
imprecision regions. So perhaps we do not need exact solutions to this problem, but
approximate answers may be sufficient. Here we show that we can use a generic
approach for approximately computing the largest convex hull, that improves the
running time and restrictions for the square model and is the first algorithm in the
disk model.

We present linear-time approximation schemes for computing the largest area convex
hull of a set of squares or disks. For squares, the algorithm runs in O(n + η14)time,
where n is the input size and 1

η = ε is the required precision of the answer. For

disks, the algorithm runs in O(n) + 2O(η2 log η) time. The dependence on n is linear,
provided that the ceiling operation can be performed in constant time,1 which makes
the results suitable for large data sets. On the other hand, the dependence on η is
rather high, which makes the results less suitable for achieving good precision.

1Although the Real RAM model does not allow a constant time floor operation, it is fairly common in
computational geometry to add this operation to the model, since in practice it can be executed very fast.
However, care must be taken: when the values involved are very large such an extra operation can be too
powerful. See for example [117]. Other results in this thesis that depend on the availability of the floor
function are in Section 9.1.1 and in Section 10.1.2.2.
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Figure 5.1 There are vertices in X−V′, and from these vertices there is an augment-
ing path that ends in either V′ − X or Y−W ′.

5.1 Preliminaries

Before describing the results, we will provide a few miscellaneous results on match-
ings and geometric approximations that we need later.

5.1.1 Perfect Matchings in Bipartite Graphs

Let G be a bipartite graph with two sets of vertices V and W, and a set of edges
E ⊂ V ×W. A matching M ⊂ E between two subsets A ⊂ V and B ⊂ W is a subset
of E such that each edge in M goes from an element of A to an element of B, and no
element of A or B is used by more than one edge in M. Such a matching is called
perfect if it consists of exactly min(|A|, |B|) edges.

Lemma 5.1 Let G be a bipartite graph with vertex sets V and W and edge set E. Let M ⊂ E
be a maximum-cardinality matching of G, and let V′ ⊂ V and W ′ ⊂ W be the two vertex
sets that are used by M. For every subset Y ⊂ W, if there is a perfect matching between V
and Y then there is also a perfect matching between V′ and Y.

Proof Suppose the lemma is false. Let Y ⊂W be a subset of W such that there exists
a perfect matching between V and Y, but no perfect matching between V′ and Y. Let
N ⊂ E be the matching among all perfect matchings between V and Y that uses the
largest number of vertices of V′. Let X ⊂ V be the set of vertices used by N, apart
from Y. Then X 6⊂ V′, so there is a vertex x ∈ X with x /∈ V′; see Figure 5.1.

Now start an augmenting path from x that uses only edges of M ∪ N. This path takes
alternating edges from N and from M, since no two from the same set can use the
same vertex. Therefore, this path ends either in a vertex v ∈ V′ − X or in a vertex
w ∈ Y −W ′. In the first case, we have a perfect matching between X − {x} ∪ {v}
and Y, which is in contradiction with the choice of N. In the second case, we have a
perfect matching between V′ ∪ {x} and W ′ ∪ {w}, which contradicts the maximality
of M. �
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5.1.2 Constant Factor Approximation of the Diameter

Let P be a set of points in the plane. The diameter of P is the largest distance between
any two points in P. Here we briefly show that the diameter can be approximated in
linear time.

Lemma 5.2 Let P be a set of n points, and let d be its diameter. We can find two points of P
whose distance is at least d√

2
in O(n) time.

Proof Compute the axis-parallel bounding box B of P with dimensions w× h. If
w > h, take the leftmost and rightmost points, otherwise take the topmost and
bottommost points. In the worst case, B is a square and the distance between those
points is the side length of the square, while the real diameter is the diagonal, which
is a factor

√
2 larger. �

5.2 Approximating the Largest Convex Hull

We study the problem of finding the largest possible convex hull for a set of imprecise
points. We measure the size of the convex hull by its area. That is, we want to solve
Problem 4.2 of the previous chapter. As before, we are given a setR of subsets of R2.
We denote a solution, that is, a convex polygon with each vertex in a different region
ofR, by S, and its area by A(S). We denote the optimal solution by S∗.

Unlike in the previous chapter, though, here we do not ask for an exact solution to
the problem, but are satisfied with an approximate solution. In particular, we look for
(1−ε)-approximations, that is, algorithms that return for any value ε a solution with
a value that is at least (1−ε) times the value of the optimal solution. We also denote
η = ε−1.

To solve the problem we use the core-set paradigm, introduced by Agarwal and
Har-Peled [2]. In this framework, a point set P is given, and the problem is to
maximise some measure µ(P). To do this, one constructs a core-set P′ ⊂ P, such that
µ(P′) > (1−ε)µ(P). The size of the core-set must depend only on ε, and not on n (or
sublinearly on n, depending on the application). Now the total running time of the
algorithm is the time it takes to construct P′, and the time it takes to compute µ(P′),
where the second step does not depend on n. If the first part can be done in linear
time, one obtains a linear-time approximation scheme (LTAS) [23].

In our case, we want to find a core-setR′ ⊂ R with respect to the measure µ, where
µ measures the area of the largest possible convex hull: a set of regions such that the
optimal solution S′∗ forR′ has area A(S′∗) ≥ (1−ε)A(S∗). If necessary, this can be
translated back to a solution forR by just taking a random point inside each region
that is not part ofR′.
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Figure 5.2 A set of squares divided according to their cells.

5.3 Squares

In this section, we consider again Problem 4.2, which we repeat here as Problem 5.1
for convenience.

Problem 5.1 Given a set of squares in the plane, place a point in each region such that the
area of the convex hull of these points is maximised.

The status of the unrestricted version of this problem is still open. In the optimal
solution, every point has to be chosen on a corner of its square. Therefore we can solve
the problem in O(4nn log n) time by computing the convex hull of every possible
set of corners. However, as we showed in the previous chapter, the problem can be
solved more efficiently when the squares are disjoint. By Theorem 4.2, we can solve
the problem in that case exactly in O(n7) time.

5.3.1 Core-Set Construction

Let smax be the largest square in R, and smax2 the second largest square. We will
allways make smax and smax2 part of the core-set R′. Now, using Lemma 5.2 we
compute two points p and q that approximate the diameter d of the vertices of
R− {smax, smax2} by a factor 2. Let ~e1 be unit vector in the direction from p to q,
and~e2 the unit vector perpendicular to this. Let B be the smallest bounding box of
R− {smax, smax2} in the (~e1,~e2) coordinate system, and let w× h be its dimensions.
Assume that w > h, otherwise we swap~e1 and~e2.

Divide B into 214η by 214η grid cells; see Figure 5.2. The cells will be δ1 = 2−14εw long
in the~e1 direction, and δ2 = 2−14εh long in the~e2 direction. Consider the bipartite
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Figure 5.3 Triangle4pru has a larger area than S∗.

graph where one set of nodes corresponds to the set of squaresR− {smax, smax2}, and
the other set of nodes corresponds to the cells of the grid. There is an edge between
square s and cell c if one of the corners of s is in c. Let M be a maximum-cardinality
matching of this graph. Now, letR′ be the set of all squares that occur in M, together
with smax and smax2. ThenR′ is a core-set forR.

5.3.2 Proof that R′ is a Core-Set

Let S∗ be an optimal solution for R, the original input, and let S′∗ be an optimal
solution forR′, the core-set. First we show that the area of S∗ is bounded from below
by a constant factor of the area of B. Then we prove that the difference in area between
S∗ and S′∗ is only a fraction of the area of B, depending on ε.

Lemma 5.3 If n ≥ 3, then the width of S∗ is at least 1
8 times the side length of smax2.

Proof Let b be the side length of smax2, and letω∗ be the width of S∗. Assume the
lemma is not true, so ω∗ < 1

8 b. Let p and q be the vertices of S∗ that define the
diameter d∗ of S∗. Then we know that the area of S∗ is A∗ ≤ d∗ω∗ < 1

8 d∗b. Suppose
either p or q is not a corner of one of the two largest squares. Then one of the two
largest squares (the one that does not provide p or q) has a corner u that is at least 1

2 b
away from the line extending pq, and there exists a solution of area 1

4 d∗b > 1
8 d∗b, so

in this case S∗ would not be optimal, a contradiction. Now suppose that both p and
q are corners of the largest two squares; see Figure 5.3. Let r 6= p, q be an arbitrary
vertex of S∗. Now r is at least 1

2 d∗ away from either p or q, say p without loss of
generality. Now the square that has q as a corner has another corner u that is at least
1
2 b away from the line extending pr, and there exists a solution of area 1

8 d∗b, so in
this case S∗ would not be optimal either. Therefore the assumption is false, and the
lemma is true. �

This lemma implies that the area of S∗ is at least 2−8 times the area of smax2.

Lemma 5.4 The area of S∗ is at least 2−12 times the area of B.
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p

q

r

B

(b)

Figure 5.4 (a) In one strip, the horizontal difference between the points in S∗ and S′

is at most δ. (b) If all squares are small, the triangle4pqr has a large area.

Proof Let b be the side length of smax2. Recall that w and h denote the dimensions of
B, and that w > h. If b ≥ 1

4 w, then this square has area at least 2−4wh. The optimal
solution has area at least 2−8 times the second largest square, so at least 2−12wh.

Next, assume that b < 1
4 w. If p and q, approximating the diameter of the vertices

ofR− {smax, smax2}, were corners of the same square, then the width of this square
would be at least 1

2 d ≥ 1
2 w, which is larger than the diameter of smax2. So p and q are

corners of different squares. Let r be the point in P furthest from the line extending
pq; see Figure 5.4(b). If r is a corner of yet another square, then the solution4pqr has
an area of at least 1

8 wh, and so the optimal solution also has at least that area.

If r is a corner of the same square as either p or q, say p, then this means that the
width of this square is larger than 1

4

√
2h, so b > 1

4 h. The optimal solution S∗ uses
some corner p′l of the same square as pl , the leftmost point in the~e1 direction, and
some corner p′r of the same square as pr, the rightmost point in the~e1 direction and
we know that the distance between p′l and p′r is at least w− 3b > 1

4 w. We also know
that S∗ has a width of at least 1

8 b > 1
32 h, so the area of S∗ is at least 2−6wh. �

Lemma 5.5 There exists a solution S′ forR′ such that the difference between the areas of S′

and S∗ is at most 2−12ε times the area of B.

Proof Let Y be the set of grid cells used by the optimal solution S∗. There exists a
perfect matching between R and Y, since, otherwise S∗ would not be possible. By
Lemma 5.1, we know that there is also a perfect matching betweenR′ and Y. Let S′

be the convex hull of the point set that realises this matching. Then for each vertex
of S∗ there is a point of S′ in the same grid cell. Going from S∗ to S′, all vertices can
move a distance of δ1 in the~e1 direction, and δ2 in the~e2 direction; see Figure 5.4(a).
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In the worst case, the transformed solution has a complete band around it, that is, it is
the Minkowski sum of the old solution and a 2δ1 by 2δ2 rectangle centred at (0, 0).
The area of such a band is smaller than 2δ1h + 2δ2w = 2−12εwh. �

Let S′∗ be the optimal solution forR′. Then we have:

A(S′∗) ≥ A(S′) ≥ A(S∗)− 2−12εwh ≥ A(S∗)− 2−12ε212A(S∗) = (1−ε)A(S∗)

5.3.3 Running Time Analysis

The computation of B takes linear time, by Lemma 5.2. Here we need to perform
the ceiling operation to allocate the corners of the squares to the right cells of the
grid; without the ability to execute this operation in constant time we need to spend
O(n log n) time here.

To compute a maximum-cardinality matching, we can use the algorithm by Hopcroft
and Karp [68], which runs in O(

√
|V||E|) time. In our case, we have n− 1 nodes

on the left side and 228η2 nodes on the right side, and every left node has degree 4.
When there are more than four left nodes that are connected to the same four right
nodes, we will never use more than four of them, so we can reduce the number of
left nodes to at most 4 · 2112η8 by using radix sort. The number of edges is four times
the number of left nodes. Now we can compute a maximum-cardinality matching in
O(η12) time. In total this takes O(n + η12) time.

Theorem 5.1 We can compute a core-set of size O(η2) for Problem 5.1 in O(n + η12) time.

For arbitrary squares, we can solve the problem exactly in O(4nn log n) time; therefore
we can approximate it in O(n) + 4O(η2) time. On the other hand, we can solve the
problem for disjoint squares exactly in O(n7) time so in this setting we get a strong
linear-time approximation scheme that runs in O(n + η14) time.

5.4 Disks

In this section, we consider the following problem:

Problem 5.2 Given a set of disks in the plane, place a point in each region such that the area
of the convex hull of these points is maximised.

Our exact solution to the convex hull problem for square regions makes use of the
four extreme points in the cardinal directions, which makes it impossible to extend to
circular regions. And, as mentioned before, even if we know which disks have points
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p

q

(a)

p′

p
(b)

Figure 5.5 (a) The line segment from p to q cannot go too far outside B. (b) Decreas-
ing the radii of the disks by a factor (1− δ) does not decrease the area of the convex
hull by more than a factor (1−ε).

that contribute to the largest area convex hull, it is not easy to determine where on
the disks the points should be, due to algebraic difficulties.

However, we can solve the problem by adding another layer of approximation. If
we represent the disks by regular k-gons, for suitably chosen k, we can adjust the
algorithm for squares by using k/2 cardinal directions. Note that when we model
the points as disks, we still have the property that we need to consider only the
boundaries, since no vertex of an optimal solution needs to be chosen in the interior
of a region.

5.4.1 Approximating Disks by k-gons

Lemma 5.6 Let ε be given, and let C be a set of disks. Consider the set C ′ of disks with the
same centres but radii a factor (1− 1

8ε) smaller. Then the area of an optimal solution for C ′ is
at least (1−ε) times the area of an optimal solution for C.

Proof Let δ = 1
8ε. Let S∗ be the optimal solution for C. Let B the smallest enclosing

bounding box of S∗ with dimensions w× h, and let~e1 and~e2 be the unit vectors along
the axes of B. Let S′ be the solution for C ′ achieved by placing the vertices of S∗ on
the border of the new smaller disk, but at the same angle with relation to the positive
x-axis (as seen from the disk centre) as they were before, and taking the convex hull
of this new point set.

Let p be a vertex of S∗, and let q be the opposite point on the same disk as p; see
Figure 5.5(a). The line segment pq cannot be longer than 2w in the~e1 direction and
2h in the~e2 direction, because otherwise choosing q instead of p would yield a better
solution (q would contribute an area of more than 1

2 wh, while p contributes at most
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Figure 5.6 A k-gon that fits tightly between the bounding circles of two disks.

1
2 wh). This means that the point p′ in C ′ at the same disk as p is at most δw away from
p in the~e1 direction, and at most δh in the~e2 direction.

Since this is true for all vertices of S∗, the area of S′ is at most 4δwh smaller than the
area of S∗; see Figure 5.5(b). Since the area of B is at most twice the area of S∗, this
means that the area of S′ is at least (1− 8δ) = (1−ε) times as large as the area of S∗.
Of course, the optimal solution for C ′ can only be larger. �

We will now approximate the circular imprecise points by k-gons that lie completely
within the band between the circle that bounds the original disk and the disk with
a factor (1− δ) smaller radius; see Figure 5.6. A k-gon fits inside this band when
2k arccos(1− δ) ≥ 2π , and this can be estimated by k ≥ 2π

√
η. Let k = d2π√ηe,

and G the set of k-gons (with the same orientation) that have their corners on the
bounding circles of the disks in C.

Theorem 5.2 The optimal solution for G is a (1−ε) approximation of the optimal solution
for C.

Proof Since all k-gons are contained in the respective disks, the optimal solution for G
is a valid solution for C. Since all small disks are contained in the k-gons, the optimal
solution for C ′ is also a valid solution for G, and smaller than the optimal solution for
G. Now, by Lemma 5.6, the optimal solution for C′ is a (1−ε) approximation of the
optimal solution for C, hence the same is true for the optimal solution for G. �

5.4.2 Exact Algorithms

Now that we have established that disks can be approximated by regular k-gons, we
will study the following problem:

Problem 5.3 Given a set of regular k-gons in the plane, place a point in each region such
that the area of the convex hull of these points is maximised.

The status of the general version of the problem for regular k-gons is open. In the
optimal solution, every point has to be chosen at a corner of its k-gon. Therefore we
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(a) (b) (c)

Figure 5.7 (a) The division of the plane for k = 7. (b) There are 11 groups of parallel
line segments. (c) The arrows indicate order in which the groups can be combined.

can solve the problem in O(knn log n) time by computing the convex hull of every
possible set of endpoints. Of course this can be improved slightly.

As in the case of squares, we can achieve a better running time when the regions
satisfy certain constraints. If the k-gons are disjoint, we can solve the problem in nO(k)

instead of kO(n) time. We can adapt the algorithm described in Chapter 4 in a mostly
straightforward manner to the k-gon case. We will briefly discuss the main differences
and new ideas that are needed to make the algorithm work.

We need to know the k extreme points of the solution. These are the vertices of the
solution that lie furthest in one of the k directions that are perpendicular to the edges
of a k-gon. Trying all possibilities gives a factor O(nk). Suppose the k-gons are disjoint.
The k extreme points divide the plane into k triangular regions; see Figure 5.7(a). For
each k-gon, we need to consider only the endpoints that are within their respective
triangle. Since the k-gons are disjoint, there can be at most k− 2 k-gons that intersect
more than two of these triangles. For these k-gons, we try every possible combination
of their candidate endpoints. This adds a factor O(kk) to the running time.2

The remaining k-gons can now be represented as line segments. There are at most
2k− 3 groups of line segments; see Figure 5.7(b). We can solve the problem in this
situation in O(kn3) time, using the dynamic programming approach as described in
Section 4.1. We start with two consecutive groups that pass over only one extreme
point, for which there is no group between them. For these two groups, we compute
the optimal solution for every pair of points. Then we combine them with the group
that passes over both extreme points. This process is repeated until we have found
the optimal solution; see Figure 5.7(c).

2In fact, a little more work shows it can even be bounded by O(3k).
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5.4.3 Core-Set Construction

A core-set of a set of regular k-gons can be computed in exactly the same way as with
squares, as long as k ≥ 4. The same proof also applies.

5.4.4 Running Time Analysis

Constructing a core-set of size O(η2) takes O(
√
|V||E|) time. In our case, we have

O(η2k) nodes at the left side after removing doubles, and O(η2) nodes at the right side,
and each left node has exactly k edges, so |V| = O(η2k +η2) and |E| = O(η2k+ 1

2 ). This
means that the core-set selection algorithm runs in O(n +η3k+ 1

2 ) = O(n)+ 2O(
√
η log η)

time, again provided that the ceiling operation takes constant time.

Theorem 5.3 We can compute a core-set of size O(η2) for Problem 5.3 in O(n)+ 2O(
√
η log η)

time.

The general problem for k-gons can be solved exactly in O(knn log n) time. When
we choose k = O(

√
η) and combine this with Theorem 5.2, then the approximation

algorithm takes O(n) + 2O(
√
η log η) + O(kη

2
η2 log η) = O(n) + 2O(η2 log η) time in

total.

Under the assumption that the disks are disjoint, we also get a disjoint set of k-
gons after the first approximation step. For such a set of k-gons, we have a better
exact algorithm, which runs in nO(k) time. The approximation algorithm then takes
O(n) + 2O(

√
η log η) + ηO(

√
η) = O(n) + 2O(

√
η log η) time in total.

5.5 Closing Remarks

In this chapter, we presented approximation algorithms for computing the upper
bound on the area of the convex hull of a set of imprecise points, modelled as squares
or disks. The algorithms are based on the core-set paradigm, and the main result is
that core-sets of a size that does not depend on n can indeed be computed for these
problems. However, the dependence on η mirrors the dependence on n of the exact
algorithms we have available, which may, depending on the setting, be quite high.

These results also appeared in [87]. In addition to the results in this chapter, that
paper also describes similar algorithms for the case where the imprecise points are
modelled as line segments. Furthermore, as mentioned in the previous chapter, in
certain special cases more efficient exact algorithms for computing the upper bound
exist. For example, in the case where the regions are disjoint unit squares, an O(n3)
algorithm is available [89]. The framework described in this chapter allows for
plugging in such algorithms, reducing the dependence on η.
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Chapter Six

Bounds on the Diameter

In the last chapter of this part, we will study the diameter of a point set. As was already
briefly mentioned in Section 5.1.2, given a set of points P, the diameter is defined as
the largest distance between any pair of points in P. Figure 6.1(a) shows an example
in the plane. The diameter is an important measure of how “large” a set of points is.

A classical result in computational geometry is that the diameter can be computed
in O(n log n) time by first computing the convex hull of the points, and then using a
technique called rotating callipers [120]. This is an interesting result, since the diameter
is defined by only two points, so the output complexity is constant, but still it is as
hard to compute (at least using this approach) as the convex hull of the points, which
is a much more descriptive structure. However, this dependency disappears when
considering the imprecise variants of those algorithms: computing bounds on the
diameter seems to be significantly easier than computing bounds on the convex hull.

When the points are imprecise, we are given a setR of regions, and we want to place
a point in each region such that the diameter of the resulting point set is as large
or as small as possible, see Figures 6.1(b) and 6.1(c). As in the previous chapter, we
consider two models of imprecise points: squares and disks. We show that in the
case of squares, both the upper and lower bound on the diameter can be computed in
optimal O(n log n) time. However, it turns out that, as in the convex hull problem,
for the disk model there are algebraic difficulties that make it impossible to exactly
compute the lower bounds. In this model we can still compute the upper bound in
O(n log n) time, but for the lower bound we present a (1 +ε)-approximation scheme
that runs in O(nc/

√
ε) time for some constant c.
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(a) (b) (c)

Figure 6.1 (a) The diameter of a set of points in the plane. (b) The largest possible
diameter of a set of imprecise points. (c) The smallest possible diameter of a set of
imprecise points, determined by three pairs simultaneously.

6.1 Largest Possible Diameter

In this section, we consider the following problem:

Problem 6.1 Given a set of disks or squares in the plane, place a point in each region such
that the diameter of these points is maximised.

In other words, this means we have to place one point in every region, such that the
largest distance between any pair of them is as large as possible. This suggests that
we can simply find the two points p and q in the union of R that are furthest away
from each other, using an existing exact algorithm for computing the diameter, and
then place two points there.

The problem, however, is that p and q could belong to the same region, and we can
place only one point per region. If we are in luck, though, and p and q are in different
regions, then we solved the problem: clearly there cannot be any set of points P that
has a larger diameter than |pq|. To solve the other case, we distinguish the case where
the regions are squares from the case where the regions are disks.

6.1.1 Squares

When the points are modelled as squares, the two points forming the largest diameter
must be among the corners of the squares. This means we can just compute the
diameter of the set of all corners using a conventional diameter algorithm in O(n log n)
time. If the two points found belong to different squares, we are done.

Otherwise, they are diagonally opposite points of one square R, and there are two
possibilities. Either the largest diameter is formed by one corner of R and one corner
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R

(a)

R

(b)

Figure 6.2 The largest diameter among all corners is defined by two corners of the
same square R. As a result, there are no other squares outside the dashed boundary.
(a) The largest possible diameter is formed by one corner of R and one corner of
another square. (b) The largest possible diameter is formed by two corners of the
other squares.

of another square, as in Figure 6.2(a), or the largest diameter is formed by two points
among the other squares, as in Figure 6.2(b). To handle the first case, we can simply
check each corner of R with all other corners in O(n) time. To handle the second case,
we remove R and compute the diameter of the corners of all other squares. They must
lie on different squares, which is shown by the following lemma.

Lemma 6.1 If the largest diameter of the corners of all squares is formed by two corners of
one square R, and there are two points p and q in the remaining squares that are farther away
from each other than from R, then p and q must belong to two different squares.

Proof Both points must lie outside R, because if not we could take a corner of R
instead and get a larger diameter. Furthermore, they must lie in two different triangle-
like regions (bounded by one side of R and two circular arcs) as in Figure 6.2(b).
Now, if they belonged to the same square, this square would have to contain at least
one corner of R, which means that it must have a corner outside R, and that corner
with the opposite corner of R would have given a larger diameter than R alone, a
contradiction. �

Theorem 6.1 LetR be a set of n squares in the plane. We can compute in O(n log n) time
a point set P containing one point from each region in R, such that the diameter of P is
maximised.

6.1.2 Disks

When the regions are disks, we have no corners to restrict the problem to. But the
shape of the regions means we can make some observations. Again, we start by
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R

r

Figure 6.3 When there is one disk R that contains all others, we need to find the
point in the union of the remaining disks that is closest to the boundary of R.

computing the two points p and q in the union ofR that are furthest away from each
other. This can be done by computing the convex hull of the set of disks in O(n log n)
time [111], and using rotating callipers to find the diameter. As before, if these points
belong to different regions, we are done.

However, if p and q belong to the same region R, then we can observe that R must
contain all other regions of R. Indeed, if it did not, then there must be one region
with a point outside R, and the distance from this point to the furthest point in R
would be larger than the diameter of R, contradicting the definition of p and q. In
this case, as depicted in Figure 6.3, we have to find the point r among the remaining
disks that is closest to the boundary of R, since that also means it is furthest from the
opposite point on the boundary of R. In fact, this is the same algorithm as described
in Section 3.2.1.2 for computing the largest possible SEC of a set of disks. As observed
there, we can easily find r in linear time, by going over the list of disks and computing
the distance to the boundary of R for each disk.

Theorem 6.2 Let R be a set of n disks in the plane. We can compute in O(n log n) time
a point set P containing one point from each region in R, such that the diameter of P is
maximised.

6.2 Smallest Possible Diameter

In this section, we consider the following problem:

Problem 6.2 Given a set of disks or squares in the plane, place a point in each region such
that the diameter of these points is minimised.

Computing the smallest possible diameter d ofR is a difficult problem. The reason is
that it can be determined by multiple pairs of points simultaneously, as could already
be seen in Figure 6.1(c). Moving any of the four points involved would increase the
distance between at least one pair of them. In general, all n points could be involved
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in such a construction, where none of the points can be moved without increasing the
diameter. Note that these situations are not degenerate. In the case of disks, it means
that we have to resort to approximation algorithms, but we will show that in the case
of squares, an exact solution is possible.

For any subset R′ ⊂ R, let d′ be the value of the smallest possible diameter of R′
and let P′ be the set of points that achieves it. There will be some pairs of points in
P′ that have distance exactly d′ to each other. These pairs define a graph on P′. We
remove any edges in this graph that can be removed by simply moving one point
of P′ (alternatively, we could say we have an edge between two points only if the
distance between them is exactly d′ in any optimal placement of the points). From
now on, we refer to this graph as a star.

We can make some observations about the nature of such a star (which also motivate
its name). IfR is in general position, the graph will be connected, and every vertex in
the graph will have degree 1 or 2, which implies that the graph is actually a path or a
cycle.1 Furthermore, all edges of this graph have the same length d′. Since this is the
diameter of P′, no two points can be more than d′ away from each other. Therefore
all edges must intersect each other, and the path makes an angle of at most 60◦ at
each degree 2 vertex. We also call such a vertex a bend of the star. A bend is a point
that is in balance between its two neighbours, it could move closer to one neighbour
but only by moving farther from the other neighbour. The bends are what make the
problem hard. Some examples of stars can be seen in Figures 6.1(c), 6.5(b) and 6.9(a).

Ultimately, we want to compute the star ofR, which we call the optimal star. We first
make some observations about this star that are true for any convex regions. Then
we show how to solve the problem efficiently for square regions, and we present
approximation algorithms for circular regions.

Observation 6.1 Let p be a point on the optimal star, and let q be an adjacent point on the
star. Let ` be the line through p perpendicular to pq. Then no region is entirely on the other
side of ` than where q is.

The reason why this observation is true, is that such a region would be more than
d away from q, which contradicts optimality of the star. With this observation, we
can introduce some more definitions and facts. Let R ∈ R be a region. We call R an
extreme region if there exists a line ` that has the interior of R completely on one side,
but no other region ofR has its interior completely on the same side of `. We call a
point p ∈ R an extreme placement if such a line exists that goes through p.

Observation 6.2 All points of the optimal star must be on extreme placements in extreme
regions.

Proof Let R ∈ R be a region and p ∈ R a vertex of the optimal star. Consider the
vertices q and r of the star that are adjacent to p (possibly there is only one), and
consider the lines `q and `r through p that are perpendicular to pq and pr. Figure 6.4

1The assumption of general position is not necessary for the algorithm: if the graph is more complex,
then the algorithm will simply return a subgraph of it that is a path or a cycle.
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Figure 6.4 A point p on the optimal star. R cannot intersect the section of the plane
bounded by `q and `r where q and r lie, otherwise p could move closer to q and r.
Therefore p is extreme in R.

illustrates the situation. Because p is in its optimal position, there is no point in R
that is closer to both q and r than p is. Since R is convex, this means there exists a
line through p that has the interior of R completely on one side. By Observation 6.1,
there are no other regions completely on the other side of `q than q, and no regions
completely on the other side of `r than r. Therefore, there are no other regions
completely on the same side of ` as R. �

In Section 3.3.2, we defined the critical sequence of a set of regions. In almost every
direction, there is exactly one extreme region, except for the critical directions where
a line is tangent to two regions simultaneously. The order in which regions become
extreme when we rotate through all directions is the critical sequence of the regions.
The critical sequence can be computed in O(n log n) time, and plays an important
role in the following sections.

6.3 Smallest Diameter for Squares

When the points are modelled as squares, we can solve the smallest diameter problem
in O(n log n) time. We first investigate where the vertices of the optimal star could
be. Among the extreme squares, there are only four with infinitely many extreme
placements, being the squares with the topmost bottom side, the bottommost top side,
the leftmost right side and the rightmost left side. We call these squares axis-extreme.
The other extreme squares can have an extreme placement at only one corner. As
already noted in Section 4.3, these placements form four chains: the top left chain
connects all bottom right extreme placements, etc., see Figure 6.5(a). Note that these
chains are convex. The extreme squares and chains can be computed in O(n log n)
time by computing the critical sequence of the squares.

Assuming the squares are in general position, the optimal star cannot have bends at
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(a) (b)

Figure 6.5 (a) Four extreme squares and four chains. (b) A star with two bends.

corners of squares. If there would be a bend p at a corner, there would be at least
one neighbour q of p such that p would not be able to move closer to q, even if it had
no other neighbour. This means p is not in balance, making this in fact a degenerate
case and not a real bend. Therefore, the only interesting bends occur at axis-extreme
squares. Together with the fact that all edges of a star must intersect each other, this
means that the optimal star can have at most two bends, as in Figure 6.5(b). This
implies that we can find it efficiently, as we will now show.

Lemma 6.2 We can find the optimal star by computing the star of every subset of four
squares, of which two are axis-extreme, and reporting the largest among these.

Proof The algorithm returns a star for subsetR′ ⊂ R. Let this star have diameter d′.
Clearly, the diameter d ofRmust then be at least as large as d′. On the other hand, it
cannot be larger, because the optimal star has only four vertices, of which two are on
axis-extreme squares, so this set of squares must have been considered too. Therefore,
d = d′. �

As an immediate result, we can solve the problem in O(n2) time by enumerating all
these sets of squares and computing their stars. However, we will now show that after
precomputing the chains of possible extreme placements we can also find the optimal
star in linear time, by using a careful case analysis and using the structure of the chains.
Together with the computation of these chains, this yields an O(n log n) algorithm.
In overview, for every placement of a point on an axis-extreme square, there is one
vertex on one of the chains that is furthest away from it, and this determines the best
possible diameter in this case. As the axis-extreme point moves over its edge, this
furthest vertex can move only in restricted ways, which saves us a linear factor.

Assume we have computed in O(n log n) time the four axis-extreme squares and the
four chains of extreme squares, as in Figure 6.5(a). Since the optimal star has at most
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Figure 6.6 The interval division of a set of 7 points.

two bends and its edges must intersect each other, it can be of only three different
types. It may be a single connection between two squares without any bends, or a star
with one bend on an axis-extreme square and two endpoints on the opposite chains,
or a star with two bends on consecutive axis-extreme squares and two endpoints
on the same opposite chain, see Figure 6.7. We will try all cases and all symmetric
possibilities within a case, and compute the largest possible valid star in each case in
linear time. The largest among these must be the optimal star.

6.3.1 Interval Division

In order to solve the different cases, we will need a simple structure that divides a
line into intervals. Given a set of points P, we define a function f (x) as follows. Let
LP(x) ⊂ P be the set of those points in P with an x-coordinate at most x. Then f (x) is
the furthest point in LP(x) from the point (x, 0). We divide the x-axis into intervals
where f is constant, see Figure 6.6. There will be an unbounded interval to the left of
the leftmost point where f is not defined.

Lemma 6.3 The interval division has linear complexity and can be computed in O(n log n)
time.

Proof We can compute the interval division incrementally by sorting the points by
increasing x-coordinate, and inserting them in that order. When we know the interval
division of the x-axis with respect to the points {p1, . . . , pi}, and we insert the next
point pi+1 with x-coordinate xi+1, we observe that at most one new interval can be
created and that this new interval must start at xi+1. The new interval may (partially)
overlap any number of existing intervals, which we can find by scanning to the right
until the new interval ends. With each new point, only a single new interval is created,
therefore only a linear number of intervals is created in total. This means that also
only a linear number can be overwritten during the scans, and the total time spent is
linear. �
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(a) (b) (c)

Figure 6.7 (a) The optimal star is a direct connection between two chain vertices.
(b) The optimal star has one bend in an axis-extreme square. (c) The optimal star
has two bends in consecutive axis-extreme squares.

We define the interval division of any directed line by transforming that line onto the
x-axis.

Case 1: no bends. When the optimal star contains no bends, it is a direct connec-
tion between two regions, see Figure 6.7(a). This can either be a horizontal or vertical
connection between two opposite axis-extreme squares, or a diagonal connection
between two vertices of opposite chains. The former case can be computed in constant
time. In the latter case we need to ensure that we consider only pairs with the right
slope: positive for a connection between the bottom left and top right chains, negative
for a connection between the top left and bottom right chains. This can be computed
by a simple variation to the conventional diameter algorithm using rotating callipers
[120] in linear time.

Case 2: one bend. When the optimal star has exactly one bend, this bend is on
an axis-extreme square, say the bottommost square, see Figure 6.7(b). The start and
end points of the star must be vertices of the top left and top right chains. To find the
largest star of this type, we must find the point p on the bottommost square such that
the distance to the furthest point on both chains is minimised. However, we must
consider points of the top left chain only if they are to the left of p, and points of the
top right chain only if they are to the right of p.

Let l be the horizontal line through the top side of the bottommost axis-extreme
square. We compute the interval division of the directed line l from left to right with
respect to the set of points that form the top left chain, and we also compute the
interval division of l directed from right to left with respect to the points in the top
right chain. We can now balance the furthest points on both chains in linear time.
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Case 3: two bends. When the optimal star has two bends, these bends must
occur at consecutive extreme squares, say the bottommost and rightmost ones, see
Figure 6.7(c). The start and end points are then vertices of the top left chain. We must
now find the point p on the bottom square and the point q on the right square that
minimise the largest among the distance from p to the furthest vertex of the chain to
the left of p, from q to the furthest vertex of the chain above q, and from p to q.

To find these optimal positions, we again compute the interval division of the line
from left to right through the top side of the bottommost axis-extreme square with
respect to the points on the top left chain, and we similarly partition the line from top
to bottom through the left side of the rightmost axis-extreme square with respect to
the same point set. Now we place p at its locally optimal position, and q too. The
furthest distance must occur between p and q, otherwise the optimal star was not of
this type. Now start moving the points towards each other, keeping their distances to
the furthest point on the chain equal. They both move in only one direction, so we
can find the optimal location again in linear time.

6.3.2 Placing the Points

We have now computed the value d of the smallest possible diameter. If needed, we
can also compute a placement of the points in their regions that realises this diameter.
We first compute valid placements of the four axis-extreme points, and then observe
that all other points should be placed “as far inwards” as possible.

To compute a valid placement in an axis-extreme square, note the following. If we
find a placement such that any star that includes this point has at most length d, then
this placement is valid for a global solution of diameter d. This means we can check
for all possible stars in which interval the point is allowed to lie if that star must be
at most d long, and then place the point somewhere in the intersection of all these
intervals.

To determine the intervals of an axis-extreme square, say the bottommost, where a
point could be placed that still allows for a solution of length d, we compute for every
square the interval that is at most d away from that square. The intersection of these
intervals gives an interval where a point can still be placed that is at most d away
from any other square, see Figure 6.8. After that, we must still place the axis-extreme
points in such a way that they are at most d away from each other. However, we
already know that this is possible and since there are only four axis-extreme points
we can place them in constant time. Any placement within the precomputed intervals
will be fine with respect to the n− 4 other squares.

For the rest of the squares, if a point is to the left of the vertical lines through the
topmost and bottommost axis-extreme points, moving it to the right can only decrease
the diameter, and a similar statement holds for the other extremes. Because the regions
are squares, every point will end either in a corner of its region or somewhere in the
middle of the whole construction.
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d

Figure 6.8 (b) The leftmost axis-extreme points must be placed within the dotted
circles.

(a) (b) (c)

Figure 6.9 (a) A cyclic star that visits seven regions. (b) Circular arcs that are extreme
in some direction form the critical sequence of the disks. (c) Three consecutive angles
of at mostα give a diameter of cosα.

Theorem 6.3 LetR be a set of n squares in the plane. We can compute in O(n log n) time
a point set P containing one point from each region in R, such that the diameter of P is
minimised.

6.4 Smallest Diameter for Disks

When the points are modelled as disks, stars can have up to n bends, see Figure 6.9(a).
This leads to algebraic difficulties: even if we knew the combinatorial structure of the
optimal star, computing the positions where the points are in balance exactly would
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not be possible.

We can, however, make some observations about the combinatorial structure. We can
still define the extreme disks, that is, disks that have a tangent line with no other disk
completely on the same side. These disks are on the critical sequence, see Figure 6.9(b).
Any bend in the star still needs to be on such an extreme arc. However, it is possible
that all disks have extreme arcs.

Since we cannot compute the optimum efficiently, we provide an approximation
algorithm instead. We can compute a (1 +ε)-approximation in O(n3π/

√
ε) time. The

idea of this algorithm is to consider only stars of at most k bends, for k chosen suitably.
We compute a subset R′ ⊂ R for which we can show that the optimal solution d′

is at most a factor (1 − 1
2ε) shorter than the real optimum d. Therefore, we get a

1/(1− 1
2ε)-approximation, which is a (1 +ε)-approximation if ε ≤ 1.

Lemma 6.4 Suppose the optimal solution is given by a star of at least k bends. Then there
exists a star with only one bend that approximates it within a factor of 1−O(k−2).

Proof Suppose that the optimal diameter is 1. The sum of the angles that the star
makes in the bends is at most π . That means that there are three consecutive bends
a, b and c somewhere that together make an angle of at mostα = 3π

k . Therefore the
individual angles are also at mostα, see Figure 6.9(c).

The region R ∈ R that supplied the point b is convex and completely outside the
wedge that is formed by the halfline from b perpendicular to ab in the direction of c,
and the halfline from b perpendicular to bc in the direction of a, otherwise b would
not be in its optimal position. In the same way, the regions of a and c are also convex
and behind the wedges formed by their two neighbours on the star, unless one of
them is the endpoint of the star and the wedge degenerates to a line.

This means that in the worst case the regions of a and c are arbitrarily close to the
halflines that come nearest to b, and in that case the best possible diameter of a, b and
c would be cosα, as denoted by the dotted lines in Figure 6.9(c). This is more than
1− 1

2α
2 = 1− 9π2

2k2 . �

To get a (1− 1
2ε)-approximation we take k = 3πε−

1
2 (and at least 3) and compute all

chains of length at most k in O(nk) time. If the optimal star has at most k bends, we
will find it. If not, then by Lemma 6.4, there exists a good approximate star of length
3, which we will find.

Theorem 6.4 LetR be a set of n disks in the plane. We can compute in O(n3π/
√
ε) time a

point set P containing one point from each region inR, such that the diameter of P is at most
(1 +ε) times as large as the minimum.
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6.5 Closing Remarks

In this chapter, we studied the problem of computing the upper and lower bound
on the diameter of a set of imprecise points, modelled as squares or disks in the
plane. We provided O(n log n) time algorithms for computing the upper bound in
both cases. The lower bound for a set of squares can also be computed in O(n log n)
time, but for a set of disks this is not possible due to algebraic difficulties. Instead, we
presented an approximation scheme.

These results can also be found in [90], together with the results in Chapter 3. In
addition to the results mentioned here, we also present a simple constant factor
approximation algorithm for computing the smallest diameter of disks in that paper.
Furthermore, we also discuss the closest pair of a set of points: the pair of points that
have the smallest distance, rather than the largest distance. Computing the lower
bound on this measure can be shown to be NP-hard with a direct application of [45],
while the upper bound can be computed in O(n log n) time rather easily, both for
disks and for squares.
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PART III

Preprocessing Imprecise
Points





Chapter Seven

Preprocessing for Triangulation

In this part of this thesis, we consider a different approach to dealing with impre-
cise data. Instead of computing explicit bounds on the values of things we want to
compute, we compute something that gives no information by itself, but somehow
captures the imprecise data in the sense that if the data is later given without impreci-
sion, we can process it more quickly. In a sense, instead of treating imprecise points
as points of which we do not know where they are, we treat them as indications of
where they are, and see how much information this gives us.

This point of view assumes that even though the data is imprecise, we will at some
point have access to the precise data. Although this is usually not the case, it is often
possible to obtain better approximations of the points later. This is related to the
update complexity model [47], in which each data point is given imprecisely at the
beginning but can always be found precisely at a certain price. In our setting, we
assume that the points will all become available together at some point in the future,
and we want to do as much of the computation as possible now.

Alternatively, we could interpret the “real points” that become available later as
sampled points. If we do not have the precise points available, but we do have
information about how the points are distributed and we want to do some analysis on
a particular structure on the points, then we want to sample a large number of point
sets and for each of these compute the true structure, as described in Section 2.3.2.
Then it would be useful if as much of the computation as possible was already done
on the imprecise points.

From a theoretical point of view, it is interesting to know just how much of the
hardness of a certain problem comes from the exact placement of the points, and
how much from the more general layout. The setting is that we have an unknown
point set P and we want to compute some structure S(P). We do have available a set
of imprecise pointsR, such that each point of P comes from one region inR. Now
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P

R

S(P)

H(R)
preprocessing

direct computation

reconstruction

sampling

Figure 7.1 An example showing the data flow of the preprocessing and reconstruc-
tion algorithms, compared to direct computation.

we want to compute an intermediate structure H(R) that can aid us in computing
S(P) once we know P. For this we need two algorithms: a preprocessing algorithm
that computes H(R) fromR, and a reconstruction algorithm that computes S(P) from
P and H(R). Clearly, both algorithms together can never be faster than the fastest
algorithm to compute S(P) from P directly. But the question is how fast the second
algorithm can become, by doing as much of the most time-consuming computation
as possible in the first algorithm. Figure 7.1 illustrates this idea.

One way to achieve results of this type is by using a new technique called scaffolding.
In this framework, to compute S(P), we first construct another point set Q, which
is called a scaffold, that somehow captures the “typical” layout of the unknown
point set P. Next, we compute the structure S(Q) using an existing exact algorithm.
These two steps together form the preprocessing phase, and the data structure H(R)
corresponds to S(Q), possibly enhanced with additional structure. Then, once they
are known, we insert the points of P into the scaffold using an incremental algorithm
that can update the structure S until we have S(P ∪Q) available. Finally, we remove
the scaffold using a splitting algorithm (also called a hereditary algorithm) until we
are left with only S(P). Splitting algorithms are a relatively new concept, but some
results are available. Chazelle et al. [26] show how to split a Delaunay triangulation
in linear expected time. Chazelle and Mulzer [29] show how to split a 3D convex hull,
also in linear expected time.
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7.1 Triangulations

In this first chapter, we will consider triangulations of P as structures to compute. We
show that a set of imprecise points, modelled as disjoint polygonal regions, can be
preprocessed in O(n log n) time, such that a triangulation of the real points can be
computed in linear time once they are known.

A triangulation is a subdivision of the convex hull of a set of points into triangles, such
that the vertices of the triangles correspond exactly to the input points. Triangulations
are important composite geometric objects. A set of points can be triangulated in
O(n log n) time. However, it is not possible to triangulate a point set faster, for
example because any triangulation has to sort the vertices along the convex hull, and
sorting is well-known to have an Ω(n log n) lower bound. However, for some classes
of regions it is possible to construct a preprocessing algorithm that takes O(n log n)
time, and a reconstruction algorithm that runs in O(n) time.

We are given a set of regions R = {R1, R2, . . . , Rn}. The properties (shape, size,
overlap, etc.) of these regions will vary, as in the previous part. We assume that later
we get a set of precise points P = {p1, p2, . . . , pn} and that we know for each point pi
which region Ri it belongs to.

It is not always possible to preprocess a set of imprecise points to speed up the
reconstruction algorithm. If all regions inR have a common intersection (that contains
a small disk), then we could still get any point set as input, and lower bounds for the
direct computation still apply to the reconstruction algorithm.

Preprocessing imprecise points for triangulation has been studied before by Held and
Mitchell [65]. They consider the problem of preprocessing a set of n disjoint unit disks
in O(n log n) time, such that when one point in each disk is given, the point set can
be triangulated in linear time. They give a simple and practical solution. Their result
can be extended to overlapping regions of different shapes, as long as the regions do
not overlap more than a constant number of other regions, the regions are “fat” in
some sense, and the sizes do not vary by more than a constant.

Often, regions are more complex than disjoint unit disks. They can have different
sizes, shapes, or they can partially overlap. We show in this chapter that the result for
triangulation can be generalised to regions of arbitrary shapes, as long as they remain
disjoint. The approach can be generalised to partially overlapping regions.

We apply the scaffolding paradigm to solve the problem. The main problem in this
case is to split a triangulation: given a triangulation in the plane with red and blue
vertices, we want to compute a triangulation of only the blue (or red) vertices in
linear time. Chan [24] shows how to compute the convex hull of a subset of the
vertices of a simple polygon in linear time, and a triangulation in O(n log∗ n) time. In
the next section, we show this can be improved by providing a linear-time splitting
algorithm for triangulations. In the section after that, we apply this result to the
original problem.
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(a) (b)

Figure 7.2 (a) Example input with red (open) and blue (solid) points. (b) Example
output.

7.2 Splitting a Triangulation

Before solving the preprocessing problem, we will first study the following problem
in this section:

Problem 7.1 Given a triangulation embedded in the plane with vertices that are coloured
either red or blue, compute a triangulation of only the blue vertices.

Figure 7.2 shows an example of this problem.

To solve the problem, we will remove all of the red points one by one, until we have
only blue points left. During this process, we will maintain a subdivision of the plane
with certain properties, which allow us to quickly find new red points to remove and
to remove them efficiently. We first describe this subdivision and some operations we
can perform on it, and then give the algorithm and time analysis.

7.2.1 Structure and Operations

During the algorithm, we will maintain a subdivision of the plane that uses the blue
points and remaining red points as vertices. The subdivision is a special kind of
pseudotriangulation. A pseudotriangulation is a subdivision of a convex region into
pseudotriangles: simple polygons with exactly three convex vertices. The three convex
vertices are also called the corners of the pseudotriangle, and the three polygonal lines
connecting each pair of corners are called the sides of the pseudotriangle. (Note that
we do not require a pseudotriangulation to be “pointy” or “minimal”.)

In the pseudotriangulation that we maintain, we allow only two types of faces:
triangles and foxes. A fox is a pseudotriangle that has only one side which is not a
straight edge, and for which all vertices along this side are blue, and the one remaining
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Figure 7.3 A fox is a pseudotriangle with one red vertex and one concave chain of
blue vertices.

vertex is red. We call the red vertex the chin of the fox, and the other two convex
vertices the ears. Figure 7.3 shows an example of a fox. For each fox, we store the
chain of concave blue vertices in a balanced binary tree. If a pseudotriangulation has
only triangles and foxes as faces, we call it happy.

Note that our input triangulation is happy, since it has only “normal” triangles and no
pseudotriangles. Also note that if we manage to remove all red vertices and maintain
a happy subdivision, we cannot have any foxes left, since they have a red vertex: we
are left with only triangles with three blue vertices, which is the required output of
the algorithm.

Whenever we have a happy subdivision, we will denote the number of blue points by
n and the number of remaining red points by k.

For a given red point p, let r(p) be the number of red neighbours of p and b(p) the
number of blue neighbours of p (i.e., r(p) + b(p) is the degree of p). Observe that
any face which p is incident to is either a triangle or a fox that has p as its chin. As a
consequence, the union of all faces incident to p forms a star-shaped polygon. By c(p)
we denote the total complexity of this polygon.

In addition to the shape restriction on the pseudotriangles, we will pose one more
condition that we will maintain throughout the algorithm. For all red points p,
Condition (∗) should hold:

b(p) ≤ 2 · r(p) + 3 (∗)
This condition is not necessarily true for the input triangulation, so we will have to
do an initial pass over the input triangulation to make this condition hold.

We will define some useful operations that we can perform on this subdivision.

7.2.1.1 Simplifying a Red Point

Lemma 7.1 Let p be a red point in a happy pseudotriangulation. We can make Condition
(∗) hold for p in O(c(p)) time.

Figure 7.4 shows an example. Since p is a red point, and the pseudotriangulation is
happy, the region around p (the union of its incident cells) is a star-shaped polygon of
which all red and all convex vertices are connected to p. The purpose of this step is to
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(a) (b)

Figure 7.4 (a) The pseudotriangles incident to a given red point form a star-shaped
region. (b) By adding and removing the appropriate edges, we can make Condi-
tion (∗) hold.

remove any superfluous red-blue edges that p has. We leave all red-red edges where
they are, so we do not need to consider them. Between each pair of red neighbours
of p, there is a sector of the star that has only blue points (we will consider the case
where p has no red neighbours separately). We will first prove the following lemma
for a single sector.

Lemma 7.2 Let p be a red point, and let q1 and q2 be two red neighbours of p such that there
are no other red neighbours of p between them. Let b be the number of blue neighbours of p
between q1 and q2, and c the total number of blue points between q1 and q2. In O(b log c + m)
time or in O(c) time, where m is the number of blue-blue edges produced in this step, we can
update the subdivision such that the number of red-blue edges from p to a point between q1
and q2 is at most 2 if ]q1 pq2 ≤ 180◦, and at most 3 otherwise.

Proof We have a sequence of blue points, some of which may be connected to p. The
first and last points are always connected to p, since their neighbours are red, and any
face of the subdivision with two red vertices must be a triangle. Now, if any other
point s is also connected to p, we can almost always remove it. There are two cases.

If the angle at s after removing edge ps is concave, we can simply remove the edge.
Both neighbours of s are blue, so the two cells ps separates must be foxes (or triangles
with one red and two blue vertices, which are degenerate foxes). Since s is also
concave, the combination of both cells is still a valid cell. In this case, we do need to
concatenate the two binary trees that store the chains between the ears of the foxes.
We postpone this concatenation until the end of the procedure.

If the angle at s after removing edge ps is convex, we can still remove the edge if the
triangle formed by s and its two neighbours is empty. If this is the case, we add the
edge between the neighbours of s, forming a completely blue triangle, then add edges
from the two neighbours of s to p, and recurse. If the triangle is not empty, then we
must keep ps. However, this is possible only if p itself is inside this triangle, which
can happen at most once and only if the angle of the sector is at least 180◦.

After all superfluous red-blue edges have been removed, we might be left with a
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sequence of O(b) blue chains, stored as balanced binary trees, of total complexity
O(c), which have to be concatenated into one big balanced binary tree. We note that
this can be done in O(b log c) time by merging them one by one, or in O(c) time by
simply building a new tree from scratch. �

With this result, we can prove Lemma 7.1.

Proof There are two cases to consider. If p has any red neighbours, we apply
Lemma 7.2 to all sectors, using the O(c) time complexity algorithm. There can be at
most 2 sectors with an angle of at least 180◦, so the number of red-blue edges after
simplifying all sectors is at most 2r(p) + 2.

On the other hand, if p does not have any red neighbours, we can still proceed with
deleting blue edges as described above, until only three neighbours remain. In fact, in
this case we are just triangulating the star-shaped polygon that remains after taking p
out. In both cases, Condition (∗) follows. �

7.2.1.2 Subdividing a Pseudotriangle

Lemma 7.3 Let T be a pseudotriangle with the property that all concave vertices are blue.
We can subdivide T into O(1) non-blue triangles and foxes plus some number of triangles
that are completely blue, in time O(log c + m) where c is the complexity of T and m is the
number of blue-blue edges we produce in this step.

Proof If none of the sides of T have any concave vertices, then T is already a triangle.

If only one of the sides has concave vertices, and the corner opposite to it is blue, then
we can triangulate the pseudotriangle with edges from the blue corner to all of the
concave vertices, see Figure 7.5(a). This creates many blue triangles, and at most two
triangles that involve a red point. If the corner opposite to it is red, then depending
on the colours of the other two corners we either make an edge to the neighbours or
not, see Figure 7.5(b). In this case, we make one fox and at most two triangles on the
sides.

If two of the sides of the pseudotriangle have a concave vertex on them, consider the
corner between these two sides. We can add an edge between its two neighbours,
which are both blue. We can then continue adding blue-blue edges between the two
chains, until this is no longer possible. The part that is left is then either a quadrilateral,
see Figure 7.5(c), which we can simply split into two triangles, or a pseudotriangle
with at most one side with concave vertices, see Figure 7.5(d), which we can further
split in the way described above.

If all three sides have concave vertices on them, consider one of the corners. If we can
make an edge between this corner and one concave vertex of the opposite side, then
this splits the pseudotriangle into two pseudotriangles with both at most two sides
with concave vertices, see Figure 7.5(e), which we can then further split as described
above. We can find out whether there is such an edge in O(log c) time by extending
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(a) (b) (c) (d) (e) (f)

Figure 7.5 We can subdivide any pseudotriangle into O(1) triangles and foxes, plus
a number of polygons that have only blue vertices.

the edges adjacent to the corner, and intersecting them with the opposite chain. If this
is not possible for any corner, then we can connect the two neighbours of each corner
with a blue-blue edge, see Figure 7.5(f). The remaining area has only blue vertices,
and can be triangulated in any way. �

7.2.1.3 Removing a Red Point

Lemma 7.4 Let p be a red point in a happy subdivision with r(p) = O(1), for which
Condition (∗) holds. We can remove this point from the subdivision, and partition the gap it
leaves into triangles and foxes in O(log c(p) + m) time, where m is the number of blue-blue
edges formed in this step.

Proof An example of a red point to be removed is shown in Figure 7.6(a). Because of
Condition (∗), we know that also b(p) = O(1). We can remove p and all its incident
edges, of which there are only a constant number. This results in an empty star-shaped
polygon which needs to be partitioned into smaller cells again, see Figure 7.6(b). The
complexity of this polygon is c(p), and consists of r(p) red points and at most b(p)
concave chains of blue points.

We will partition the gap into pseudotriangles. As described in [116], we can add
geodesic shortest paths between pairs of convex vertices of a simple polygon, until
a (minimal) pseudotriangulation has been found. Since we have only a constant
number of convex vertices, we need to insert only a constant number of shortest
paths. For a given pair of vertices, we can compute this shortest path in O(log c(p))
time, because we stored the chains of concave vertices in binary trees and we can
compute tangents in logarithmic time. After this procedure, the gap has been split
into a constant number of pseudotriangles in O(log c(p)) time, see Figure 7.6(c). All
the pseudotriangles have only blue concave vertices. We may have to split these
binary trees that store the blue vertices into smaller parts, but only a constant number.
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(a) (b) (c)

Figure 7.6 (a) A red point p of constant red degree and its incident pseudotriangles.
(b) The empty polygon after removing p. (c) A repseudotriangulation of the gap.

One split can be done in logarithmic time, so this also takes O(log c(p)) time for all
trees together.

We now apply Lemma 7.3 to all of these pseudotriangles to obtain a partitioning of
the gap into a constant number of triangles and foxes, plus any necessary number of
completely blue triangles. �

We now have a happy subdivision again, although Condition (∗) may no longer be
true for some red vertices on the boundary of the gap.

7.2.2 The Algorithm

With these operations and lemmas, we are now ready to describe the algorithm to
solve Problem 7.1. That is, we are given a triangulation with red and blue vertices,
and we want to compute a triangulation of only the blue vertices.

First, we must make sure that all red points in the pseudotriangulation satisfy Con-
dition (∗). To this end, we simply apply Lemma 7.1 to all red points. This clearly
takes linear time in total. Next, we perform a sequence of reduction steps, each time
reducing the number of red points by removing a constant fraction.

When we have k red points left, we want to find an independent set of Θ(k) red points
that all have constant red degree. Since this step does not depend on any blue points,
and because of Condition (∗), this can easily be done in O(k) time.

Then, we remove each of those points by applying Lemma 7.4. The resulting subdivi-
sion is still happy, but Condition (∗) may not hold anymore for red points that had a
red neighbour that was removed. However, we can repair this condition by applying
Lemma 7.2 to those red points, but only in the sectors where something changed. The
number of red-blue edges in those sectors cannot have increased by more than the
number of edges that were added in the removal step. We added no more than a
constant number of red-blue edges for each removed point, so this is in total at most
O(k).
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7.2.3 Time Analysis

The first phase takes O(n) time.

Then, let 1/ f denote the fraction of the red points that remain after throwing some
away in each step (so f > 1). Then we perform log f n phases, with at the ith phase
k = n/ f i red points left. In each phase, we spend O(k) time to find an independent
set. Then, we spend O(log c(p) + m) time for each element in the set. We can charge
the m to the blue-blue edges that are created; since there can be at most O(n) blue-blue
edges and they are never removed, we spend no more than O(n) time in total on them.
The c(p) terms are added over all elements in the independent set, and can be no
more than O(n) in total: ∑p c(p) = O(n). In the worst case, they are divided equally,
and we spend O(k · log n

k ) time on removing the points. By Lemma 7.2, Condition (∗)
can be repaired in a sector that was involved in a removal step in O(log c(p) + m)
time, since the number of red-blue edges in such a sector is constant. There are at
most O(k) such sectors, so again, in the worst case all blue points are equally divided
and we spend O(k · log n

k ) time on repairing them.

The total time we spend is now:

log f n

∑
i=0

O(
n
f i log f i) =

log f n

∑
i=0

O( f i log
n
f i ) =

n

∑
k=1

O(log
n

u(k)
)

where u(k) is the smallest power of f larger than k. We can interpret this as the
summation over k of the amount of time charged to removing one red point when
there are k left. This time bound is then bounded by:

n

∑
k=1

O(log
n
k
) = O(log

nn

n!
) = O(n log n− log n!) = O(n)

Theorem 7.1 Given a triangulation embedded in the plane with n vertices that are coloured
either red or blue, we can compute a triangulation of only the blue vertices in O(n) time.

7.3 Triangulating Imprecise Points

In this section, we consider the following problem:

Problem 7.2 Given a set of disjoint polygonal regions in the plane, preprocess them in such a
way that when a point in each region is given, a triangulation of these points can be computed
faster than without preprocessing.

Figure 7.7(a) shows an example set of input regions. The polygons do not need to
be simple: they can also have holes or multiple components. We show now how to
apply the triangulation splitting result to solve our original problem.
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(a) (b) (c)

Figure 7.7 (a) A set of regions in the plane. (b) A triangulation of the vertices of the
regions. (c) The sample points have been added to the triangulation.

7.3.1 Preprocessing Algorithm

The preprocessing algorithm takes the set of regionsR as input, and must produce a
data structure H(R). We use the scaffolding idea, and first define a point set Q to be
the set of all vertices of the regions inR. Then we compute a triangulation S(Q), with
the restriction that all edges bounding the regions inR should be in the triangulation.
Figure 7.7(b) shows an example. Such a triangulation can be computed in O(n log n)
time.

Apart from this, we compute store some additional information. We create a list of
pointers from each region ofR to the set of triangles in S(Q) that cover this region.
The structure H(R) now consists of S(Q) together with this list of pointers.

7.3.2 Reconstruction Algorithm

The reconstruction algorithm takes the structure H(R) as input, together with a set
of precise points P that contains one point from each region inR, and must produce
a triangulation S(P) as output. We will show how to do this in linear time.

We first insert the points of P into the triangulation S(Q) computed in the prepro-
cessing step. For this we need to locate the points in the triangulation, which we do
by simply walking through all triangles that this region points to. The point must lie
in one of those triangles, and since each triangle is pointed to only once, we spend
only linear time in total. Once the right triangle has been found, we simply split it
into three smaller triangles. After inserting all points of P in this way, we obtain a
triangulation S(P ∪Q). Figure 7.7(c) shows an example.

Finally, we simply invoke Theorem 7.1 to remove the scaffold Q and obtain a triangu-
lation S(P) of the desired points. We can summarise:

Theorem 7.2 LetR be a set of n disjoint polygonal regions in the plane. We can preprocess
R in O(n log n) time into an O(n) size data structure, such that when a point set P
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(a) (b)

Figure 7.8 If the regions are not polygonal, we can find a polygonal subdivision of
the plane such that each cell contains one region.

containing one point from each region inR is given, a triangulation of P can be computed in
O(n) time.

7.4 Extensions

The main improvement of our algorithm over [65] and [86] is that the input regions
for the algorithm do not have to be unit disks. In fact, we do not require any fatness or
thickness property or bound on the sizes of the regions, and the regions do not have
to be convex or connected. However, we did assume that the regions are polygonal
and disjoint.

We can extend the approach to also work for regions that are not completely disjoint,
as long as the complexity of their overlay is not too high. If we compute the overlay
of the polygons and triangulate the resulting arrangement, the method will run in
O(n log n + m) preprocessing and O(mk log k) reconstruction time, where m is the
total complexity of the overlay, and k is the maximum number of regions that overlap
in a single point.

If the input regions are not polygonal, we cannot simply triangulate their vertices,
but the same approach still works if we first compute a polygonal subdivision of the
plane such that each face contains one region. If the regions are convex, a subdivision
exists with a complexity that is linear in the number of regions [40], see Figure 7.8.
Such a subdivision can be computed in O(n log n) time [108]. If the regions are not
convex, the complexity might increase, depending on the exact shape of the regions:
for example, a region with a circular hole and another region which is a disk inside
the hole may need an arbitrarily complex polygonal chain to separate.
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7.5 Closing Remarks

In this chapter, we presented a pair of algorithms, one for preprocessing a set of
disjoint polygonal regions in the plane into a linear size data structure, and one for
computing, given this data structure, a triangulation of a set of points that contains
one point from each region. The first algorithm runs in O(n log n) time, the second in
O(n) time.

As an important tool to solve this problem, we studied the problem of splitting a
triangulation. We gave an algorithm that can, in O(n) time, extract a triangulation of
a subset of the vertices of a given triangulation.

The results in this chapter also appeared in [127]. The splitting algorithm solves
an open problem posed by Chan [24], and the result on preprocessing imprecise
points improves an earlier result by Held and Mitchell [65]. The result shows that for
any set of disjoint regions, preprocessing for triangulation in the plane is possible.
An interesting remaining open question, though, is whether it is also possible to
preprocess a set of lines in the plane (which are not disjoint) such that a triangulation
of one point on each line can be computed faster. Also, the same problem in higher
dimensions is wide open. In the next two chapters, we will study under what
conditions similar results can be obtained for the Delaunay triangulation.
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Chapter Eight

Preprocessing for Delaunay
Triangulation

Though triangulations in general are an important topic in computational geometry,
there is one triangulation of special interest. The so-called Delaunay triangulation of
a point set P, invented by Boris Delaunay (1890-1980) in 1934 [35], is defined as the
triangulation such that if we draw a circle through the corners of any triangle, this
circle contains no points of P inside, other than the corners of the triangle themselves.
When no four points of P are co-circular, this triangulation is unique.

Since its introduction, it has been proven that the Delaunay triangulation optimises
many different criteria, such as the smallest angle of any triangle or the largest
enclosing circle of any triangle. An extensive overview of properties can be found
in [100]. Because of these properties, in many real-world applications of triangulations
the Delaunay triangulation is the standard to be used.

We show in this chapter that we can also preprocess a set of disjoint unit disks in the
plane to compute the Delaunay triangulation of any set of points chosen from the
disks in linear time. Preprocessing a set of regions for Delaunay triangulation has not
been studied before.

As mentioned in the previous chapter, we cannot hope to preprocess a set of overlap-
ping regions for computing even any triangulation faster. In the case of the Delaunay
triangulation, we need to restrict the shape even more. For general disjoint regions,
the Delaunay triangulation is out of reach: Djidjev and Lingas [36] show that even if
the sorted order in any direction of a set of points is given, computing the Delaunay
triangulation has a Θ(n log n) lower bound. If our set of regions is a set of vertical
lines, then all information a preprocessing algorithm could compute is exactly this
order (and the distances between the lines, but they can be computed from the order
in linear time anyway). As a result of this, we restrict the regions to be disjoint unit
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Figure 8.1 (a) The Gabriel circle and expanded Gabriel circle for p and q. (b) The
expanded Gabriel circle C+

q1q2
contains the centres of any disks Ri with the property

that, in the exact point set P, the point pi can prevent the edge q1q2 from being
Delaunay (i.e., from having an empty circle).

squares in this chapter. Nonetheless, we show in the next chapter how to handle more
general regions in a parametrised way.

Let R be a set of n disjoint unit disks in the plane. We define Q = {q1, q2, . . . , qn}
to be the centre points of the disks. An exact sample for R is a set of points P =
{p1, p2, . . . , pn} drawn one from each disk: i.e., for all 1 ≤ i ≤ n, the length |piqi| < 1.

We will not strictly follow the scaffolding paradigm in this chapter. Instead, the
main idea of our solution is to compute a data structure H(R) that contains enough
information to construct a connected subgraph of the Delaunay triangulation of real
points. Aggarwal et al. [3] gave a clever linear-time algorithm to compute the Voronoi
diagram or Delaunay triangulation of points in convex position in the plane. Chin and
Wang extended this to compute the constrained Delaunay triangulation of a simple
polygon [30]. Rather than define the constrained Delaunay triangulation here, we
simply note that if all edges of the simple polygon satisfy the Delaunay empty circle
criterion, then the constrained Delaunay triangulation is the same as the Delaunay
triangulation. As a simple consequence, the Delaunay triangulation of a point set
can be computed using Chin and Wang’s algorithm, if a spanning tree consisting
of Delaunay edges is already known. The algorithm does require that the polygon
is decomposed into trapezoids, which can theoretically be done in linear time by
Chazelle’s algorithm [25].

8.1 Expanded Gabriel Circles

Before coming to the actual algorithm, we first do some preliminary work. In this
section, we define the concept of expanded Gabriel circles, and establish several prop-
erties about them. We also review some standard graphs and their properties, and
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(a) (b)

Figure 8.2 (a) A set of imprecise points. (b) The edges of a minimum spanning tree,
and the disks that intersect their expanded Gabriel circles.

make several observations about how much these can change when the points they
are defined on move slightly.

Gabriel and Sokal [49] define the Gabriel graph for a set of points P. First, for two
points p and q, let Cpq denote the circle with diameter pq, as in Figure 8.1(a). Points
p, q ∈ P are joined by edge pq if and only if the circumscribing circle Cpq contains
none of the other points of P. It is well known, and obvious from this definition, that
the Gabriel graph is a subgraph of the Delaunay triangulation.

We define the expanded Gabriel circle, C+
pq, as the circle with centre (p + q)/2 and

radius |pq|/2 + 2. Figure 8.1(a) shows an example. In the context of preprocessing
imprecise points, the expanded Gabriel circle contains exactly the centres of those
disks that could, in the exact point set, prevent pq from being a Delaunay edge.

Observation 8.1 For disk centres q1, q2 ∈ Q, if no other point qi ∈ Q lies in the expanded
Gabriel circle C+

q1q2
, then in any exact point set P, the edge p1 p2 is Delaunay in P.

Proof Consider the smallest circle D enclosing the unit disks centred at q1 and q2;
specifically, the circle D centred at the midpoint (q1 + q2)/2 with radius |q1q2|/2 + 1,
whose boundary is drawn dotted in Figure 8.1(b). There is another circle inside D
that has the samples p1 and p2 on its boundary: shrink D with respect to its centre
until the first point, say p1, lies on the boundary, then continue to shrink with respect
to p1 until p2 is also on the boundary. An exact point pi can lie inside D only if the
corresponding unit disk centre satisfies qi ∈ C+

q1q2
. �

8.1.1 Expanded Gabriel Circles of EMST Edges

A Euclidean minimum spanning tree (EMST) of a point set T is a tree spanning all points
in P of minimum total length. It is well-known that when removing a tree edge uv
from the EMST, the tree is partitioned into two connected components such that no
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u v

Cuv C+
uv

Figure 8.3 The empty lune for EMST edge uv.

vertex in the component of u can lie strictly inside the circle of radius |uv| around v,
and vice versa. This implies that the interior of the lune that is the intersection of both
circles is empty. This lune completely contains Cuv in its interior except for u and v,
so all other points of P must lie outside Cuv. Therefore, an EMST for P is a subgraph
of the Gabriel graph of P. One other consequence of this fact is that any EMST has
maximum vertex degree 6.

Let T = (Q, E) be the Euclidean minimum spanning tree (EMST) of Q. We now forget
about the application for a while, and show that each point in the plane (and therefore
also the sites of Q) can lie in at most a constant number of the expanded Gabriel
circles defined by the edges in E. We use this in later sections to bound the amount
of repair work necessary to find a spanning tree of Delaunay edges for a particular
sample from the unit disks centred at Q. An example of a minimum spanning tree
and the expanded Gabriel circles of its edges is depicted in Figure 8.2.

We do an initial partitioning of spanning tree edges into long and short, depending
on whether an edge’s length is greater than, or at most, L = 2 + 2

√
3 ≈ 5.464. This

threshold value is chosen so that we can identify the connected components of the
EMST when a long edge is removed.

Lemma 8.1 Let uv be a long edge of the EMST of Q. Any point w ∈ Q ∩ int(C+
uv) for

which |uw| ≤ |vw| satisfies |uw| < |uv| ≤ |vw|, and w and u belong to the same component
of the EMST after removing uv.

Proof Recall that when uv is an edge of the Euclidean minimum spanning tree, the
lune that is enclosed by the circles of radius |uv| centred at u and at v has no sites in
its interior. When |uv| > L, this lune pokes outside the expanded Gabriel circle C+

uv,
as in Figure 8.3. Since the portion of the perpendicular bisector of uv inside the lune
cuts the circle C+

uv, we can partition Q ∩ C+
uv into the sets U and V, closer to u and v,

with no ambiguity.

The distance from u to w ∈ U is maximised if w is at the intersection of the lune
boundary with C+

uv. If we let ` = |uv|/2, then because ` > L/2 we know that
` + 2 < `

√
3, and the triangle4uvw cannot be equilateral, but must have |uw| < |uv|.
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Now, w and u must belong to the same component of the EMST after removing
uv, since otherwise uw would have been a better edge than uv to connect the two
components. �

For a given point p in the plane (possibly, but not necessarily, a site from Q), let Ep
denote the set of edges of the EMST whose expanded Gabriel circles enclose p, that is,
Ep = {uv ∈ E | p inside C+

uv}. We partition Ep into two groups: the near edges, for
which both endpoints are at most L + 2 away from p, and the far edges, for which
at least one endpoint is L + 2 or more away from p. Note that every far edge must
necessarily be long, and that a near edge can be either short or long. We separately
bound the numbers of near edges and far edges in Ep.

An easy packing argument bounds the set of near edges for p, which includes all
short EMST edges.

Lemma 8.2 For any point p in the plane Ep contains at most 70 near edges; i.e., p is in at
most 70 expanded Gabriel circles of the edges of the EMST of Q that have both endpoints
within distance L + 2 of p.

Proof If a centre from Q is within L + 2 of p, the corresponding disk from R is
completely within L + 3. At most b(L + 3)2c = 71 unit disks fromR can fit into this
area, inducing at most 701 edges of the minimum spanning tree. �

An angle packing argument in the next lemma shows that an input point q ∈ Q has
few far edges. In Lemma 8.4, we will show that this also holds for points p /∈ Q, but
then the constant is worse.

Lemma 8.3 For any point q ∈ Q, Eq contains at most 8 far edges.

Proof We consider far edges F ⊂ Eq in order of decreasing length, removing them
from the EMST of Q, and keeping track of the connected component containing q.
We assume, without loss of generality, that each far edge is labelled so that the first
endpoint is the one closer to q; e.g., for uv, we have |qu| ≤ |qv|.
Let T be the current EMST component, which is partitioned into {Tu, uv, Tv} by
removing uv, the longest edge of F ∩ T. By Lemma 8.1, we know that q remains in
the component of u, namely Tu, and that |qu| < |uv| ≤ |qv|. We claim that all other
edges of F in T belong to Tu: consider another edge u′v′ ∈ F ∩ T, as illustrated in
Figure 8.4(a). Since u′v′ is long, Lemma 8.1 gives |qu′| < |u′v′| ≤ |qv′|, and ordering
by length gives |u′v′| ≤ |uv|. But uv was chosen as the EMST edge joining Tu and Tv,
and the shorter edge qu′ was not; therefore u′ must be in Tu with q, and v′ too since
u′v′ is an edge of T.

Next, we show that v indicates a sector of the plane as seen from q that contains no
other second endpoints of edges of F; that is, no other far vertices of F. By definition,

1The constant of 70 is rather pessimistic. The best penny packing known for a circle of radius L + 3 has
only 57 disks [56, 122], and even then it seems hard to draw many spanning tree edges between them that
actually have p in their expanded Gabriel circle.
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Figure 8.4 Illustrating arguments used to show there are few far edges in Lemma 8.3.
(a) Removing a long edge uv cannot disconnect another long edge from q, since
EMST edge uv is longer than qu′. (b) Using definitions in the text, all far vertices of
F lie inside circle C and outside circles A and B. This results in an empty sector of
angle at least 2π/9 viewed from q.

we know that the circle A of radius L + 2 around q contains no such vertices, and by
the previous paragraph we know that the circle B of radius |uv| around v contains
no such vertices, since otherwise there would be a shorter possible edge than uv to
connect Tu and Tv. Now consider the farthest vertex v′ among all vertices in F, so
all remaining vertices are inside a circle C of radius |qv′| around q. This vertex must
be part of an edge u′v′ of length at least |qv′| − 2, otherwise it would not be in Eq.
Therefore, also |uv| ≥ |u′v′| ≥ |qv′| − 2. Now, all remaining far vertices of F must be
in the region C\(A ∪ B), see Figure 8.4(b).

To define the free sector, consider the angle that qv makes with the intersections
between A and B, and the angle it makes with the intersections between B and C. The
smaller of those two angles bounds the sector.

Thus, we consider the triangles of side lengths L + 2, |qv|, and |uv| and of |qv|, |qv|,
and |uv|. We know that |qv| < |uv|+ 2 and |uv| > L. The angle at q is minimised as
|qv| approaches L + 2, which would give, in both cases, the isosceles triangle with
angle

2 arcsin
( L/2

L + 2
)

> 0.7494 > 2π/9.

Thus, inside the empty circle around v we find two sectors of angle > π/4 on either
side of qv that contain no far points closer to q than v. At most two empty sectors can
overlap—one from the clockwise (CW) and one from the counter-clockwise (CCW)
direction around q, which implies that there are at most 8 far edges. �

Using Lemmas 8.2 and 8.3, we can summarise:
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Theorem 8.1 Let T = (Q, E) be the Euclidean minimum spanning tree of the points Q.
The total number of these points in the expanded circles for all edges is linear in n. That is,

∑
uv∈E
|C+

uv ∩Q| = O(n).

We can in fact extend the proof of Lemma 8.3 to bound the number of far edges for an
arbitrary point p in the plane, albeit with a large (and overly-pessimistic) constant
factor. Since this bound is used only to shorten the description of preprocessing,
and not for the algorithm itself, we have not tried to minimise the constant. The
next lemma implies that the arrangement of all expanded Gabriel circles has linear
complexity.

Lemma 8.4 For any point p in the plane |Ep| is constant.

Proof The disk packing argument in Lemma 8.2 shows that there are at most 71 disk
centres within distance L + 2 of any point p. As these are vertices in a Euclidean
minimum spanning tree (EMST), for which each vertex has degree at most 6, at most
426 edges of Ep can have a vertex within L + 2 of p.

We therefore consider only the subset F ∈ Ep of far edges for p that have both
endpoints farther than L + 2 from p. We show that the edges of F can be organised
into a binary tree whose maximum depth is 8 by the angle packing argument used in
Lemma 8.3. Since such a binary tree has at most 29 − 1 = 511 nodes, F has at most
511 + 426 = 937 edges.

We build this tree from the root at depth 0. Each node ν is associated with a subset
of edges, Fν ⊂ F, as well as an edge of Fν . The root is associated with F, and some
edge uv where v is the point farthest from p. Removing uv from the EMST partitions
the remaining edges of F into two groups, Fu and Fv, such that the edges in Fu are
in the same component as u of the EMST after removing uv, and the edges in Fv are
in the same component as v. By Lemma 8.1, the first remain connected to u and the
second remain connected to v. These are the edge sets associated with the children of
the root. (In determining connectedness, we include EMST edges and vertices within
L + 2 of p, even though they are not in F \ {uv}.)
In general, at node ν, the edges Fν are edges of a connected component of the EMST
minus the edges associated with the ancestors of ν, the associated edge uv ∈ Fν is
chosen so that the endpoint v is farthest from p, and removing uv partitions the edges
of the EMST component into Fu and Fv.

For the edges in Fu, we know that no endpoint can lie within a circle of radius |uv|
centred at v. We also know that all endpoints lie within a circle of radius |pv| centred
at p, and that none lie within L + 2 of p. These constraints on Fu are depicted in
Figure 8.5(a). As in the proof of Lemma 8.3, there is a sector with angle greater than
2π/9, as seen from p, that contains no endpoints from Fu.

The other endpoint of uv can lie closer to p, as shown in Figure 8.5(b). Still, in this
case there is also a sector with an angle of at least 2π/9 that contains no endpoints
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Figure 8.5 (a) The point in the plane p and the furthest endpoint v ensure that all
endpoints of Fu lie within the shaded area. (b) The point u can be closer to p, but
there is a circle with radius |uv| around it that contains no endpoints of Fv.

of Fv. The point u must still be outside the circle of radius L + 2 around p, and the
circle of radius |uv| around u intersects the circles around p of radii L + 2 and |pv|
according to the same restrictions as in the case of v.

This implies that the tree has depth at most 8, and completes the proof of the lemma.
�

8.2 Delaunay Triangulation of Imprecise Points

We are now ready to solve the following problem:

Problem 8.1 Given a set of disjoint unit disks in the plane, preprocess them in such a way
that when a point in each region is given, a Delaunay triangulation of these points can be
computed faster than without preprocessing.

We present a pair of algorithms, one for preprocessing and one for reconstruction, to
solve the Delaunay triangulation problem on imprecise points.

LetR be a set of n disjoint unit disks in the plane that represent the imprecise regions
for an unknown point set P. Subsection 8.2.1 details how to preprocessR in O(n log n)
time into a linear-size data structure H(R). Subsection 8.2.2 shows that given an
exact point set P consisting of a point inside each disk of R, we can compute the
Delaunay triangulation of P in linear time using H(R).

8.2.1 Preprocessing Algorithm

Recall that Q is the set of centre points of the n disjoint unit disks ofR. For H(R), we
compute a Euclidean minimum spanning tree of Q, a list of its edges sorted by length,
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and for each edge uv the list of points of Q that fall inside the expanded Gabriel circle
C+

uv. Figure 8.2 shows an example. By Theorem 8.1 we know that each point of Q can
fall into at most a constant number of expanded Gabriel circles. Thus, the total size of
H(R) is linear.

Also, H(R) can be computed in O(n log n) time. A minimum spanning tree is easy
to compute in O(n log n) time, since it is a subset of the Delaunay triangulation.
Sorting the list of EMST edges by length is even easier. Finally, a simple sweep of the
arrangement of the expanded Gabriel circles of the EMST edges and the points P can
locate all points in their circles; because Lemma 8.4 states that this arrangement has
linear size, the sweep can be carried out in O(n log n) time.

Lemma 8.5 Preprocessing the n disjoint unit disksR produces a linear size data structure
H(R) in O(n log n) time.

Denote the list of EMST edges, sorted by increasing length, by e1, . . . en−1. We define
notation for the connected components of the graph consisting of the first k edges of
this list: Let Ik be the partition of the index set {1, . . . , n} induced by the connected
components of these first k edges: that is, i, j ∈ I for some I ∈ Ik if and only if qi
and q j can be joined by edges from {e1, . . . , ek}. We can associate these connected
components with H(R) (conceptually, not computationally, as they are needed only
for a proof), because our algorithm creates the components (or supersets of them) for
points P = {p1, . . . , pn} drawn from each disk inR.

8.2.2 Reconstruction Algorithm

Now, given an exact point set P = {p1, . . . , pn} of R, and the data structure H(R),
we show how to compute in linear time a connected subgraph of the Delaunay
triangulation of P. Chin and Wang’s algorithm [30] then completes the Delaunay
triangulation of P in linear time.

In order to construct such a connected subgraph, we process the edges of the EMST
of Q by increasing length. For each such edge e, we find a path in the Delaunay trian-
gulation that connects the same components that e connects in the graph composed
of all EMST edges shorter than e. We begin by making an observation, illustrated in
Figure 8.6(a), on the portion of a Delaunay triangulation bounded by a circle.

Lemma 8.6 Let P be a set of points in general position in the plane, C be a circle that encloses
a subset P′ = P ∩ int(C), and E′ be the set of Delaunay edges of P that have empty circles
contained inside int(C). The graph (P′, E′) is connected.

Proof Let c be the point of P closest to the centre of C; we show that any point p ∈ P′

is connected to c. Initially, let a = p, and, as depicted in Figure 8.6(b), grow a circle
from a towards the centre of C, keeping a pinned on the boundary; stop when the
circle hits any point b ∈ P′. The edge ab is discovered to be a Delaunay edge in E′,
and the point b is closer to the centre of C than a was. Since P is finite, by setting
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(a)
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b
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Figure 8.6 (a) The Delaunay edges certified by (dotted) empty circles within a bigger
circle form a connected graph. (b) Growing a circle from p towards the centre. (c)
The closest point to the centre can be connected to at least one of the points in the
other group.

a = b and repeating this procedure, we eventually construct a path from p to c in the
graph (P′, E′). �

Suppose now that EMST edge ek joins q1, q2 ∈ Q, and consider the expanded Gabriel
circle C+

q1q2
. Lemma 8.6 states that there exists a path of Delaunay edges certified inside

C+
q1q2

that joins the corresponding exact points p1, p2 ∈ P; our task is to compute one
efficiently, or at least to compute a subgraph of the Delaunay triangulation of P that
contains one or more paths.

To reconstruct the Delaunay triangulation, we first want to build up the components
of the EMST by adding edges in order; the essential task is to find a path of Delaunay
edges joining the exact points p1, p2 ∈ P for two centres q1, q2 ∈ Q that form an edge
ek in the EMST. We will do this inside C+

q1q2
, although we could do it in the smaller

Cp1 p2 with a slightly longer description of the procedure.

Lemma 8.7 Let q1q2 be an edge of the EMST of Q, and let P′ ⊂ P denote the set of precise
points inside circle C+

q1q2
. Assuming we already connected all EMST edges shorter than q1q2,

we can connect q1 and q2 in O(|P′|) time.

Proof When q1q2 is short, penny packing says there are at most a constant number of
disks in C+

q1q2
, so we can process q1q2 by computing the Delaunay triangulation of the

points P′ and discarding edges that are not certified by an empty circle inside C+
q1q2

.

When ek is long, by Lemma 8.1 there are two components that are separated by the
perpendicular bisector of q1q2. Let P′1 and P′2 be the partition of P′ by this bisector. It
suffices to find a Delaunay edge of P from P′1 × P′2 since the points within P′1 (and P′2)
have already been connected earlier in the algorithm.

Let c1 ∈ P′1 and c2 ∈ P′2 be the closest points to the centre of C+
q1q2

, as illustrated
in Figure 8.6(c), and assume that the distance to c2 is greater, meaning the circle
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concentric with C+
q1q2

through c2 contains at least one point of P′1. Shrink this circle
with c2 on the boundary by moving its centre towards c2 until the last point of P′1
leaves its interior—this point defines the desired Delaunay edge with c2. Both steps
can be carried out in time proportional to |P′|. �

We spend constant time on each short edge and, by Theorem 8.1, a total of linear time
on the long edges. For each edge we find a path of Delaunay edges of P that joins the
vertices p1 and p2, so the connected components induced by the sequence of edges
found will be supersets of the components of Ik of the first k edges of the EMST of P.
Thus, we obtain a connected graph after processing all EMST edges, and can invoke
the algorithm by Chin and Wang [30] to complete the Delaunay triangulation.

Theorem 8.2 Let R be a set of n disjoint unit disks in the plane. We can preprocess R in
O(n log n) time into an O(n) size data structure, such that when a point set P containing
one point from each region inR is given, a Delaunay triangulation of P can be computed in
O(n) time.

8.3 Extensions

Our algorithm works for a very specific class of imprecise regions: disjoint disks
of equal radius. In practice, this may be a rather strong assumption on the input,
especially disjointness is not a very natural property of imprecise point sets. In this
section, we show how the result can be extended to less restricted regions.

8.3.1 Overlapping Disks

If we allow the regions to be arbitrarily overlapping disks, then there is little we can
hope to prove. In the worst case, all disks could coincide, allowing the constructions
that establish the Ω(n log n) lower bounds for general Delaunay triangulation [118].
If we limit the depth of overlap, however, our result still holds with the algorithm
unchanged.

We say a set of disks is k-overlapping if no point in the plane is contained in more than
k disks. In this case, the number of short edges that can contain a point p increases.
Clearly, there cannot be more than k(r + 2)2 disks touching a circle of radius r. This
means the constant grows linearly in k. The arguments involving long edges do not
depend on the disjointness of the disks.

8.3.2 Other Extensions

If we allow the disks to have different radii, then in general the problem is open.
However, when there is a constant fraction ρ = r+

r− between the largest radius r+ and
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the smallest radius r−, then we can just increase the radii of the disks such that all
disks have radius r+. Since we know that the sample points lie inside the input disks,
they certainly also lie inside the grown disks. Of course the disks start overlapping,
but not too much: at most (ρ+ 1)2 grown disks contain any given point in the plane.

If the input regions are not disks but squares, then we can grow them to the smallest
disks containing them, which are 3-overlapping. If the regions are β-thick in the sense
that they contain circles of radius r− but are contained in circles of radius r+ (the
same radii for all regions), with β = r+

r− , then we can again replace them by disks of
radius r+ that are at most (β+ 1)2-overlapping.

Finally, we can also handle combinations of the above. If we have a set of k-
overlapping β-thick regions with radii (say, of their smallest enclosing circles) that dif-
fer by at most a factor ρ, then we can translate this into a set of O(ρ2β2k)-overlapping
unit disks. These can then be preprocessed in O(ρ2β2kn log n) time into a O(ρ2β2kn)
size data structure, such that the Delaunay triangulation of the real points can be
computed in O(ρ2β2kn) time once the points are known. In particular, this means
that when these parameters are constants, the same result as for unit disks still holds.

8.4 Closing Remarks

In this chapter, we studied the problem of preprocessing a set of disks to speed up
the computation of the Delaunay triangulation. We showed that a set of disjoint unit
disks can be preprocessed in O(n log n) time, such that the Delaunay triangulation of
a precise set of points can be computed in linear time once these points are given.

The results in this chapter appeared in [86]. Though they show that preprocessing
disks for Delaunay computation is theoretically possible, the reconstruction algorithm
does rely on the linear-time polygon triangulation by Chazelle [25], which is rather
complicated to implement. Furthermore, though the algorithm generalises to less
restrictive regions than unit disks, as discussed in the previous section, the depend-
ence on the parameters is not optimal. In the next chapter, we will discuss a different,
more practical approach to solving the problem.



Chapter Nine

Preprocessing More General Regions
for Delaunay Triangulation

In this chapter, we will show how to obtain the same result as in the previous chapter.
The difference is that the reconstruction algorithm in this case is randomised, and
therefore not guaranteed to always finish within a linear number of steps (though
with high probability, it will). On the other hand, the data structure in this chapter is
more powerful, and will allow us to handle more general input regions than just unit
disks in an optimal way.

We consider the same parameters as in the previous chapter. We consider ρ, the
fraction between the radii of the smallest enclosing circles of the largest and smallest
regions inR; k, the largest depth in the arrangement ofR; and β, the largest thickness
of any region.

We show how to preprocess a set of k-overlapping disks in O(n log n) time such
that the Delaunay triangulation of the real points can be computed in O(n log k)
expected time, independent of ρ. Furthermore, we show how to preprocess a set of k-
overlapping β-thick regions in O(n log n) time such that the Delaunay reconstruction
algorithm takes O(n(log(kβ) + log logρ)) expected time.

The approach in this chapter is similar to the one in Chapter 7. We first build a scaffold,
to which we can easily add the precise points when they become available, and then
remove the scaffold using a splitting algorithm for Delaunay triangulations. We use
the following theorem by Chazelle et al.

Theorem 9.1 (Chazelle et al. [26]) Let P, Q ⊆ R2 be two planar point sets, with total
complexity m. Suppose that the Delaunay triangulation of P ∪ Q is available. Then the
Delaunay triangulation of P can be computed in O(m) expected time.
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9.1 Disks of Different Sizes

In this section we study the following problem:

Problem 9.1 Given a set of disjoint disks in the plane, preprocess them in such a way that
when a point in each region is given, a Delaunay triangulation of these points can be computed
faster than without preprocessing.

In the previous chapter, we needed to assume that all disks inR had the same size. We
now describe an approach that does not have this restriction, and can still preprocess
R in O(n log n) time and reconstruct the Delaunay triangulation in O(n) expected
time.

9.1.1 Quadtrees

The approach in this chapter is based on quadtrees. We first discuss what these are
and present some extension. Quadtrees are a popular way to create a hierarchical
decomposition of space that allows for variable sizes of cells [46]. They are used often
in practice due to their simple structure. However, for our purposes the standard
definition of a quadtree is too restrictive. Instead, we will define the concept of a
free quadtree, and then restrict this based on our needs in the various sections in this
chapter.

Definition A free quadtree T is a rooted tree that corresponds to a hierarchical decom-
position of a square region B with side length ` in the plane. Each node v of T has an
axis-aligned square box Bv associated to it. Furthermore, the following requirements
should be met:

1. The root of T has B itself associated to it.
2. If w is a descendent of v in T, then Bw is contained in Bv.
3. If v and w are siblings in T, then Bv is disjoint from Bw.
4. Every node v of T has a box Bv with side length 2−k` for some positive integer k,

and the x- and y-coordinates of its corners are multiples of its side length away
from the boundary of the root box.1

Such a tree T decomposes the root box into a number of cells. We denote by Tv the
subtree of T rooted at v. For each node v, we define Cv = Bv \

⋃
w∈Tv ,w 6=v Bw as the

cell that consists of the part of Bv that is not covered by the children of v. Note that
Cv can be empty, or not connected. Now, each pair of cells Cv and Cw is disjoint, and
the union of the cells of all nodes of T covers the root square. We also say the size of a
node is the side length of its box.

1In order to be able to ensure this property, we assume that the floor operation can be executed in
constant time. In [19], we show that this is in fact not a necessary assumption, but it simplifies the
presentation.
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(a) (b)

Figure 9.1 (a) A quadtree. The lower left box contains a cluster node. (b) The
quadtree is a valid quadtree for this set of points.

Quadtrees are usually used to capture the differences in density of a geometric scene.
In the simplest case, this scene is a set of points. We say that a quadtree T is valid for a
set of points P if the following properties hold:

1. The root box of T contains all points of P.
2. Each leaf v of T contains at most one point of P inside Cv.
3. Each internal node v of T contains no points of P inside Cv.
4. The complexity of T is O(|P|).

Though it is easy to construct a valid free quadtree for a given point set, we need
some more structure to make them useful. We will consider only restrictions of free
quadtrees in the rest of this chapter. A standard quadtree as used in the literature is
a free quadtree under our definition, and in particular has only two types of nodes:
internal nodes v with exactly four children that are half as large as v, and leaf nodes
that have no children at all. This definition is sufficient for most practical purposes,
but theoretically it is possible that the difference in density of different parts of a point
set is arbitrarily large, and to represent such a set with a quadtree would require
an unbounded number of boxes. Therefore, Bern et al. [14] augment this definition
by allowing another type of node: a cluster node v is a node with just a single child
w, such that the fraction between the sizes of v and w is at least a constant factor 2c,
where c is a large enough integer. With this addition, they prove that for any point set
P there exists a quadtree of linear size. Figure 9.1(a) shows an example of a quadtree
of this type, and Figure 9.1(b) shows a set of points for which this quadtree is valid.



124 CHAPTER 9. PREPROCESSING MORE GENERAL REGIONS

(a) (b)

Figure 9.2 (a) At most four disjoint disks can intersect any given box B belonging
to a leaf of the quadtree, without one of their points being inside B. (b) For a box B
belonging to a parent of a cluster node with box C, slightly more disks can intersect
the interior of B \ C, but not more than four can cover any of the four neighbouring
boxes, so a crude upper bound is 20.

9.1.2 Preprocessing Algorithm

We now show how to preprocess a set of disjoint disks of arbitrary sizes. We derive
a scaffold point set Q from R, and compute a valid quadtree T for Q. Then, once
we get a precise point set P, we insert the points of P into the quadtree as well, and
compute the Delaunay triangulation of P ∪Q. We finally split it using Theorem 9.1 to
obtain the Delaunay triangulation of P.

We construct Q by taking from every disk in R a set of five points representing it,
namely the centre point and the top-, bottom-, left- and rightmost points. Then, T can
be constructed in O(n log n) time [14]. We will make an observation about how the
boxes of T intersect the regions ofR, which will allow us to insert the points of P into
Q efficiently later.

Lemma 9.1 For every node v of T, Cv is intersected by O(1) disks inR.

Proof There are three types of nodes to consider. First, if v is a normal internal node
with four children, then Cv is empty so the condition is trivially true.

Next, suppose that v is a leaf node, so Cv = Bv. If a disk D intersects Bv, then either D
contains a corner of Bv or Bv contains D’s centre or one of its four extreme points [33].
Since the disks inR are disjoint, there can be at most four disks containing a corner of
Bv, see Figure 9.2(a) for an example. And since leaf nodes contain at most one point
of Q in their cells, there can be at most one disk with a reference point inside Bv. Thus,
Bv intersects at most five disks.

Finally, suppose v is a cluster node, with child w. Then Cv = Bv \ Bw. We know there
are no points of Q in Bv outside Bw, and there are at most four disks that can contain
a corner of Bv. However, there can also be disks that intersect Bv and do not cover a
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corner of Bv, if they have at least one representative point in Bw. To bound the number
of these, consider the four squares adjacent to Bw, that is, above, below, to the left and
to the right of it. Because of the alignment property (requirement 4) of free quadtrees,
these boxes are either completely contained in Bv, or completely outside it. Using the
same argument as above, each of these neighbours that is inside Bv is intersected by
at most four disks, and every disk D with a representative point in Bw that intersects
Cv also intersects one of these orthogonal neighbours: if D has no extreme point or
centre in an orthogonal neighbour and does not cover any of its corners, it has to
cover its centre. Figure 9.2(b) shows an example involving a cluster node. �

To finish the preprocessing, we store for each Ri ∈ R a list with the cells of the
subdivision of T that intersect it. By Lemma 9.1, the total size of these lists, and hence
the complexity of the data structure, is linear.

9.1.3 Reconstruction Algorithm

Once we receive the real point set P, we compute the Delaunay triangulation of P by
first inserting P into T. For each pi ∈ P, we find the node v of T that contains pi in Cv
by traversing the list stored with Ri. This takes linear time in total. Since each cell of
T contains constantly many input points, we can turn T into a quadtree for P ∪Q in
linear time.

Next, we show how to compute the Delaunay triangulation of a set of points when
given a quadtree of them. The next lemma is a variant of a theorem by Bern et al. [14],
to which we refer the reader for further details (see also [15]).

Lemma 9.2 Let P ⊆ R2 be a set of n points in the plane, and let T be a quadtree for P. Then,
given P and T, we can find the Delaunay triangulation of P in O(n) expected time.

Proof First, we extend T into a quadtree T′ that is balanced and separated. We say
a tree T′ is balanced if no leaf in T′ shares an edge with a leaf whose size differs by
more than a factor of two, and we say that T′ is separated if each non-empty leaf of T′

is surrounded by two layers of empty boxes of the same size. This can be done by a
top-down traversal of T, adding additional boxes for the balance condition and by
subdividing the non-empty leaves of T to ensure separation. If after C subdivision
steps a non-empty leaf B still does not satisfy separation, we place a small box around
the point in B and treat it as a cluster, for which separation obviously holds.

Given T′, we obtain a non-obtuse Steiner triangulation T for P with O(n) additional
vertices P′ through a sequence of local manipulations, as described by Bern et al. [14].
Since all these operations involve constantly many adjacent boxes, the total time for
this step is linear. It is a well-known fact that any triangulation without obtuse angles
is a Delaunay triangulation, therefore, T is the Delaunay triangulation of P ∪ P′, and
we can use Theorem 9.1 to extract the Delaunay triangulation of P in O(n) expected
time. �
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Now, we apply Lemma 9.2 to compute the Delaunay triangulation of P ∪Q from T,
and finally we obtain the Delaunay triangulation of P by using Theorem 9.1 again.
We summarise:

Theorem 9.2 Let R be a set of n disjoint disks in the plane. We can preprocess R in
O(n log n) time into an O(n) size data structure, such that when a point set P containing
one point from each region inR is given, a Delaunay triangulation of P can be computed in
O(n) expected time.

9.2 Overlapping Disks

In this section, we study a more relaxed version of Problem 9.1 by dropping the
disjointness condition:

Problem 9.2 Given a set of k-overlapping disks in the plane, preprocess them in such a way
that when a point in each region is given, a Delaunay triangulation of these points can be
computed faster than without preprocessing.

We now show how the approach can be extended to disks with limited overlap. Now
R contains n disks in the plane such that no point is covered by more than k disks.
Aronov and Har-Peled [7] show that for a given set of regions, the value of k can
be approximated up to a constant factor in O(n log n) time. It is easily seen that
reconstructing the Delaunay triangulation after any preprocessing takes Ω(n log k)
time in the worst case, and we show that this bound can be achieved.

The general strategy is the same as in Section 9.1. Let Q be the 5n representative points
forR, and let T be a quadtree for Q. As before, T can be found in time O(n log n) and
has complexity O(n). However, the cells of T can now be intersected by O(k) regions,
rather than O(1). This means the reconstruction will be slower, but we can optimise
the running time by reducing the complexity of T until its precision somehow matches
the number of regions that can intersect a box. For this we introduce the notion of
λ-deflated quadtrees.

9.2.1 Deflated Quadtrees

For an integer λ > 0, we define a λ-deflated quadtree T′ for a point set P to be a
quadtree that may contain up to λ points of P in its cells, and therefore can be shown
to have O(n/λ) nodes. A deflated quadtree is another, weaker restriction of a free
quadtree. We distinguish four different types of nodes.

• A leaf is a node without children. A leaf may contain up to λ points.
• A regular internal node has four children that cover their parent. There can be no

points directly associated with a regular internal node.
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(a) (b)

Figure 9.3 (a) A set of points and a quadtree for it. (b) A 3-deflated version of the
quadtree.

• A cluster node is, as before, a node with a single, much smaller child. A cluster
node also cannot have any associated points.

• Finally, a deflated node is also a node with a single child, which is possibly but
not necessarily much smaller than its parent. A deflated node may contain up
to λ points in its cell.

Figure 9.3 show a quadtree and a 3-deflated version of it.

Given a quadtree T for P, a λ-deflated quadtree T′ can be found in linear time by
processing the nodes from top to bottom. For every node v in T, compute nv =
|Bv ∩ P|. This takes O(n) time. Then, recursively for each node v, if nv ≤ λ we replace
it with a single leaf. Otherwise, if it has any descendent w such that nv − nw ≤ λ, we
take the descendent w among them with the smallest number of points and keep w as
the only child of v, and associate all points in its other children directly to v. Now v
is a deflated node. If there is no such child w, we do not change v. The new tree T′

is clearly λ-deflated, and this procedure clearly takes O(n) time. It remains to show
that the complexity of T′ has gone down by a factor λ.

Lemma 9.3 A λ-deflated quadtree T′ produced as described above has O(n/λ) nodes.

Proof Let T′′ be the subtree of T′ that contains all nodes v with nv > λ, and suppose
that every cluster node in T′′ has been contracted with its child. We will show that
T′′ has O(n/λ) nodes, which implies the claim, since the child of a cluster node can
never be another cluster node, and because all the non-cluster nodes in T′ which are
not in T′′ must be leaves. We count the nodes in T′′ as follows.

• Since the leaves of T′′ correspond to disjoint subsets of P of size at least λ, there
are at most n/λ of them.
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• The bound on the leaves also implies that T′′ contains at most n/λ nodes with
at least two children.

• The number of nodes in T′′ with a single child that has at least two children is
likewise bounded.

• When an internal node v has a single child w that also has only a single child,
then by construction v and w together must contain at least λ points in their
cells, otherwise they would not have been two separate nodes. Thus, we can
charge λ/2 points from P to v, and the total number of such nodes is 2n/λ. �

9.2.2 Preprocessing Algorithm

Given a set of k-overlapping disksR, we first compute a quadtree T for Q as in the
previous section. Next, we compute a k-deflated quadtree T′ from T. By treating
deflated nodes like cluster nodes and noting that the centre and corners of each box
of T′ can be contained in at most k disks, the same arguments as in Lemma 9.1 lead to
the next lemma:

Lemma 9.4 For every node v of T′, Cv is intersected by O(k) disks inR.

By Lemmas 9.3 and 9.4, the total number of disk-cell incidences in T′ is O(n). Thus,
in O(n) total time we can find for each R ∈ R the list of nodes in T′ whose cells it
intersects. Next, we determine for each node v in T′ the portion Xv of the original
quadtree T inside the cell Cv and build a point location data structure for Xv. Since
Xv is a partial quadtree for at most k points, it has complexity O(k), and since the Xv
are disjoint, the total space requirement and construction time are linear. This finishes
the preprocessing.

9.2.3 Reconstruction Algorithm

When we are given a precise set of points P, we first locate the points in the cells
of T′ just as in Section 9.1.3. This takes O(n) time. Then we use the point location
structures for the Xv to locate P in T in total time O(n log k). Now we turn T into a
quadtree for P ∪Q in O(n log k) time, and find the Delaunay triangulation in O(n)
expected time, as before. We arrive at the following theorem:

Theorem 9.3 LetR be a set of n k-overlapping disks in the plane. We can preprocessR in
O(n log n) time into an O(n) size data structure, such that when a point set P containing
one point from each region inR is given, a Delaunay triangulation of P can be computed in
O(n log k) expected time.
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9.3 Thick Regions

The results of the previous sections still assume that the regions inR are disks. When
a region R can have any shape, we can define the thickness of R as the ratio between
the radii of the smallest enclosing disk of R and the largest disk contained in R: this
was the third parameter for which we showed the results in the previous chapter
could be generalised. We briefly show now that we can also deal with this situation,
although the time bounds now does also become dependent on ρ. We define the size
of a region R as the radius of the smallest enclosing circle of R.

Given is a set of β-thick regions R with a factor ρ difference in size between the
smallest and largest regions inR. We subdivide the regions into logρ groups such
that in each group the sizes of the regions differ by at most a factor of 2. For each
groupRi, let ni = |Ri| and let ri be the largest radius of a minimum enclosing circle
for a region inRi. We replace every region inRi by a disk of radius ri that contains it.
This set of disks is at most (2kβ)-overlapping, so we can build a data structure forRi
in O(ni log ni) time by Theorem 9.3.

Now, to compute the Delaunay triangulation for a precise point set P, we first compute
the Delaunay triangulation of each group Pi in O(ni log(kβ)) time using the algorithm
in Section 9.2.3. After that, we can combine the triangulations in time O(n log log r)
using an algorithm by Kirkpatrick [76].

Theorem 9.4 Let R be a set of n β-thick k-overlapping regions in the plane such that the
ratio of the largest and the smallest region in R is ρ. We can preprocess R in O(n log n)
time into a O(n) size data structure, such that when a point set P containing one point from
each region is given, the Delaunay triangulation of P can be computed in O(n(log(kβ) +
log logρ)) time.

9.4 Closing Remarks

In this chapter, we provided an alternative way of obtaining the same result as in
the previous chapter: that it is possible to preprocess a set of disjoint unit disks in
O(n log n) time, such that the Delaunay triangulation of a precise set of points can
be computed in linear time once these points are given. The difference is that the
algorithm in this section is randomised, and that it is much simpler to implement in
practice. Furthermore, we showed how to extend the result to partially overlapping
thick regions of different sizes.

The results in this chapter also appeared in [19]. Apart from these results, we also
present in that paper a very simple randomised algorithm to obtain the same result
that does not even rely on quadtrees. Also, we show how to extend the results to
various other realistic input models, such as those introduced by De Berg et al. [34].
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PART IV

Beyond Imprecise Points





Chapter Ten

Imprecise Lines

This thesis is about dealing with imprecision in the input data of geometric algorithms.
Until now, we have considered only situations where this input data consists of a
set of points. In this last part of the thesis, we will move away from the subject of
imprecise points, and investigate how imprecision in other geometric objects can be
modelled and what algorithmic problems this leads to. A short discussion about this
was already given in Section 2.4. In this chapter, we will focus on lines; in the next
chapters polygons are studied.

Lines are, next to points, the second most basic geometric objects. We model imprecise
lines in the same way as imprecise points: by defining for each imprecise line a set of
possible lines. As discussed in Section 2.4.1, though, we run into trouble when trying
to define some properties of these sets of lines. Most notably, we would like to define
when a set of lines is convex. We propose the following definition.

Definition A set of lines L is convex if there exists a direction d such that no line l ∈ L
has direction d, and for any pair of lines l, m ∈ L the following properties hold:

1. If l and m are parallel, then all other lines parallel to them and between them
are also in L.

2. If l and m intersect in a point p, then all other lines through p with a direction
between l and m, rotating such that d is not encountered, are also in L.

We will assume from now on that sets of lines are closed sets, although the observa-
tions we make can easily be extended to open sets. Let L be a closed convex set of
lines, and assume they are sorted by their directions cyclicly from d counterclockwise
back to d. Then there are two lines l, m ∈ L that have the smallest and largest direction.
Let the angle between l and m beα. We callα the limit angle of L, see Figure 10.1(a).
If the lines are undirected, α is smaller than π . If the lines are directed, α must be
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α

(a) (b)

Figure 10.1 (a) An imprecise line with limit angleα. (b) A set of imprecise lines.

smaller than 2π . For undirected lines, this means L will either be a strip (α = 0),
or it can be described by two convex curves that have asymptotes with an angle α
between them. The set L is the set of all lines that lie completely within the portion of
the plane bounded by the curves.

For directed lines, something interesting happens as soon asα > π . We can use the
convexity properties to prove that if some line l is in L, any translation of l that is
rotated some arbitrarily small ε is also in L. However, when considering imprecise
lines it seems reasonable to assume thatα < π . In that case, our definition for directed
lines coincides with the definition from [51]. Our definition of convexity also coincides
with the dual definition, when we rotate the plane such that d becomes vertical (but
since we need a different rotation for each imprecise line, we cannot use the dual
definition as it is).

If a set of lines is convex with a limit angleα < π and has piecewise linear boundaries
of constant description size, we call it a bundle. Figure 10.1(b) shows an example of a
set of bundles in the plane.

We will show in the next sections that for this model of imprecise lines, we can also
develop efficient algorithms. We study two well-known geometric problems that take
a set of lines as input. In Section 10.1 we study the problem of linear programming,
where the objective is to minimise the height of a point that lies on one side of all input
lines. We show that the upper bound on the solution can be computed optimally in
linear time, while the lower bound takes O(n2) time in general. When the layout
of the bundles is restricted, though, we show that this time bound can improve to
O(n log n) or even O(n), depending on the exact restriction. In Section 10.2 we study
the problem of vertical extent, where the objective is to find the shortest vertical line
segment that intersects all input lines. For this problem, we again show that the
upper bound can be computed in linear time. The lower bound on this problem
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UL

(b)

IL

(c)

Figure 10.2 (a) An oriented bundle L. (b) The union of all halfplanes to the right
of the possible lines in L. (c) The intersection of all halfplanes to the right of the
possible lines in L.

takes O(n2 log n) time, but under a certain restriction of the bundles this improves to
O(n log n) time.

10.1 Linear Programming

Linear programming is a very important tool used in many disciplines across science.
In a linear program, there is a number of variables on which a linear objective function
needs to be optimised, while satisfying several linear constraints. Translated into
a geometric problem, the d variables form a d-dimensional Euclidean space, the
constraints form (d− 1)-dimensional hyperplanes, and the objective function becomes
a d-dimensional vector. The problem is now to find the point furthest in the direction
of the objective function that lies on the correct side of all hyperplanes. By rotation,
a linear program can be reformulated so that the objective function is optimised by
minimising the dth (“vertical”) coordinate.

In the planar case, d = 2, and the hyperplanes become lines. In fact, they become
directed lines: the solution is constrained to lie to the left of every line. This problem
can be solved in O(n) time [94]. When the lines are imprecise, we are interested in
the lowest and highest possible points that could be the lowest point to the left of a
set of lines taken from a collection of bundles L. These points give us bounds on the
possible values that the “real” solution can have.

When dealing with oriented bundles, we can define some useful regions of the plane, as
was already observed in [51]. Let L be a bundle, and l ∈ L be some line. We define by
Hl the halfplane to the right of l. Now, we denote by UL =

⋃
l∈L Hl and IL =

⋂
l∈L Hl

the union and intersection of all these halfplanes of the lines in L. Figure 10.2 shows
an example.

10.1.1 Largest Value

In this section, we study the following problem:
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(a) (b)

Figure 10.3 (a) By rotating the two lines, the lowest point to the left of both of them
can be made arbitrarily high. (b) The largest possible value is the smallest value in
the combined free space.

Problem 10.1 Given a set L of imprecise directed lines modelled as oriented bundles, choose
one directed line from every bundle such that the point to the left of all lines with the lowest
y-coordinate is as high as possible.

In this problem, we want to choose the lines such that we restrict the solution as much
as possible. In particular, this means that if the problem can be made infeasible, we
want to do so. In a way, making the problem infeasible corresponds to having the
lowest feasible point infinitely high. Indeed, already with two imprecise lines it can
be possible to place the lines such that the lowest point on the correct side of them is
arbitrarily high, as is illustrated in Figure 10.3(a), and by actually making the lines
parallel the feasible space becomes empty.

To solve the problem, consider for each imprecise line L the region UL. We will treat
these regions as forbidden regions, and compute the lowest point that lies outside UL
for all lines. Figure 10.3(b) shows an example.

Lemma 10.1 The lowest point outside all regions UL is an optimal solution to Problem 10.1.

Proof Let p be the lowest point outside the union of the UL regions, and let p∗ be an
optimal solution. Clearly, no matter how we choose the lines in L, p will always be in
the free space. Thus p∗ cannot be any higher than p.

Now p will be on a vertex of the polygonal region that is the union of the UL regions.
This vertex is defined by two lines l and m. If l and m belong to different imprecise
lines, we can choose both of them, and clearly the optimal solution p∗ must be at least
as high as p. If l and m belong to the same imprecise line L, then by convexity of L and
the fact that the limit angleα < π , we know that the horizontal directed line from left
to right through p is also in L, and we can choose that line. Again p∗ must be at least
as high as p.

We conclude that p and p∗ have the same height, and therefore p is also an optimal
solution. �
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To compute the solution, consider the line segments bounding UL. Take the lines
supporting those segments, and do this for all imprecise lines. Apply normal linear
programming to the resulting set of lines. The solution we find this way is the solution
to the imprecise problem.

Theorem 10.1 Given a set L of n imprecise directed lines modelled as oriented bundles, we
can pick a line from each bundle such that the lowest point to the left of them is as high as
possible in O(n) time.

10.1.2 Smallest Value

In this section, we study the following problem:

Problem 10.2 Given a set L of imprecise directed lines modelled as oriented bundles, choose
one directed line from every bundle such that the point to the left of all lines with the lowest
y-coordinate is as low as possible.

In this case, we want to find the lowest point such that in every bundle, there is a line
that has this point to its left. Therefore, we can define for each imprecise line L the
potential free space as the complement of IL.

Observation 10.1 If p is a point in the plane, a choice of lines for L that has p to the left of
all of them exists if and only if p lies in the potential free space of all lines in L.

As a consequence, we are now looking for the lowest point in the intersection of
a collection of concave regions in the plane. We could find this point by explicitly
computing this intersection, which takes O(n2) time in general, and in Section 10.1.2.4
we show that in general this is indeed the best we can do.

However, when our collection of imprecise lines satisfies some additional, natural
constraints, we can in some cases solve the problem more efficiently. We call a bundle
diagonal if it contains no horizontal or vertical lines. We call a bundle upfacing if
all lines in the bundle are directed from left to right. We will call a bundle δ-fat if
α < π − δ for some constant δ > 0.

10.1.2.1 Diagonal Bundles

Let L be a collection of diagonal and upfacing bundles, see Figure 10.4(a). In this case,
we can solve Problem 10.2 in linear time, because it is an LP-type1 problem. LP-type
problems were already briefly discussed in Section 3.2.2.1 of this thesis.

Recall that an LP-type problem is defined on a set of objects H and a function w :
2H → W, where W is some totally ordered set of possible values, and the goal is

1In fact, LP-type stands for “linear programming”-type, and describes a class of problems that are
similar to linear programming and can be solved in linear expected time using a generic approach [92].
Perhaps it is not surprising that linear programming with imprecise lines fits in this framework.
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(a) (b)

Figure 10.4 A set of bundles, showing the IL regions in grey. (a) The potential free
space of a set of diagonal, upfacing bundles. (b) The potential free space of a set of
upfacing bundles.

to compute w(H). The two axioms that must hold for a problem to be LP-type are
monotonicity:

∀F⊆G⊆H : w(F) ≤ w(G)

and locality:

∀F⊆G⊆H, h∈H : w(G) = w(F) < w(F ∪ {h}) −→ w(G) < w(G ∪ {h})

In this case, H = L is the set of imprecise lines, or equivalently the set of regions IL of
the lines, and w measures the height of the lowest point in complement of the union
of these regions. The first axiom is clearly holds for any set of imprecise lines. For
the second to hold, though, we need the restrictions mentioned before. Intuitively,
it states that if adding a new region to a collection of regions changes the optimal
solution, then the newly added region should be one of the defining regions of the
new optimum. This is the case for diagonal upfacing bundles, but not for more
general bundles.

10.1.2.2 Upfacing Bundles

Let L be a collection of upfacing bundles, see Figure 10.4(b). We can solve the problem
by computing the upper envelope of the potential free regions in O(n log n) time [67].
The complexity of this envelope is O(nα(n)), whereα(·) denotes the inverse of the
Ackermann function, and we can clearly find the lowest point on it by just looking at
all the vertices.

In certain models of computation, this bound can be proven to be optimal, since we
can reduce the maximum gap problem to it, which has a Θ(n log n) lower bound [81].
The model of computation used in that proof is quite restrictive, though: if we allow
to use the floor function in constant time, as we do in Chapters 5 and 9, the maximum
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gap can be computed in linear time [53]. Nonetheless, we now present the reduction
from maximum gap.

In the maximum gap problem, we are given a set of real numbers, and we want to
report the largest difference between any pair of consecutive numbers (consecutive if
they were sorted, but they are given in arbitrary order). For each number we create
a bundle. Consider the point p = (x, 0) for the number x. We consider the line l
through p with slope 1 and the line m through p with slope −1. We create a bundle
L consisting of l and m and all other lines through p with slopes between −1 and
1. Now the region IL forms a wedge with p as its top, and two halflines with slope
1 and −1 going down. The lowest point above all wedges corresponds to the two
consecutive numbers with the largest difference.

10.1.2.3 Fat Bundles

Fatness seems to be a very reasonable restriction on imprecise lines. We already
assumed that for each imprecise line, there is some direction d which we know the
line does not have. We now impose a slightly stronger restriction, by saying that there
is at least a small angle of directions the line cannot have. This angle is a positive
constant denoted by δ.

Let L be a collection of fat bundles, see Figure 10.5(a). In this case, we can solve the
problem in O(n log n) time.

Lemma 10.2 The union of the IL regions of a set of δ-fat bundles L can be computed in
O(n log n) time.

Efrat et al. [41] prove that the union of a set of δ-fat wedges can be computed in
O(n log n) time. Their proof is an adaptation of [91], with some ideas from [97]: they
describe only the differences. The proof can be adapted once more to also work for
our IL regions, which are “clipped” δ-fat wedges. Our adaptation is straightforward,
but we give a brief sketch of the whole proof here in order to save the reader from
having to reconstruct all adaptations.

Proof The main idea is to divide the imprecise lines into k = 2π/δ groups depending
on their angles. Let d0, . . . , dk be k equally spaced directions. Let Li be the set of
imprecise lines that do not contain any line with direction di. Because the imprecise
lines are δ-fat, each imprecise line is in at least one group. Within each group, we
can compute the union of the clipped wedges IL in O(n log n) time, because such
a set of wedges is upfacing when we rotate the plane such that di becomes vertical.
Then we explicitly compute the union of these k structures, which can be done in
O(n log n + m) time where m is the total number of intersections [27]. The bulk
of the analysis in [41] is used to show that m is linear in n. Since the number of
groups is constant, it is sufficient to prove that for each pair of groups the number of
intersections is linear. This follows from the fatness: in the worst case, all “spikes” are
exactly δ-fat, but even then they still cannot intersect too often. �
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(a) (b)

Figure 10.5 A set of bundles, showing the IL regions in grey. (a) The potential free
space of a set of fat bundles. (b) The potential free space of a general set of bundles.

10.1.2.4 General Bundles

Let L be a collection of bundles without any further restrictions, as depicted in
Figure 10.5(b). In this case, it is likely that there is no algorithm that solves the
problem faster than in Θ(n2) time.

We reduce from covering a rectangle with strips, which falls in a class of “O(n2)
problems” [50], also sometimes called 3SUM-hard problems, for which the best known
solutions take Θ(n2) time. In this problem, the input is a rectangle R and a set of
strips S : each strip is the region between two parallel lines. The question is to decide
whether the union of S covers R. In our case, we represent each strip S of S by an
imprecise line. For a strip defined by two lines l and m, we create a bundle with
limit angle α = π − δ for some very small value δ. Assume l and m have opposite
directions, and they lie to the right of each other. We rotate l by δ around some
point in R, and then add both l and m to the new bundle L. Then l and m intersect
somewhere far away outside R, and we add all other lines between l and m through
this intersection point to L too, to make it convex. If δ goes to zero, the part of IL
inside R comes arbitrarily close to the strip S. Finally, we add an extra bundle to
represent each side of R, each consisting of one single line. Clearly, the resulting free
space is empty if and only if the strips S cover R.

We note that it is easy to achieve quadratic time by just explicitly computing the
arrangement of the bundles.

Theorem 10.2 Given a set L of n imprecise directed lines modelled as oriented bundles, we
can pick a line from each bundle such that the lowest point to the left of them is as low as
possible in

• O(n) expected time when L contains only diagonal upfacing bundles.
• O(n log n) time when L contains only upfacing bundles.
• O(n log n) time when L contains only δ-fat bundles for some constant δ > 0.
• O(n2) time for general bundles.
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(a) (b)

Figure 10.6 (a) Three bundles without any vertical lines. The largest possible
vertical extent is achieved by choosing the three shown lines. (b) When there are at
least two vertical bundles, the vertical extent could be arbitrarily large.

10.2 Vertical Extent

Another basic geometric problem defined on a set of lines (or, in higher dimensions,
hyperplanes), is finding the vertical extent. The objective is to find the shortest vertical
line segment that intersects all lines. Many geometric shape fitting problems can be
reduced to the vertical extent problem by a technique called linearisation [62, 63]. It is
also directly dual to the vertical width problem: the smallest vertical distance between
two parallel lines that enclose a set of points in the plane. Vertical extent is also an
LP-type problem, and can therefore be solved in O(n) expected time.

Unlike for linear programming, the input to the vertical extent problem is a set of
undirected lines. This means that even though the two problems are similar in the
traditional, precise setting, some different ideas are needed to solve them when the
lines are imprecise. Again, we are interested in the largest and smallest possible
values that the vertical extent can have.

10.2.1 Largest Value

Problem 10.3 Given a set L of imprecise lines modelled as bundles, choose one line from
every bundle such that the vertical extent of the resulting lines is as large as possible.

We call a bundle vertical if it contains at least one vertical line.

When there are no vertical bundles, the largest vertical extent of the bundles is likely
to be just the smallest vertical extent of the set of lines that support the boundaries of
the bundles, which can be computed in linear time. However, this is not always the
case, because it could be that two of the lines defining the vertical extent belong to
the same bundle. In this case, the worst vertical extent possible is smaller than the
vertical extent of all the supporting lines. Figure 10.6(a) shows this situation.



142 CHAPTER 10. IMPRECISE LINES

To handle this, we start by computing the vertical extent of the supporting lines.
Assuming no degeneracies, the vertical extent is always defined by three lines: it is
the vertical distance between the intersection of two lines and a third line. If these
three lines come from three different bundles, then we are done: clearly taking these
three lines results in the largest possible vertical extent. However, when two or all of
these three lines belong to the same bundle, we cannot use all of them, so the optimal
solution will be smaller. In this case, though, we can prove that one of the bundles
involved must provide one of the three lines that do define the final solution. So, we
can guess which line to use, and for each of these we again solve the same problem
using all defining lines of the remaining regions. Then, after at most three steps, we
have found the solution.

Observation 10.2 Let L be a set of bundles. Suppose the vertical extent of the supporting
lines of L is defined by lines l1 ∈ L1 ∈ L, l2 ∈ L2 ∈ L and l3 ∈ L3 ∈ L. Then the largest
possible vertical extent of a set of lines obtained by choosing one from each bundle in L is
defined by at least one line from L1, L2 or L3.

Proof For clarity: in this proof L1, L2 and L3 may refer to the same bundle. (When
L1, L2 and L3 are three different bundles, the solution is directly defined by l1, l2 and
l3.) Assume the vertical extent of l1, l2 and l3 is d.

Now, for contradiction, suppose the optimal choice of lines to maximise the vertical
extent results in a vertical extent d′ defined by three lines m1, m2 and m3, none of
which are from any of the bundles L1, L2 or L3. Clearly, d′ ≤ d. Consider the x-
coordinate of this optimal vertical extent. The lines l1, l2 and l3 span a vertical interval
of at least d at this x-coordinate. This means that at least one line li must lie outside
the vertical interval of d′ formed by m1, m2 and m3. Since li is from a different bundle,
we can include this line, yielding a solution with a vertical extent that is at least as
large as d′. �

When there are at least two vertical bundles, the problem is trivial and the answer is∞, since we can take two parallel lines that are arbitrarily close to vertical, and the
vertical distance between them will be arbitrarily large (except in the degenerate case
where vertical is one of the extreme directions of a bundle). Figure 10.6(b) shows this
situation.

When there is exactly one vertical bundle, we cannot get this arbitrarily large extent,
but we can simply use the algorithm for no vertical bundles by splitting the bundle
into two bundles, one containing all lines “left” of the vertical and one with all lines
“right” of the vertical.

Theorem 10.3 Given a set L of n imprecise lines modelled as bundles, we can pick a line
from each bundle such that the vertical extent of those lines is as large as possible in O(n)
time.
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10.2.2 Smallest Value

Problem 10.4 Given a set L of imprecise lines modelled as bundles, choose one line from
every bundle such that the vertical extent of the resulting lines is as small as possible.

This problem can also be interpreted as computing the shortest vertical segment that
intersects all bundles (the region between the curves that define the bundle, to be
precise). Again, we separately study the case where none of the bundles contain
vertical lines, and the case where some of them do.

10.2.2.1 No Vertical Bundles

Even though the imprecise lines are undirected, when there are no vertical bundles,
we can view the lines as directed lines from left to right. Then the bundles are upfacing
by the definition of Section 10.1, and we can solve the problem in a similar manner as
linear programming.

In Section 10.1.2.2, we considered the set of regions IL for all imprecise lines in L. The
complement of the union of these defined the potential free space. Now, consider the
polygonal line separating the free space from the regions (this is the upper envelope
of the regions). Any vertical line segment that intersects all bundles needs to have
its upper endpoint on or above this polyline. In the same way, we compute the
intersection of all regions UL, and the polyline bounding this. The vertical segment
needs to have its lower endpoint on or below this polyline. Now, we simply scan
both envelopes together to find the shortest vertical segment in time linear in the size
of the polylines, which can be at most O(nα(n)).

As mentioned before, computing the envelopes takes O(n log n) time [67], which is
the total running time of the algorithm.

10.2.2.2 General Bundles

When there are vertical bundles, the problem becomes more difficult since the vertical
lines partition the lines in the bundle into two groups, and we have to decide which of
them to choose a line from. In the previous case, any vertical line crossed all bundles
in exactly one interval. Now it may cross a bundle in an “inverted” interval, that is,
there is an interval where the bundle is not crossed but outside the interval it is. When
there are vertical bundles, we show how to solve the problem in O(n2 log n) time.

To start with, consider a vertical line l (not among the bundles, just any line). We will
make some observations about the shortest vertical interval on l that intersects all
bundles. First, the boundary of each non-vertical bundle intersects l in exactly two
points, with the interior of the bundle between them. The boundary of each vertical
bundle either does not intersect l at all (or in a single point), in which case we do not
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Figure 10.7 (a) The sweepline l intersects a non-vertical bundle in a single inter-
val. (b) The sweepline intersects a vertical bundle in an inverted interval, or lies
completely inside the bundle.

care about this bundle since any interval of l intersects it, or it also intersects l in two
points, but now with the exterior of the bundle between them.

We call an intersection between l and a bundle boundary a ceiling if it has the interior
of the bundle above it, and a floor if it has the interior of the bundle below it. So, for a
fixed line l, any bundle Li has at most one ceiling ci and one floor fi, and non-vertical
bundles have their floor above their ceiling while vertical bundles have their ceiling
above their floor. Figure 10.7 illustrates this. Note that the shortest interval of l that
intersects all bundles will have its top at a ceiling and its bottom at a floor (unless
there is a single point on l that intersects all bundles), because otherwise the top point
could be moved farther down or the bottom point farther up without losing any
bundles.

Now, still keeping l fixed, consider for each bundle the point (− fi , ci). This determines
a set of points P in R2. We note that the non-vertical bundles all appear below
the line y = −x, while all the vertical bundles appear above this line, and split P
accordingly into PN and PV . We say that a point p = (xp, yp) ∈ R2 dominates a point
q = (xq, yq) ∈ R2 when xp ≥ xq and yp ≥ yq. We say p strictly dominates q when
xp > xq and yp > yq. Now consider a candidate interval of l as a point q ∈ R2. We
prove below that this interval is a valid solution exactly when q dominates all points
of PN and is not dominated by any point of PV . We call the set of such candidate
points p the feasible region of l. Figure 10.8 shows an example set of bundles, and the
corresponding point set and feasible regions at two different positions of l.

Lemma 10.3 An interval [a, b] of l is a valid solution if and only if the corresponding point
q = (−a, b) dominates all points of PN and is not strictly dominated by any point of PV .

Proof A point pi = (− fi , ci) in PN correspond to an interval [ci , fi] that we have to
intersect. The interval [a, b] intersects [ci , fi] when ci ≤ b and fi ≥ a. This is equivalent
to saying that q dominates pi.

A point pi = (− fi , ci) in PV correspond to an interval [ fi , ci] of which we have to
intersect the complement. The interval [a, b] intersects the complement of [ fi , ci] when
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(a) (b) (c)

Figure 10.8 (a) An arrangement with four bundles. One of the bundles does not
contain a vertical line, the other three do. The dotted lines are two locations of the
sweepline. Between the two vertical lines, there is one event. (b, c) The rectilinear
curve that represents the highest feasible floor below each ceiling, and the lowest
feasible ceiling above each floor. The ceilings are shown on the vertical axis, the
floors on the horizontal axis.

a ≤ fi or b ≥ ci. Therefore, it does not intersect the complement of the interval when
a > fi and b < ci, which is equivalent to saying that pi strictly dominates q. �

Given a set of points P, we define the staircase envelope of P to be the curve that
separates the region of points that are dominated by some point in P from the rest of
the plane. Note that the boundary of the feasible region is determined by the staircase
envelope of PV , cut off by the two lines determined by the points in PN with the
largest x-coordinate and largest y-coordinate. Furthermore, note that the optimal
interval of l minimises its length, which corresponds to the point q in the feasible
region associated to l that minimises x + y, provided it is not below the line y = −x.

Now we will sweep a vertical line l through the original space from left to right.
On the current line, we maintain a sorted list with all bundle boundaries currently
intersected by the sweepline. We also maintain the point set P, the staircase envelope
of PV , and the two lines at the largest x-coordinate and smallest y-coordinate among
the points in PN . Together these define the feasible region on l. If we maintain this
structure and remember the shortest segment throughout the sweep, this will give us
the solution to the problem. We can compute the structure for the leftmost position
of the line in O(n log n) time. We have an event whenever two boundaries cross, or
when a ceiling and a floor meet and vanish or appear. There can be O(n2) events in
total. However, we also need to sort the events on their x-coordinate, which takes
O(n2 log n) time;2 this will dominate our running time. We will now describe how to
handle these events to maintain the required structure in constant time per event.

2Whether this can be done any faster than in O(n2 log n) time is a long-standing open problem [66, 48,
106].
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Intersection of two ceilings. The most important event occurs when two ceilings
intersect. In this case, two of the points in P switch their y-coordinate, say pi and p j.
We need to maintain the correct staircase envelope.

If pi and p j are in different sets, nothing changes. If pi and p j are both in PN , we need
to check only whether one of them was the point with the largest y-coordinate. If so,
the other one takes over this function. This test can be executed in constant time.

If pi and p j are both in PV , suppose without loss of generality that yi < y j before
the event. There are two cases, depending on the x-coordinates. Suppose xi < x j.
Then pi is dominated by p j, so does not appear on the staircase. If p j also is not
on the staircase, then nothing happens. Otherwise, consider the point pk that is the
neighbour of p j on the staircase. If xi > xk, then pi must be inserted on the staircase
between pk and p j. This can be done in constant time. Otherwise, nothing changes.

In the remaining case, xi > x j before the event. In this case, pi and p j are independent
before the event but p j will dominate pi after the event. If pi was not on the staircase
before the event, nothing changes. Otherwise, it must be removed from the staircase.
This can be done in constant time, since there are no other points that could appear on
the staircase instead (as they would need to have a y-coordinate between yi and y j).

Intersection of two floors. This event is symmetric to the case above.

Intersection of a ceiling and a floor. When a ceiling crosses a floor, usually noth-
ing of interest happens, and we do not do anything with this event.

Note, though, that something special happens when the current shortest solution
was between the crossing ceiling and floor. In that case, after the event we have a
solution of negative length (that is, a point below the “identity diagonal” line). This
is no problem though, when the algorithm returns an interval of negative length, it
means that there exists a single point in the common interior of all bundles.

Disappearing bundle. Vertical bundles have the property that their ceilings and
floors are not x-monotone, so at some point while sweeping the line they can disap-
pear or appear. When the ceiling ci and the floor fi of the same bundle meet, then
these points disappear from the data structure. This corresponds to a point in PV
touching the identity diagonal. When this happens, it needs to be removed from
the staircase if it is still on there. There cannot be any other points of PV that are
dominated by pi, because all of those are above the diagonal, therefore we can update
the staircase envelope in constant time by simply removing pi.

Appearing bundle. Similarly, at some events a new ceiling and floor of the same
bundle appear together. This implies we have to add another point to PV , somewhere
on the identity diagonal. If it falls outside the current envelope, it needs to be added
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to it. This cannot be done in constant time. However, it can easily be handled in
O(log n) time, and since there are only O(n) events of this type, this does not increase
the running time.

Theorem 10.4 Given a set L of n imprecise lines modelled as bundles, we can pick a line
from each bundle such that the vertical extent of those lines is as small as possible in

• O(n log n) time when L contains no vertical bundles.
• O(n2 log n) time for general bundles.

10.3 Closing Remarks

In this chapter, we introduced a way to model imprecision in lines, and we studied
two geometric problems that take a set of lines as input under this model. For the
problem of linear programming, we showed that the upper bound on the value
can be computed in linear time, while the lower bound can be computed in times
varying from O(n) to O(n2), depending on what further restrictions we make on the
model. For the problem of vertical extent, we provided an O(n log n) algorithm for
computing the upper bound, while the lower bound takes O(n2 log n) in general but
can also be computed in O(n log n) time when none of the bundles contain a vertical
line.

The results in this section also appeared in [88], although that paper makes the false
claim that the smallest vertical extent for general bundles can be computed in O(n2)
time. These are the first results on geometric problems that directly model imprecision
in lines, and as such there are many directions for further research.
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Chapter Eleven

Bounds on the Perimeter of a
Polygon

In the last two chapters of this thesis, we will consider the effect of data imprecision
in composite structures, as discussed in Section 2.4.2. Perhaps the simplest possible
composite structure is a polygon. A polygon is a (cyclic) sequence of points in the
plane, such that every pair of consecutive points in the sequence is connected by a
straight line segment. Many geometric problems take a polygon as input.

When an input polygon is imprecise, it is not clear how to model the imprecision.
A natural thing to do is to describe it as a sequence of imprecise points, where each
point is again modelled by a region of possible locations. More precisely, the input is
now a sequenceR = 〈R0, R1, R2, . . . , Rn−1〉 where indices wrap around, so Rn = R0
etc. We are looking for a sequence of points P = 〈p0, p1, . . . , pn−1〉 with pi ∈ Ri, and
we also regard P as a polygon.

However, before even considering computing complicated things on such an im-
precise polygon, there are some other things to keep in mind. Polygons have can
certain properties. For example, every polygon has a length: the sum of the lengths
of its line segments. Also, we call a polygon simple when it has no self-intersections.
Simple polygons are an important class of polygons, and arise naturally when using
polygons to describe the boundaries of regions. And then, simple polygons also have
an area. These properties are easily tested or computed for precise polygons, and this
is something we can easily take for granted. However, when the polygon is imprecise,
it suddenly becomes challenging to compute the values of these, now also imprecise,
properties and measures.

In this chapter, we look at the problem of computing the length, or perimeter, of an
imprecise polygon; in the next chapter we will study the issue of simpleness. Of course,
the perimeter of a polygon is a numerical value, so we will follow the paradigm of



150 CHAPTER 11. BOUNDS ON THE PERIMETER OF A POLYGON

(a) (b)

Figure 11.1 (a) The longest perimeter solution. (b) The longest perimeter may have
local optima.

Part II and compute upper and lower bounds to this value. We consider only squares
as imprecision regions. As discussed in Chapter 4, disks cause algebraic problems
when maximising the area of the convex hull of a set of imprecise points, and the
same is true for the perimeter of the convex hull [89], even when the order in which
the points appear on the optimal hull is already known. This implies that the same
issues also prevent us from providing exact algorithms for the perimeter of a polygon
when the regions are disks. We show that in the case of square regions, both the upper
bound and the lower bound can be computed in linear time.

11.1 Longest Polygon

We first consider computing upper bounds. For this problem, this is conceptually
much easier than computing lower bounds, though in both cases we can obtain a
linear-time algorithm. The problem we discuss in this section is the following:

Problem 11.1 Given a set of axis-aligned squares and a cyclic order on them, choose a point
in each square such that the perimeter of the polygon determined by those points in the given
order is as large as possible.

Figure 11.1(a) shows a typical solution. Note that in this problem, the solution space
may contain local optima: solutions that cannot be improved by changing the position
of a single vertex, and yet are not optimal. The example in Figure 11.1(b) cannot be
improved by moving only one point. However, it is clear that “flipping” the two
points at the bottom increases the perimeter. To solve the problem, we first show that
all of the points have to be chosen at a corner of a square.

Similarly to previous chapters, such as Chapter 4 about the convex hull and Chapter 6
about the diameter, we can again make an observation about the placement of the
points in an optimal solution.

Observation 11.1 There is an optimal solution to Problem 11.1 such that all points are
chosen at one of the corners of their square.
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Proof Suppose we have a point set P such that one of the points, say p, is not at a
corner. Now consider its neighbours q and r. When we move p, the lengths of pq
and pr are the only ones that change. If p is not at a corner, there are always two
opposite directions in which it can move, i.e., it can move over a line segment in both
directions. The lengths of pq and pr are hyperbolic functions of the position of p on
this segment, and have a single minimum, so they are convex. Clearly their sum is
convex too, so there is at least one direction for p to move in such that the sum of the
two lengths does not decrease. �

The problem can now be solved easily in linear time using dynamic programming.
The optimal solution up to a certain square depends only on the optimal solution up
to the previous square and the length of the new edge.

We start with a single point p0, which is one of the corners of one of the squares,
chosen to be the first square. Let Di be the set of the four corners of square Ri. For
any i and d ∈ Di, we define ci,d as the optimal (longest) chain from p0 to d. Now we
have the following recursive relation for i > 1:

ci,d = max
d′∈Di−1

(ci−1,d′ + |d′d|)

At the end, we just need to connect the four corners of the last square to p0 again,
and take the maximum. This can be computed in linear time. We need to do this
computation four times, once for each possible corner of the first square, which still
gives a linear-time algorithm.

Theorem 11.1 Given an ordered set of n arbitrarily sized, axis-aligned squares, the problem
of choosing a point in each square such that the perimeter of the resulting polygon is as long
as possible can be solved in O(n) time.

11.2 Shortest Polygon

Now, we study the problem of computing the lower bound.

Problem 11.2 Given a set of axis-aligned squares and a cyclic order on them, choose a point
in each square such that the perimeter of the polygon determined by those points in the given
order is as small as possible.

The optimal solution to the input in Figure 11.2(a) is shown in Figure 11.2(b). As this
figure shows, the shortest polygon can touch the squares on just a corner, at a point
on an edge, or go straight through the interior. To solve the problem, we will use
the fact that we can treat and compute the horizontal and vertical components of the
optimal solution separately, giving two partial solutions that can then be combined
into the final optimal solution.
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Figure 11.2 (a) An imprecise polygon with 10 vertices. (b) The optimal solution.

11.2.1 1-Dimensional Case

For a sequence of squaresR, letRH be its horizontal projection. That is, the squares
(imprecise 2-dimensional points) of R become intervals (imprecise 1-dimensional
points) inRH , and the order of the imprecise points remains the same. In the same
way, letRV be the vertical projection ofR. Now we consider the same problem in a
lower dimension.

Problem 11.3 Given a set of intervals I and a cyclic order on them, choose a point on each
interval such that the “perimeter of the polygon” determined by those points in the given
order is as small as possible.

The polygon in this case is degenerate, but its perimeter is just the sum of the distances
between each pair of consecutive points. If all intervals have a common intersection
(which can easily be checked in linear time), the optimal solution is to place all point
at the same spot somewhere in this intersection. Otherwise, the problem can easily be
solved in a greedy manner in O(n) time. Let p be the leftmost point among all right
endpoints of the intervals in I . There must be an optimal solution that contains p,
since it never makes sense to go farther to the right, and we do need to visit some
point of p’s interval. Now start at p, and go to the closest point of each succeeding
interval, according to the given cyclic order. We observe that this procedure results
in the optimal solution, and that any other solution can be greedily improved to get
to the optimal solution (any point that has two neighbours on one side that can still
move in that direction might as well do so).

Observation 11.2 Problem 11.3 has only one locally optimal solution (perimeter value),
when disregarding the positions of the vertices. This solution is also the global optimum.

If we do regard the positions of the vertices, the optimal solution to Problem 11.3 is
generally not unique. It consists of two kinds of vertices: those where the polygon
changes direction, and those where it does not. The location of the vertices of the first
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Figure 11.3 The horizontal and vertical projections of the imprecise polygon in
Figure 11.2(a) (the intervals are drawn at different y-coordinates/x-coordinates for
better visibility, but are in reality all on one horizontal/vertical line). The black
vertices are fixed, the white vertices are free.

kind is the same in any optimal solution: they will be at one end of their interval, and
moving them would increase the perimeter of the polygon. We call those vertices
fixed. The vertices of the second kind can be moved around a bit locally without
changing the perimeter of the polygon. We call them free. However, the x-order of
any sequence of consecutive free vertices is fixed in any optimal solution, since the
polygon does not change direction at them. This implies that two given free vertices
p and q between two consecutive fixed vertices have the same left/right relation in
any optimal solution.

11.2.2 Transformation

We observe the following useful relation between this problem and the original one.

Lemma 11.1 Let P∗ be the optimal solution to Problem 11.2 for a sequence R. Then the
horizontal projection P∗H of P∗ is an optimal solution to Problem 11.3 for the horizontal
projectionRH ofR.

Proof Suppose projection P∗H is not an optimal solution of the reduced problem. By
Observation 11.2, the reduced problem does not have any local optima apart from the
global optimum, so there must be a point qH on P∗H , such that moving qH to one side
would improve the solution. This means that both its neighbours pH and rH must
lie to the same side of qH , while the interval over which qH can move extends to that
side. But this means that in P∗, the point q can also move in that direction, such that
its distance to both p and r decreases, thus P∗ would not be optimal. �

Clearly, the lemma also applies to the symmetrical case for P∗V andRV . Figure 11.3
shows the projections RH and RV of the example in Figure 11.2(a), and the partial
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Figure 11.4 We know for each region from which direction the polygon enters, and
in which direction it leaves again.

solutions we can compute for those problems.

Now, to solve Problem 11.2, we first compute the horizontal and vertical projections of
R and their optimal solutions P∗H and P∗V . Now we lift the coordinates of the vertices
of P∗H and P∗V back into R2. Let p be a vertex of P∗. If pH is fixed in P∗H , then p must
lie on a vertical line segment with that x-coordinate. If pV is fixed in P∗V , it must lie on
a horizontal line segment. If both are fixed, the location of p is already known.

Furthermore, for consecutive vertices p and q in P∗, the projections pH and qH tell us
whether p should lie to the left or to the right of q, and the projections pV and qV tell
us whether p is above or below q. This transforms our sequenceR of squares into a
new sequence of squares, line segments and points, where we know the horizontal
and vertical direction that P∗ will make between consecutive regions. In particular,
we know that each region is one of the following:

• A single point where the horizontal and vertical directions both change.
• A horizontal edge where the vertical direction changes, but not the horizontal.
• A vertical edge where the horizontal direction changes, but not the vertical.
• A square where the horizontal and vertical directions both do not change.

The transformed sequence for the example is shown in Figure 11.4.

11.3 Solving the Transformed Problem

Now letR = 〈R0, R1, . . . , Rn−1〉 be the circular sequence of regions that the polygon
must go through. Let pi denote the point in Ri visited by the polygon, and assume
the numbering of the regions is done in such a way that p0 lies on a given vertical
line, say x = 0 (so the transformed region is either a vertical line segment or a point).
Assume further that after R0, the optimal solution moves to the right and down; the
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Figure 11.5 A sequence of regions with an xy-monotone optimal solution.

other cases are symmetric. We will transform our sequence of regions into another
one, which is no longer circular, and for which the optimal solution is both x- and
y-monotone, until it reaches a region Rn that is a translated copy of R0.

To achieve this, note that whenever the polygon reaches a region Ri that is a horizontal
line segment, the y-coordinate yi of pi is fixed and the polygon changes its vertical
direction here. Now if we take the regions {R j | j > i} and mirror them in the line
y = yi, the perimeter of the optimal solution does not change. In the same way, if
Ri is a vertical line segment we can mirror in the line x = xi, and if it is a point we
can mirror in both lines. If we do this for all regions Ri, the optimal solution is an
xy-monotone path. Since the number of horizontal and vertical changes in direction
of P∗ is even, Rn will have the same orientation as R0 in the end. Figure 11.5 shows
the result of this procedure for the regions in Figure 11.4.

We are now looking for the shortest xy-monotone path that passes through a sequence
of segments and squares in order, with the restriction that the points p0 and pn should
be on the same place on R0 and Rn.

We can simplify the regions a bit more, since we know that the path will be xy-
monotone. If we have two regions Ri and R j with i < j, then any part of Ri that
extends farther to the right or bottom than R j can never be used, so we can cut off
those parts. This can be done incrementally in linear time, by starting at Rn and
keeping track of the rightmost and lowest x- and y-coordinates reachable so far.
Symmetrically, we cut off any parts of R j that extend farther to the left or top than Ri.
An example of the result can be seen in Figure 11.6.

Now, for each (clipped) region Ri, define the points bi and ti as the bottom left and
top right corners of Ri. These points for all i form two polygonal lines T and B, and
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Figure 11.6 The regions clipped to their feasible parts. Regions 8 and 9 coincide.

Figure 11.7 The regions that the polygon must pass through form a “cylindrical”
tunnel, where the openings at the beginning and the end are identified. The shortest
path through the tunnel is shown in bold.

because of the previous clipping, they are both xy-monotone. Furthermore, they form
a tunnel such that any other xy-monotone polygonal path that goes through this
tunnel corresponds exactly to a solution to our problem. Figure 11.7 shows the final
tunnel and the shortest path through it for the example.

To find the shortest path through the tunnel, the only tricky part is that p0 and pn
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Figure 11.8 (a) A tunnel. (b) The funnel induced by the shortest paths between the
top points and bottom points of the boundary intervals. (c) By taking two copies of
the funnel, we can compute the shortest path.

have to be chosen at the same place on their intervals. If R0 is a single point, the
problem is just a shortest path inside a simple polygon, which can be solved in linear
time [80]. Otherwise, we have to do something more.

Compute the shortest path inside the corridor from t0 to tn, and from b0 to bn. These
two paths form the walls of a narrower corridor through which the optimal solution
will go. If the floor and ceiling of this narrower corridor touch anywhere, then we
can use that point as a starting point and repeat the whole procedure. If they do
not, then they form a funnel with a convex ceiling and a concave floor, as shown in
Figures 11.8(a) and 11.8(b).

The optimal solution is now either a straight line with the same slope as t0tn (possibly
there are many such lines, in which case there are many equivalent optimal solutions),
or it touches both the ceiling and the floor of the funnel. We can easily test whether
the first case is possible in linear time. In the second case, we observe that since
the regions R0 and Rn are identified, we can glue two copies of the funnel together
and the optimal solution has to move through the connection in a straight line, as in
Figure 11.8(c). If we would know a point where the solution touches the floor, we
could simply compute the shortest path between this point and the copy of this point
in the copy of the funnel. Now note that if we take the lowest line parallel to t0tn that
touches the floor, the point where it touches must be on the shortest path. We can find
this point in linear time, and then compute the shortest path, also in linear time.

Theorem 11.2 Given an ordered set of n arbitrarily sized, axis-aligned squares, the problem
of choosing a point in each square such that the perimeter of the resulting polygon is as short
as possible can be solved in O(n) time.
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11.4 Closing Remarks

In this chapter, we studied the problem of computing the upper and lower bounds on
the perimeter of a polygonal chain or a polygon, when the vertices of the polygon
are imprecise points modelled as squares. We presented linear-time algorithms for
both cases. The algorithms heavily make use of the fact that the regions are squares.
For general polygonal regions, an algorithm that runs in O(n2 log n) time is already
available, although it requires a fixed starting point to be known [37].

The results of this chapter also appeared in [84], together with the results in Chapter 12.



Chapter Twelve

Simpleness of a Polygon

In this chapter, we study the implications of imprecision on the concept of simpleness1

of polygons. Often, a polygon is known from the context to be simple (that is, to have
no self-intersections or holes), for example when the polygon describes the boundary
of a country, or any boundary of a piece of some flat surface. Then, when the points
of the polygon are imprecise, the first thing to do would be to find a placement of the
points such that the resulting polygon is indeed simple. Or, when there is no such
meta-information available, we might want to know whether the given polygon is, or
is not, simple. Since the input is imprecise, there are three possible answers to this
question: yes, no, or maybe.

From now on, we consider a slight generalisation of polygons. We define a tour of a
sequence of points to be any closed curve that passes through the points in the correct
order.

More formally, we study the following problem. We are given a sequence R of n
(possibly overlapping) connected regions in the plane. We are looking for a tour
(closed curve) that visits all regions ofR in the correct order; that is, we want to pick
one point from each region such that the tour goes through those points in the correct
order.

We call such a tour straight if the connections between consecutive points are straight
line segments. In this case it is a polygon with one vertex in each region, and no
other vertices; this corresponds to the model of the previous chapter. We also call
the sequenceR an imprecise tour, or when it is not cyclic an imprecise path. When the
goal is to compute a straight tour or path, we will also call them imprecise polygon or
imprecise chain.

1We use the term simpleness, not simplicity, since the meaning of the word as used in computational
geometry is quite specific and only loosely related to the standard English word.
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Figure 12.1 (a) Five regions and an order on them. (b) A tour visiting the regions
in order. (c) A simple tour visiting the regions in order. (d) A straight tour visiting
the regions in order. (e) The shortest tour visiting the regions in order. (f) The
shortest simple tour visiting the regions in order (the tour is drawn loosely around
the corners for better visibility).

We show in this chapter that deciding whether an imprecise tour admits a straight
instance (that is, a polygon), without self-intersections, is NP-hard. Furthermore, the
proof extends to several other situations concerning tours, which are also proven to
be NP-hard.

12.1 Simpleness and Degenerate Simpleness

We call a tour simple if it does not cross itself. We are interested in the existence of a
simple straight tour. Figure 12.1 shows an example of an ordered set of regions and
some tours through them.

As mentioned, we prove here that determining whether a simple straight tour exists
is NP-hard. When we do not force straightness, though, a simple tour always exists.
In this case is becomes interesting to look for the shortest simple tour. For non-simple
tours, it is easy to see that the shortest one is always straight. On the other hand, if
we want to find a simple tour, the shortest one is not always straight. We also prove
that finding the shortest simple tour is NP-hard; this answers an open question posed
by Polishchuk and Mitchell [109].

There are some subtleties involved with simpleness, though. We mentioned that a
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Figure 12.2 A degenerate simple polygon can touch itself in vertices or along edges,
but has no crossings. The numbers give the order of the vertices.

simple curve is a curve that does not self-intersect. However, if we insist on simpleness
when minimising the length of a tour, the optimum might not exist. For example, in
Figure 12.1(f), we can keep making the tour shorter by moving the vertex in region 5
arbitrarily close to the vertex in region 2.

Instead, we will look for degenerate simple tours. A degenerate simple curve is a curve
that is allowed to touch itself, but not to cross itself. Formally, a curve is degenerately
simple if for any ε > 0 we can move each point of the curve over some distance
at most ε such that the curve becomes simple. Figure 12.2 shows an example of a
degenerate simple polygon.

The shortest degenerate simple tour is always defined, and is always a polygonal
tour. Furthermore, if the input regions are in general position (e.g., they are polygons
and no three defining vertices are on a line), then the shortest degenerate simple
tour is in fact the limit of the shortest simple tour. To make the shortest simple tour
well-defined, and for ease of description, we will use only degenerate simpleness in
the remainder.

12.2 Simple Straight Tours through Vertical Line Seg-
ments

We will study the following problem in this section:

Problem 12.1 Given a set of parallel line segments and a cyclic order on them, choose a
point on each segment such that the polygon determined by those points in the given order is
simple.

We will show that deciding whether this is possible is NP-hard. We prove NP-
hardness by reduction from planar 3-SAT [82]. A planar 3-SAT instance is a planar
graph, consisting of variable vertices, clause vertices, and edges connecting variables
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Figure 12.3 (a) An instance of planar 3-SAT. The circles represent variables, the
rectangles represent clauses. (b) The variables and edges have been replaced by
variable tentacle trees. (c) In order to make a single tour around the construction, we
need to cut some of the variable tentacles. The construction will be done in such a
way that the truth assignment on one side of the cut will be transferred to the other
side.

to the clauses they appear in, see Figure 12.3(a). We will represent these vertices and
edges by imprecise polygonal chains, that are finally connected into an imprecise
polygon. Then, a simple polygon can be realised if and only if the 3-SAT instance is
satisfiable.

Before going into the construction, we will give a short overview of the overall
transformation. Instead of building variable vertices, clause vertices, and edges, we
build only two things: variable chains and clauses. For this, replace each variable
and all its outgoing edges by a tree-like structure, with tentacles to all clauses that
use the variable, as in Figure 12.3(b). We will build these variable chains by having
two imprecise polygonal chains alongside each tentacle. Then we connect those
chains together as they meet at the clauses. However, in this way we will create many
smaller imprecise polygons rather than one big one. Therefore, we need the imprecise
polygon to bridge over some of the variable chains, as shown in Figure 12.3(c).

12.2.1 Variables

We represent variables by scissor gadgets. A scissor gadget is a construction of two
imprecise points and two precise (or degenerate imprecise) points that should be
visited in a given order. This will later become part of the input of Problem 12.1. We
introduce a very small constant δ, and place the points as follows:

1. A precise point at (−1, 1).
2. An imprecise point as a segment from (1− δ,−1 + δ) to (1− δ, 1− δ).
3. An imprecise point as a segment from (−1 + δ,−1 + δ) to (−1 + δ, 1− δ).
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Figure 12.4 (a) The input for a scissor gadget. (b) One of the solutions, representing
the state true. (c) The other solution, representing the state false. (d) Schematic
representation.

4. A precise point at (1, 1).

Figure 12.4(a) shows this construction. The black points are the precise points, the
line segments are the imprecise points, and the dashed curves depict the order in
which the tour should visit these regions. There are two possible ways to make a
simple straight tour through this gadget, which represent the two different values of
a variable.

One solution is to use the top of the first imprecise point (point 2), and then the bottom
of the second imprecise point (point 3). In this case, the last two segments of the tour
will coincide but there is no crossing. This situation is shown in Figure 12.4(b), and
will represent the value true of a variable of the 3-SAT instance. The symmetric
situation is also possible, see Figure 12.4(c); this will represent the value false of the
variable. If we choose any other points in the imprecise points, the tour will cross, so
these are the only two possible solutions.

In the remainder of the proof we use a schematic drawing for this configuration of four
imprecise points, see Figure 12.4(d). The two diagonal legs in this drawing are places
where some part of the tour could be, depending on the value of the variable, and
the horizontal base is a place where some part of the tour always is (approximately,
depending on δ). The ends of the base are the precise points in this small imprecise
chain, and they will need to be connected to the other imprecise chains later to form a
valid imprecise polygon.

It is possible to scale, translate and rotate the scissor gadget by 180◦ without changing
the fact that it has exactly two solutions. If we place two copies in such a way that
the positively sloped leg of the first intersects the negatively sloped leg of the second,
and the negatively sloped leg of the first intersects the positive leg of the second, the
scissor gadgets become linked: if one is in the true state, then so is the other, and
vice versa. Figure 12.5 shows an example. We need to take care that the intersections
between the legs of the scissor gadgets are more than δ away from the endpoints of
the legs. Also, the legs should not intersect the base of the other scissor gadget, since
then no solution is possible at all.
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(a) (b) (c)

Figure 12.5 (a) Two scissor gadgets linked together. (b) The real situation corres-
ponding to the linked scissor gadgets. (c) One possible solution.

(a) (b)

Figure 12.6 (a) Scissor gadgets can be chained together horizontally or diagonally.
(b) A junction to split the chain of scissor gadgets.

We can now make a chain of scissor gadgets that all represent the same variable by
linking them, as shown in Figure 12.6(a). There are only two possible states to this
chain; either all of the scissor gadgets use their positively sloped leg or they all use
their negatively sloped leg.

We can also split this chain into more chains with a junction as shown in Figure 12.6(b).
In this configuration, the two big scissor gadgets are linked together. Since the two big
ones either both use their positively sloped legs or both use their negatively sloped
legs, we can then link a small scissor gadget to the group by letting its positively
sloped leg intersect the negatively sloped leg of one of the two big ones, and letting
its negatively sloped leg intersect the positively sloped leg of the other big one. This
way, we can link four chains to the junction. We can also make sloped chains, see
Figure 12.6(a). This way we can branch off a variable chain as often as needed for the
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(a) (b) (c) (d)

Figure 12.7 (a) The input for a clause. (b) One of the solutions. (c) Another solution.
(d) The third solution.

3-SAT construction, and position the chains in the planar drawing of the instance as
in Figure 12.3(b).

12.2.2 Clauses

We represent the clauses of the 3-SAT formula by clause gadgets. A clause gadget
consists of one imprecise point and four precise points. For clauses, there are three
unconnected polygonal chains that visit the gadget. The main chain that visits the
gadget visits two of the precise points and the imprecise one, as follows:

1. A precise point at (3, 3).
2. An imprecise point as a segment from (0, 3) to (0,−3).
3. A precise point at (3,−3).

The other two chains visit only one precise point, one at (1, 1) and the other at (1,−1).
Figure 12.7(a) shows this situation, where the three chains are represented by dashed
curves. The three possible solutions for this situation can be seen in Figures 12.7(b),
12.7(c) and 12.7(d), where the imprecise point is chosen at (0, 3), (0, 0) or (0,−3)
respectively. These are the only possible solutions. For the clause gadget we will also
use a schematic representation, see Figure 12.8(b).

The idea is that in order to find a global solution, at least one of the three solutions
to the clause must be possible. To achieve this, we will connect the three variables
that appear in the clause to the three possible solutions, making sure that if a variable
is in the wrong state, the corresponding solution to the clause gadget is blocked.
For example, if we want to build the clause a ∨ b ∨ ¬c, we intersect the negatively
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(a) (b) (c)

Figure 12.8 (a) The clause attached to the three variables. (b) Schematic representa-
tion. (c) We can connect the gadgets by pieces of the tour that consist only of precise
points. The dashed curves show the connections.

sloped leg of a scissor gadget belonging to the chain of variable a with one of the
three solution paths of the clause, a negatively sloped leg of the chain of variable b
with another path, and finally a positively sloped leg of the chain of variable c with
the remaining path, see Figure 12.8(a). Now a straight tour through the clause gadget
is possible only if at least one of the variables is in the right state, which is exactly
the case when the logical clause is satisfied. Note that in this construction a negation
gadget is not needed.

12.2.3 Finishing the Construction

Now that we have structures for variables and clauses, we can build an instance
of planar 3-SAT by embedding the graph in the plane and making it wide enough
to fit all the structures such that they do not interfere. An example of a (part of a)
resulting structure can be seen in Figure 12.9(a). However, this does not complete our
construction yet.

The scissor and clause gadgets are defined as (sets of) imprecise polygonal chains, but
the input to Problem 12.1 is an imprecise polygon. We need to construct an imprecise
tour that visits all gadgets in any order, but in such a way that it does not interfere
with the gadgets. We will do this by creating precise pieces of the polygon that will
connect the imprecise pieces.

As long as the precise pieces of the tour do not intersect any of the schematic drawings
of the gadgets in the construction, any possible tour through the gadgets is guaranteed
to be still valid. We can easily do this by linking neighbouring gadgets together. To
be precise, we link the scissors on both sides of a chain to each other, and at each
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(a) (b)

Figure 12.9 (a) Part of a network of variables and clauses to represent planar 3-SAT.
(b) The network contains bridges to connect cycles.

clause we link the three incoming chains to the three tour parts of the clause gadget in
order, as depicted in Figure 12.8(c). However, this will result in a number of smaller
imprecise tours instead of one big imprecise tour, because the embedding of the 3-SAT
instance partitions the plane into a number of faces. For a valid input to Problem 12.1,
we need one tour to visit all gadgets, and therefore all faces. This means we need a
way for the imprecise tour to cross the scissor chains.

For this purpose, we introduce the bridge gadget. A bridge gadget is a construction
of two imprecise points and four precise points. It looks a lot like the scissor gadget,
with the difference that there are now two pieces of the chain that visit the gadget,
which both cross the gadget from above to below. We place the points on the two
imprecise chains as follows:

1. A precise point at (−1, 1).
2. An imprecise point as a segment from (1− δ,−1 + δ) to (1− δ, 1− δ).
3. A precise point at (−1,−1).

1. A precise point at (1, 1).
2. An imprecise point as a segment from (−1 + δ,−1 + δ) to (−1 + δ, 1− δ).
3. A precise point at (1,−1).

Figure 12.10(a) shows this construction. There are again two possible ways to make a
simple straight tour through this gadget, which represent the two different values of a
variable. Either the left chain uses the top of its imprecise point and the right uses the
bottom, see Figure 12.10(b), or the other way around, see Figure 12.10(c). These two
situations will again represent the values true and false of a variable. A schematic
representation is shown in Figure 12.10(d).
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(a) (b) (c) (d)

Figure 12.10 (a) The input for a bridge. (b) One of the solutions, representing the
state true. (c) The other solution, representing the state false. (d) Schematic
representation.

Figure 12.11 A bridge gadget embedded in a chain of scissor gadgets.

Bridge gadgets can also be linked to scissor gadgets. Since they do not have the
pointed legs that the scissor gadgets have, we need to build a construction of scissor
gadgets around them. As in the junction configuration, we use two bigger scissor
gadgets that are linked together, and then we link the bridge gadget to this pair of
scissor gadgets. This way they can be embedded in chains of scissor gadgets, and
they preserve the property that the whole chain uses either positively or negatively
sloped legs, see Figure 12.11. Now we have two imprecise polygonal chains that cross
the variable chain.

Now we can include bridges into the network such that all faces of the embedded
planar 3-SAT graph are connected by bridges, see Figure 12.9(b). All we need to do
now is connect imprecise chains to each other with a fixed part of the tour (a part
that contains only precise points), and we have a valid input for Problem 12.1. This
imprecise tour allows for a simple straight tour with one vertex in each region, if and
only if the 3-SAT instance can be satisfied.

We still need to set the value of δ appropriately. It should be small enough to make
sure that all intersections of the scissor and bridge gadgets with each other and with
the clause gadgets are guaranteed to be hit by the actual tours. However, this is just
a local property, so the value of δ does not depend on n. The number of imprecise
points in the construction is clearly polynomial in the length of the 3-SAT instance,
which completes the proof.
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Theorem 12.1 Given an ordered set of n vertical line segments, the problem of deciding
whether it is possible to choose a point on each segment such that the resulting polygon is
simple is NP-hard.

It is easy to adapt the gadgets slightly to also allow non-degenerate polygons, without
damaging the proof. For the scissor gadgets, just make the vertical line segments
slightly longer; for the clauses, move the two central precise points slightly towards
the imprecise point. The amount they need to move should be small enough to avoid
alternate solutions to the gadgets, but again this is only a local property so the value
does not depend on n.

12.3 Simple Straight Tours through General Regions

In this section, we will generalise the NP-hardness proof to more general regions. The
problem becomes:

Problem 12.2 Given a set of scaled copies (homothets) of a given region and a cyclic order
on them, choose a point in each region such that the polygon determined by those points in the
given order is simple.

We begin by noting that the proof of the previous section can easily be extended to
sets of squares instead of vertical line segments. All segments in the construction are
visited by a tour that enters and leaves the segment from the same side (left or right).
If we extend the regions to the other side, this does not allow any alternative tours, so
we can just replace the segments by squares that have the segments as one of their
sides.

However, to extend the proof to arbitrary regions, we need to do some more work.
We will first adapt the proof by using vertical axis-aligned rectangles of aspect ratio at
most ε : 1 instead of vertical line segments, for suitably chosen ε. Then we will show
that for any connected subregions of such rectangles, as long as the bounding box of
those subregions coincides with the rectangles, the proof still holds. Finally, we show
that we can scale the construction to make the proof hold for any set of connected
regions in the plane.

12.3.1 Narrow Rectangles

The reduction from planar 3-SAT remains conceptually the same. In the three basic
gadgets we replace line segments by narrow rectangles, see Figure 12.12. However,
other than in the above description of the extension to squares, we now extend the
segments towards the side where the tour is visiting them, to allow for subregions later.
More precisely, the left region in the scissor gadget is the rectangle (−1 + δ,−1 + δ+
ε)× (−1 + δ, 1− δ) and the right region is the mirrored version. The regions in the
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(a) (b) (c)

Figure 12.12 Replacing the line segments by narrow rectangles does not affect the
gadgets. (a) An adapted scissor gadget. (b) An adapted clause gadget. (c) An
adapted bridge gadget.

bridge gadget have the same coordinates as in the scissor gadget. Finally, the region
in the clause gadget is the region (0,ε)× (−3, 3).

These rectangles allow for more solutions of the tours, by moving the points in the
imprecise regions around. Clearly, the amount of freedom depends on ε. We have to
make sure that the intersections between different gadgets in the construction are still
guaranteed to lie on the tours. However, this is again a local property, so the value of
ε does not depend on n.

This proves that, for some ε, the problem is still NP-hard for rectangles of aspect ratio
ε : 1. Of course, even more narrow rectangles cause no problems, so a set of rectangles
with varying aspect ratios bounded by ε : 1 is also allowed.

12.3.2 General Regions

Now suppose the regions are connected regions in the plane, with bounding boxes
with aspect ratio at mostε : 1. We will place the bounding boxes just like the rectangles
in the previous case. Since the regions are smaller, clearly there are still no unwanted
solutions. However, we need to argue that the two or three solutions that are needed
in the construction are still possible. But this is no problem: since the regions have the
rectangles as bounding box, and are connected, there is at least one point inside each
region at every height (y-coordinate). So for each solution of a gadget in Section 12.2,
we can get a solution in the present situation by moving the point to another point at
the same height. Since we only extended the regions towards the tours, this will still
give a solution.
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(a) (b) (c) (d)

Figure 12.13 (a) A general region. (b) The region in its bounding box. (c, d) The
region scaled to a narrow rectangle.

If we model the points as scaled copies of any connected shape, for example as circles
or regular k-gons, the proof can also be used after we scale the whole construction.
Let r be the ratio between the width and height of any bounding box of a region. Now
scale the plane in the x-direction with a factor εr , and the input has become a set of
regions with aspect ratio ε : 1. Note that the existence of a simple tour is not affected
by this scaling operation. The regions themselves now have narrow rectangles as
bounding boxes, see Figure 12.13.

Theorem 12.2 Given an ordered set of n scaled copies of any connected region, the problem
of deciding whether it is possible to choose a point in each region such that the resulting
polygon is simple is NP-hard.

12.4 Shortest Simple Tours through Line Segments

If we drop the requirement that the edges between two consecutive points need to be
straight line segments, a simple tour always exists. Take any disjoint point set from
the regions, and just draw a curve to each consecutive point through the free space:
this is always possible since the complement of the curve remains connected. In this
context, it is interesting to consider shortest tours. We study the following problem:

Problem 12.3 Given a set of axis-parallel line segments and a cyclic order on them, choose
a point on each segment such that the length of the shortest simple tour passing through those
points in the given order is minimised.

As discussed in Section 12.1, we allow degenerate simple tours as well, so the min-
imum length tour is well-defined. We show here that finding this minimum tour
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(a) (b) (c)

Figure 12.14 (a) Input for the adapted scissor gadget. (b) One of the two locally
shortest solutions (the tour is drawn loosely around the corners for better visibility).
This solution represents the value true of a variable. (c) The other locally shortest
solution is symmetric to the first, and represents the value false.

is NP-hard, again by reduction from planar 3-SAT. The construction now requires
horizontal line segments as well as vertical ones, which means we can no longer
use the scaling argument of Section 12.3 to generalise the proof to work on input
regions with any shape. However, we can still generalise it to axis-parallel squares or
rectangles.

In this case, we need to make slightly more complicated gadgets. In the original
scissor gadget, we implicitly used the fact that all connections need to be straight line
segments, in order to ensure that the tour goes down to the bottom end of one of the
two vertical line segments. When the connections do not need to be straight, we need
to explicitly ensure that the tour goes down, so we add a horizontal segment. On the
other hand, we no longer need the parameter δ (we can set it to zero). The scissor
gadget now contains the following sequence of regions:

1. A precise point at (−1, 1).
2. An imprecise point as a segment from (1,−1) to (1, 1).
3. An imprecise point as a segment from (−1,−1) to (1,−1).
4. An imprecise point as a segment from (−1,−1) to (−1, 1).
5. A precise point at (1, 1).

Figure 12.14 shows this situation and two locally shortest solutions. The first solution
uses the sequence of points (−1, 1), (1, 1), (−1,−1), (−1,−1), (1, 1). The length of
this tour is 1 + 2

√
2. The symmetric solution has the same length, and both are locally

optimal. It is not hard to see that any other solution is longer.

We also need to adapt the clause gadget. We now do not require the solutions to
be straight, so there are always three locally optimal solutions: the tour can touch
the segment above both of the two central precise points, between them, or below
both of them. However, we need to ensure that all three solutions have exactly
the same length. We can do this by moving the two central precise points. If we
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(a) (b) (c) (d)

Figure 12.15 Adapted clause.

place them at (1.8, 0.6) and (1.8,−0.6), and keep the rest of the construction as in
Section 12.2.2, then all three solutions will have the same length, namely 2.4

√
5 +

1.2
√

10. Figure 12.15 shows the adapted gadget. The three solutions all touch the
imprecise point in a different point, and we can connect the variables to the clause as
before.

The bridge gadget does not need to be adapted, although also here we can set δ = 0.
Both solutions have a total length inside the gadget of 2 + 2

√
2, and any other solution

is longer.

With these adapted gadgets, we can build the same construction as before. Let ` be
the length of the fixed part of the tour, plus 1 + 2

√
2 for each scissor gadget in the

construction, 2.4
√

5 + 1.2
√

10 for each clause gadget, and 2 + 2
√

2 for each bridge
gadget. Now a tour of length ` exists if and only if the 3-SAT instance is satisfiable.

As in Section 12.3, we can easily extend the proof to square regions by noting that
in all gadgets the given segments might as well be sides of squares (or rectangles),
without allowing any shorter solutions.

Theorem 12.3 Given an ordered set of n axis-parallel line segments or squares, the problem
of finding a minimum length simple tour that visits all segments or squares in order is
NP-hard.

12.5 Closing Remarks

In this chapter, we studied the properties of tours through a sequence of regions, with
the idea that the regions represent imprecise points. We proved that it is NP-hard to
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decide whether it is possible to find such a tour that is both simple and straight. We
also proved that it is NP-hard to find the shortest simple non-straight tour, resolving
an open problem from [109].

The results given in this chapter also appeared in [84], together with the results from
Chapter 11. The hardness results are all variations on the same construction. One
remaining open problem in this style, which is slightly outside the scope of this thesis,
is whether a shortest simple tour visiting a set of points, instead of regions, can be
found efficiently. Regarding imprecise points, the question of ensuring simpleness of
all instances of an imprecise object, or more generally, any property of such an object,
is still open for many other types of objects, such as spanning trees, triangulations, or
other geometric graphs.



Chapter

Conclusions

The field of computational geometry is concerned with the design and analysis
of geometric algorithms. For such algorithms, correctness and efficiency proofs
are constructed, or problems are proven to be hard when no correct and efficient
algorithms exist. In order to be able to do this, several assumptions about the input
data for geometric algorithms are made. One of them is that this data is correct, with
absolute certainty and infinite precision. In practical applications, this is often not the
case, and as a result the value of these theoretical guarantees may be questionable.

If we want to supply geometric algorithms with theoretical guarantees that are
actually observed in practice, we have to loosen our assumptions about the input data
to a more realistic level. Depending on the application, we may be confident that each
data point, for example, is not more than some value ε away from its given position.
We can then construct algorithms that are guaranteed to be correct and efficient as
long as the input satisfies this weaker assumption. Furthermore, we can analyse how
the imprecision in the input influences the accuracy of the output.

In Chapter 1 of this thesis, we reviewed the history of computational geometry, and
showed its intimate relation with the issue of data imprecision. In Chapter 2, we
have given a classification of the kinds of algorithmic problems that may arise in this
situation, as well as of the existing and new results that are now available. In the
rest of the thesis, several concrete solutions to three specific classes of problems were
discussed in detail.

Upper & Lower Bounds

In Part II of this thesis, we discussed geometric problems that have a single numeric
value as output. We studied these under the imprecision model where each point is
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represented by a single region, usually a square or a disk, that contains the point. The
output, in this case, becomes a set of possible values, and we presented algorithms to
compute the lowest and highest possible values it can attain. This then provides tight
bounds on the actual value of the output.

In Chapter 3, we considered several shape fitting measures on point sets. We studied
the problems of how to compute upper and lower bounds on the smallest axis-aligned
bounding box, the smallest enclosing circle, and the narrowest strip containing the set
of imprecise points. In most of these cases, we were able to present efficient algorithms,
with time bounds between O(n) and O(n2). However, we also proved that computing
the largest width of a set of imprecise points, modelled as line segments, is NP-hard.

In Chapter 4, we studied the problem of computing the largest or smallest convex
hull of a set of imprecise points, measuring the size of a convex hull by its area. We
gave an O(n2) time algorithm to compute the smallest area convex hull of a set of
squares, without additional restrictions. On the other hand, for computing the upper
bound we have an O(n7) time algorithm that works only for disjoint squares.

Since an O(n7) time result is not really useful in practice, in Chapter 5 we studied
approximation algorithms for this problem. We successfully employed the core-set
paradigm on sets of imprecise points to obtain (1 + ε)-approximation algorithms
for computationally hard problems. The dependence of the running time on the
input size is linear and does not multiply with the dependence on ε, which makes
the algorithms suitable for very large sets of imprecise points. On the other hand,
the dependence on ε is often highly polynomial or exponential, which limits the
achievable precision.

In Chapter 6, we considered the diameter of a set of points. We showed how to
compute the upper bound in O(n log n) time for either the square or the disk model,
using a relatively easy approach. Interestingly, the lower bound in the square model
can also be computed in O(n log n) time, although the algorithm is considerably more
involved. For the disk model, exact results are not feasible due to algebraic issues, but
we did provide an approximation scheme that runs in O(nc/

√
ε) time for any ε > 0

and a given constant c.

Future Work

The problems discussed in Part II provide only a sample from the available results
of this kind. The papers those chapters are based on contain several more measures,
imprecision models, variants, and results. Furthermore, new results have been
obtained both by the author of this thesis and by other researchers working on
imprecision concurrently.

Nonetheless, many problems are still open, and there are various directions of research
to be pursued. To name an example of a concrete problem, how efficiently can the
upper bound on the width of a set of imprecise points be computed? Or, what is
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the status of the problem of finding the largest convex hull when the squares are
allowed to intersect? Also, certain results, such as the O(n7) time algorithm for
disjoint squares, have not been proven to be optimal. Can these problems be solved
more efficiently?

Apart from these concrete theoretical problems, there are numerous other geometric
algorithms that provide a single number, and each of these could be studied in the
presence of imprecision. This most likely leads to several interesting problems that
are well worth studying.

Preprocessing for Triangulations

When a set of points is unknown, but constrained by a known region for each point,
it is interesting to preprocess the regions to speed up computations when the exact
locations of the points become known. In Part III of this thesis we studied problems
of this kind. On the one hand, this provides us with practical algorithms when input
data is imprecise but will be known with higher precision later, or when we want
to analyse the data by sampling many point sets from the regions. On the other
hand, these results also give new theoretical insight into the complexity of the well-
studied precise problems, by narrowing down the parts of the problems that cause
the intrinsic hardness of these problems.

In Chapter 7, we gave an algorithm to preprocess a set of disjoint regions in the
plane in O(n log n) time, so that a sample from their regions can be triangulated in
linear time. This time bound is optimal, and improves previous results by allowing
more general regions. As the main method of our solution, we use an algorithm for
splitting a triangulation in linear time. This is a very natural problem that we believe
is interesting in its own right, and which improves over an earlier O(n log∗ n) time
algorithm.

In Chapter 8, we presented a similar result, but now we preprocess the regions in
such a way that the Delaunay triangulation can be obtained in linear time, rather than
any triangulation. To obtain this result, we must put more strict restrictions on the
regions: they are required to be disjoint unit disks. In our solution, we collect enough
structure of the output Delaunay triangulation to obtain a connected subgraph. The
Delaunay triangulation can then be completed in linear time by Chazelle’s and Chin
and Wang’s algorithms; however, these algorithms are complicated and make the
result not useable in practice.

The results in Chapter 8 can also be extended to more general classes of regions than
disjoint unit disks, but the dependency of the parameters that describe such regions
is not optimal. In Chapter 9, we showed a different approach to reach the same
result, which does not rely on the complicated algorithms by Chazelle and Chin and
Wang and which allows for a better dependency on those parameters. However, the
drawback is that the algorithms used in this method are randomised.
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Future Work

The results in Part III show that for certain restricted types of regions in the plane,
enough structure can be computed to speed up the computation of either some
triangulation or the Delaunay triangulation. We also observed that such results are
not possible to obtain for just any sets of regions. An interesting question is how
much further the freedom in the regions can be stretched while still making such
results possible.

On the other hand, the question naturally extends to geometric structures other than
triangulations, such as spanning trees, planar tours, or geometric matchings, to name
just a few. Results for some of these problems follow from the results on triangulations,
but they have not been studied in depth. Also, higher-dimensional structures could
allow for similar preprocessing algorithms. An interesting open question is whether
some of the ideas in this thesis can be extended to higher dimensions.

Imprecise Lines and Polygons

In Part IV of this thesis we studied problems which take a set of lines or a composite
geometric structure as input in an imprecise context, in particular polygons. The first
question in this situation is how the imprecision in such objects can be modelled satis-
factorily. For use in applications, it is important to guarantee the internal consistency
of all possible instances of such an imprecise object. Once such a model is decided on,
we can again compute bounds on output values.

In Chapter 10, we studied two well-known problems on line sets: linear programming
and vertical extent. Both of these problems return a single value, and for both we have
given efficient algorithms for computing the lower and upper bounds on this value.
It seems that computing lower bounds on these problems is easier than computing
upper bounds: we provided O(n) respectively O(n log n) time algorithms that can
compute the lower bound on these problems, while the upper bounds in general take
O(n2) or O(n2 log n) time respectively. However, under certain additional constraints
on the input sets of lines, we show that these time bounds improve.

In Chapter 11, we considered the question of computing the longest and shortest
instances of an imprecise polygon. We provided linear-time algorithms for both cases,
when the imprecise points are modelled as squares. The algorithm for computing the
longest polygon is quite straightforward, while the algorithm for the shortest polygon
is more involved. It relies on the fact that the regions are squares by decomposing
part of the problem into two independent 1-dimensional problems. These values
together provide tight bounds on the interval of possible lengths of the imprecise
polygon.

In Chapter 12, we considered the question of guaranteeing the property of simpleness
of a polygon in the presence of imprecision. We proved that it is NP-hard to decide
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whether it is possible to find a tour through a set of regions in the plane that is both
simple and straight. As a side-result of our construction, we also proved that it is
NP-hard to find the shortest simple non-straight tour, resolving an open problem.

Future Work

The results in Chapter 10 are the first to work directly on imprecise lines. The
results look promising, and should motivate further research into other geometric
problems on lines. A concrete remaining open problem from this Chapter is whether
the smallest vertical extent for general bundles can be computed any faster than in
O(n2 log n) time.

The results in Chapter 11 hold only for square regions, and the algorithms heavily
make use of this. For general polygonal regions, an interesting open problem is
whether the currently best known bound of O(n2 log n) time can be improved. For
circular regions, no results are known at all.

A long-standing open problem that is slightly outside of the scope of this thesis, but
closely related to the results in Chapter 12, is the following. Given a sequence of
precise points in the plane, what is the shortest simple tour that visits them in the
given order?

Apart from these questions, the results in this part all apply to polygons. Similar
questions can also be asked for other geometric graphs, such as triangulations, planar
subdivisions, or higher-dimensional equivalents. There is a lot of room for further
results in these areas.

Final Remarks

Data imprecision in computational geometry is an important issue that has long been
ignored, but is now receiving an ever growing amount of attention. It is important
to achieve a better understanding of the implications of imprecision on existing
algorithms, before the application practitioner will adopt them and apply them to
real-world problems. At the same time, with the enormous drop in cost of data
storage and collection these days, the need for reliable and efficient algorithms is
greater than ever.

In this thesis, we presented new algorithms for classical geometric problems, that
explicitly take data imprecision into account. These algorithms cannot produce the
real answers to those problems, but instead produce information about the possible
values that the answers can have. In several cases, this can be done without adding
any extra cost to the asymptotic running times of the classical solutions. In some
cases, though, computing this information is significantly more costly than using
classical algorithms, and in some cases we prove that indeed no efficient algorithms
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exist. Still, the research is far from finished, and it will be a challenge for science to
build on this and other existing work.

However, care must also be taken. While the results that are available now apply to
problems that are fundamental in geometry, the potential number of these problems
is so large, that blindly embarking on a quest to solve them all would probably
be doomed to fail. Perhaps the greatest challenge in this field now is to find the
connection with actual practical applications, and to find out which types of results
are really most needed or appreciated by the users of our algorithms.



Chapter

Samenvatting

Dit proefschrift gaat over de effecten van data-imprecisie op problemen uit de computa-
tionele meetkunde. Computationele meetkunde is het vakgebied dat de correctheid van
meetkundige algoritmes bestudeert. Zulke meetkundige algoritmes worden overal
om ons heen gebruikt, en het is dus van belang dat ze correct werken. Een belangrijk
nadeel aan de bewijzen uit de computationele meetkunde is echter dat vaak wordt
aangenomen dat de invoer van de algoritmes correct is, met absolute zekerheid en
oneindige nauwkeurigheid. Dit is in de werkelijkheid nooit het geval, en als gevolg
hiervan kan de praktische waarde van deze bewijzen in twijfel worden getrokken.

In dit proefschrift presenteren we een aantal nieuwe meetkundige algoritmes, waarin
we niet meer aannamen dat de invoer oneindig precies is, maar wel tot op zekere
hoogte. Als gevolg hiervan is de uitvoer van deze algoritmes ook niet meer een
precies antwoord of meetkundig object, maar eerder een beschrijving van wat de
precieze uitvoer zou kunnen zijn.

Computationele Meetkunde

Meetkunde is één van de oudste wetenschappen die er bestaan. Het is de wetenschap
van ruimtelijke vormen en de relaties daartussen: van punten, lijnen, cirkels, en van
vlakken en bollen in hogere dimensies. De meetkunde die wij kennen is gebaseerd
op de grondslagen van de oude Grieken; in het bijzonder op de Elementen van
Euclides [44], die ongeveer 300 jaar voor Christus de toen bekende meetkunde heeft
verzameld en opgeschreven. Sindsdien is de meetkunde steeds verder ontwikkeld, en
in de afgelopen 2000 jaar zijn ontelbare interessante eigenschappen en relaties ontdekt
in deze intrigerende tak van de wiskunde.
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Maar meetkunde is waarschijnlijk al veel ouder dan dat, en is ontstaan om de we-
reld waarin we leven te kunnen meten, analyseren, en begrijpen. We leven in een
ruimtelijke wereld, en de wil en noodzaak om die te begrijpen is de belangrijkste
reden voor de voortdurende populariteit van de meetkunde. Maar, zoals het woord
al zegt, voordat we die wereld kunnen begrijpen, zullen we hem eerst moeten meten:
voorwerpen in de echte wereld die onze interesse hebben, moeten op de één of an-
dere manier worden vertaald naar een wiskundig model, naar punten en lijnen met
coördinaten in een Euclidische ruimte. Het probleem is dat dit meten van de wereld
niet precies mogelijk is; in de volgende paragraaf gaan we hier dieper op in.

Een algoritme is een recept om iets uit te rekenen, een stap-voor-stap beschrijving om
iets voor elkaar te krijgen, zonder dat je hoeft te begrijpen wat je doet. Een voorbeeld
is het vermenigvuldigen van twee grote getallen. Er zijn verschillende manieren om
dat te doen, maar de meeste bestaan uit het cijfer voor cijfer vermenigvuldigen, en de
resultaten op de goede manier opschrijven en optellen. Je hoeft alleen maar te weten
hoe je twee getallen van één cijfer moet vermenigvuldigen, en hoe je getallen moet
optellen, om het algoritme uit te kunnen voeren. Het woord “algoritme” komt van de
Perzische wiskundige Muhammad ibn Musa al-Khwārizmı̄, die rond het jaar 825 het
getalsysteem wat wij tegenwoordig gebruiken in het westen introduceerde [5].

Algoritmes bestaan al heel lang, en waren ook al bij de oude Grieken bekend. Ze zijn
echter pas echt populair geworden in de twintigste eeuw, toen de computer werd
uitgevonden. Computers hebben als voordeel dat ze veel sneller werken dan mensen,
en ze maken geen fouten. Aan de andere kant zijn het domme machines die niet
begrijpen wat ze doen. Maar ze zijn heel geschikt om algoritmes mee uit te voeren.
Een algoritme kan worden beschreven aan de hand van de invoer en uitvoer, een
gebruiker hoeft niet te weten hoe het werkt maar alleen de juiste invoer aan te leveren
en dan komt de juiste uitvoer eruit.

Omdat algoritmes steeds ingewikkelder worden en een gebruiker er op moet ver-
trouwen dat het doet wat het moet doen, gaan algoritmes vaak gepaard met een
wiskundig bewijs van correctheid. Bovendien heeft een algoritme een tijdscomplexiteit:
als een algoritme een grote hoeveelheid invoerdata krijgt, zeg n getallen, dan kan de
tijd die het algoritme er over doet om de uitvoer te berekenen worden uitgedrukt als
functie van n. We zijn hierbij vooral geı̈nteresseerd in het asymptotisch gedrag van
deze functie, dat wil zeggen, hoe efficiënt het algoritme is voor grote waardes van
n. Dit kan worden uitgedrukt met de zogenaamde grote O-notatie: bij een algoritme
met een tijdscomplexiteit van O(n) is de looptijd proportioneel met de invoergrootte,
terwijl bijvoorbeeld bij een algoritme met complexiteit O(n2) de looptijd proportioneel
is met het kwadraat van de invoergrootte.

Bewijzen van correctheid en tijdsanalyses worden bestudeerd in de tak van de infor-
matica die analyse van algoritmes heet. De laatste jaren zijn de kosten voor het vergaren
en opslaan van grote hoeveelheden data enorm gedaald. Om die data inzichtelijk te
maken zijn algoritmes nodig, en het liefst algoritmes die snel grote hoeveelheden data
kunnen verwerken. Als gevolg hiervan is de efficiëntie van algoritmes momenteel
belangrijker dan ooit te voren.



COMPUTATIONELE MEETKUNDE 183

(a) (b)

Figuur 16 (a) Een verzameling van tien punten in het vlak. (b) De convex hull van
de punten.

Een meetkundig algoritme is een algoritme om een meetkundig probleem mee op te
lossen. Vóór het tijdperk van de computers werden zulke algoritmes weinig gebruikt,
want ze zijn ingewikkeld om met de hand uit te voeren, en aan de andere kant zijn
mensen meestal heel goed in het “zien” van ruimtelijke eigenschappen. Maar sinds
we computers gebruiken voor simulaties, spellen, ontwerp, etc. zijn meetkundige
algoritmes nodig. Een klassiek voorbeeld van een meetkundig probleem is het
berekenen van de zogenaamde convex hull, van een verzameling punten in het vlak.
Dit is de kleinste convexe deelverzameling van het vlak die alle invoerpunten bevat.
Een voorbeeld van een verzameling van tien punten is te zien in Figuur 16(a). Voor
een mens is het makkelijk genoeg om te zien wat de convex hull van deze punten
is; het antwoord is te zien in Figuur 16(b). Als we echter geen tien maar een miljoen
punten hebben, dan hebben we een computer nodig om het probleem op te lossen.

Er bestaan vele toepassingsgebieden voor meetkundige algoritmes. In de meeste
gevallen is er een duidelijke connectie tussen de Euclidische ruimte waarin de meet-
kundige problemen geformuleerd zijn, en de werkelijkheid waarin wij leven. In CAD
(Computer Aided Design), bijvoorbeeld, worden echte voorwerpen ontworpen met
behulp van een computer. In Geografische Informatiesystemen worden analyses uit-
gevoerd op een twee-dimensionaal model van (een gedeelte van) het aardoppervlak.
In Computer Graphics wordt een artificiële 3-dimensionale wereld geprojecteerd
op een twee-dimensionaal scherm, zodat het er uitziet als een mens het zou zien.
In Moleculaire Biologie wordt de interactie tussen complexe moleculen bestudeerd
met behulp van een drie-dimensionaal model. In al deze gevallen zijn meetkundige
algoritmes nodig om de bewerkingen en analyses uit te kunnen voeren.

De eerste systematische analyse van de correctheid en tijdscomplexiteit van meetkun-
dige algoritmes is gedaan door Michael Ian Shamos in zijn proefschrift Computational
Geometry [120]. Door de meetkundige eigenschappen van deze problemen expliciet
te bestuderen, is het vaak mogelijk om betere en snellere algoritmes te ontwerpen
dan in de praktijk worden gebruikt. In de laatste dertig jaar zijn veel interessante
resultaten bereikt. Echter, om zulke wiskundige bewijzen mogelijk te maken, moeten
deze algoritmes wel aannemen dat de invoer correct is. Het feit dat dit in de praktijk
niet altijd het geval is, is één van de redenen waarom deze algoritmes in sommige
gevallen nog steeds niet zijn opgenomen in praktische toepassingen.
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(a) (b)

Figuur 17 (a) Een locatie wordt door een GPS-ontvanger berekend door de afstand
tot een aantal satellieten te meten. (b) In een LIDAR systeem schiet een vliegtuig
laserstralen naar beneden om de afstand tot de grond te meten.

Imprecisie

Meetkunde is belangrijk omdat het een wiskundig model van de wereld om ons heen
vormt. Om die wereld te analyseren, kunnen we metingen doen, en de resulterende
gegevens met een meetkundig algoritme behandelen. Van zulke algoritmes kan
wiskundig worden bewezen dat ze doen wat ze moeten doen. Toch wil dat niet
zeggen dat het resultaat van een algoritme correct is, en dat komt doordat bij het
meten van gegevens fouten worden gemaakt. Invoerdata wordt verzameld met
meetinstrumenten, maar zulke instrumenten zijn nooit volledig precies. De precisie
van meetinstrumenten neemt wel steeds meer toe, maar er zal altijd een fout blijven.
Een andere oorzaak van imprecisie is dat het simpelweg niet mogelijk is om bepaalde
continue data overal te meten, waardoor metingen geı̈nterpoleerd moeten worden.
Bovendien kan in sommige toepassingen bewust worden gekozen voor data met
minder hoge precisie, bijvoorbeeld door financiële overwegingen of met het oog op
privacy. Dit alles resulteert in wat we data-imprecisie noemen.

Om een voorbeeld te noemen, een zeer polulaire manier om de locatie van een punt
op aarde te bepalen is GPS (Global Positioning System). In dit systeem wordt een
positie berekend door de afstand van het punt tot een aantal satellieten die om de
aarde cirkelen te berekenen. Het punt kan dan worden gezien als het snijpunt van
een aantal sferen in de ruimte, gecentreerd om de satellieten. Figuur 17(a) illustreert
dit. Als de metingen echter niet precies zijn, resulteert dit niet in een enkel punt maar
een gebied van mogelijke locaties. Een ander voorbeeld is het meten van hoogtedata.
Zulke data wordt vaak verzameld door met een vliegtuig over een terrein te vliegen,
en met regelmatige tussenpozen een laserstraal naar beneden te sturen en te meten
hoe lang het duurt voor deze terugkomt. Deze techniek heet LIDAR (Light Detection
and Ranging ), en is geı̈llustreerd in Figuur 17(b). Ook hier geldt dat de meting niet
precies is, bijvoorbeeld doordat de hoogte van het vliegtuig niet precies bekend is, of
omdat voorwerpen op de grond de laserstraal verstoren.
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Figuur 18 (a) Een verzameling punten in het vlak. (b) Een iets verschoven variant
van de puntverzameling. (c) De convex hull van de verschoven punten. (d) Dezelfde
hull, terugvertaald naar de originele punten.

Als algoritmes die bewijsbaar correct zijn worden toegepast op imprecieze data, dan
kunnen de resultaten toch onverwacht zijn. Beschouw, als voorbeeld, de volgende
situatie. Stel dat we een verzameling punten in een vlak in de echte wereld hebben,
en we zijn geı̈nteresseerd in de convex hull van die punten. We gaan er vanuit dat
de punten namen hebben van A tot en met I, zoals de verzameling in Figuur 18(a).
Nu meten we de locaties van deze punten met een meetapparaat dat een kleine fout
maakt. Het resultaat is een andere puntverzameling, die wel lijkt op de werkelijke
verzameling maar net anders is, zie Figuur 18(b). Op deze gemeten verzameling laten
we nu een bewijsbaar correct algoritme los, wat resulteert in de correcte convex hull
van de gemeten punten, zoals weergegeven in Figuur 18(c). Zo’n hull kan compact
worden weergegeven door de volgorde waarin de punten op de hull voorkomen op
te slaan, in dit voorbeeld dus D− E− J − C− G− A− F− D. Echter, deze volgorde
geeft helemaal niet de correcte hull weer van de punten in de werkelijkheid. Als we de
werkelijke punten in deze volgorde verbinden krijgen we het resultaat in Figuur 18(d).
Dit is duidelijk niet het gewenste resultaat.

Meetkundige algoritmes worden veel gebruikt in de praktijk. Deze algoritmes moeten
wel omgaan met imprecisie, anders zouden ze niet werken. Vaak zijn dit echter
heuristieken die in de praktijk zijn getest, en geen algoritmes met bewijsbaar correct
gedrag. Computationele meetkunde is een relatief jonge tak van de informatica, en in
de eerste jaren is vrijwel alle aandacht uitgegaan naar het ontwerpen van meetkundige
algoritmes zelf, zonder veel acht te slaan op imprecisie. Langzaam maar zeker
verschuift deze aandacht, onder druk van steeds grotere hoeveelheden imprecieze
data die in de praktijk wordt verzameld. Inmiddels zijn er veel verschillende manieren
om imprecisie te modelleren voorgesteld, en een aantal resultaten zijn al beschikbaar.
Geen van deze methoden lost het probleem van data-imprecisie op: zolang data
imprecies is zal het nooit mogelijk zijn om met volledige zekerheid een “correct”
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Figuur 19 (a) Een traditioneel, precies punt. (b) Een imprecies punt, gemodelleerd
als schijf met straal ε. (c) Het werkelijke punt kan overal binnen de schijf liggen.

antwoord te geven op meetkundige vragen. Maar het is wel degelijk mogelijk om
meer inzicht en informatie te berekenen dan het simpelweg negeren van het probleem.

Grenzen

In Deel II van dit proefschrift bestuderen we het probleem van het berekenen van
boven- en ondergrenzen aan de uitkomst van een meetkundig algoritme, als de invoer
een verzameling imprecieze punten is. Als een meetkundig probleem een enkel getal
als uitvoer heeft, dan moet een traditioneel algoritme dat getal berekenen. Als de
punten echter imprecies zijn, hangt de waarde van het antwoord af van waar de
invoerpunten precies zijn. In dit geval hebben we algoritmes nodig die berekenen wat
de hoogst mogelijke en laagst mogelijke waardes zijn die het antwoord kan hebben.

Om imprecisie in een punt te modelleren, zeggen we dat de invoer van een algoritme
nu niet een verzameling punten in het vlak is, maar een verzameling deelverzamelingen
van het vlak. Iedere deelverzameling, of gebied, stelt een imprecies punt voor. Dit
betekent dat we weten dat het werkelijke punt ergens in dat gebied ligt, alleen niet
waar. Dit model is voor het eerst geı̈ntroduceert in 1989 door Salesin, Stolfi en
Guibas [61], die om een precies punt een cirkelschijf met straal ε trokken om aan te
geven dat het punt een fout van maximaal ε heeft. Figuur 1.6 toont zo’n imprecies
punt. Behalve een schijf met straal ε, is het ook mogelijk om andere vormen als
gebieden te gebruiken. Als bijvoorbeeld de imprecisie in de x- en y-coördinaat van
een punt onafhankelijk zijn, ligt het meer voor de hand om een vierkant als gebied te
gebruiken.

We nemen in de hoofdstukken in dit deel steeds aan dat er een “werkelijke” verzame-
ling punten P = {p1, . . . , pn} is die onbekend is, waarbij pi ∈ R2. In plaats daarvan
hebben we een verzameling gebieden R = {R1, . . . , Rn} gegeven, met Ri ⊂ R2, en
de garantie dat we voor elke i weten dat pi ∈ Ri. We zijn geı̈nteresseerd in de waarde
van een bepaalde functie µ die een verzameling punten als invoer heeft en een enkel
getal als uitvoer, dat wil zeggen, we willen µ(P) weten. Maar omdat P onbekend is,
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(a) (b)

Figuur 20 (a) Een verzameling imprecieze punten, gemodelleerd als vierkanten, met
één punt in elk gebied zodat de convex hull van deze punten zo groot mogelijk is.
(b) Dezelfde verzameling vierkanten, nu met één punt per gebied zodat de convex
hull van de punten zo klein mogelijk is.

berekenen we in plaats daarvan de kleinste en grootste mogelijke waardes die µ kan
aannemen op een puntverzameling P die conform is metR.

In Hoofdstuk 3 beschouwen we drie zogenaamde pasvormfuncties. Dit zijn functies
die een bepaalde meetkundige vorm zo goed mogelijk om een puntverzameling
heen passen. Voor µ nemen we oppervlakte van de kleinste omvattende asparallelle
rechthoek, de straal van de kleinste omvattende cirkel, en de breedte van de smalste
strip (in een willekeurige richting) die de punten bevat. Als imprecisiegebieden
hebben we vierkanten en cirkels bestudeerd. In alle gevallen hebben we het probleem
van het berekenen van boven- en ondergrenzen bestudeerd, en in de meeste gevallen
hebben we efficiënte algoritmes ontwikkeld, met looptijden tussen de O(n) en O(n2).
Het berekenen van de bovengrens voor de smalste strip lijkt echter een veel moeilijker
probleem te zijn, waar we geen bevredigend resultaat voor hebben. Wel bewijzen we
dat dit probleem NP-moeilijk is wanneer de imprecisiegebieden lijnstukken zijn.

In Hoofdstuk 4 bestuderen als functie µ de oppervlakte van de convex hull van de
punten. We zijn nu geı̈nteresseerd in de grootste en kleinste mogelijke oppervlakte van
de convex hull van een verzameling imprecieze punten, gemodelleerd als vierkanten.
Figuur 20 toont een voorbeeld van dit probleem. De ondergrens kan worden berekend
in O(n2) tijd, terwijl de bovengrens O(n7) tijd kost; bovendien werkt dat algoritme
alleen voor niet-overlappende vierkanten. Aangezien dat niet een erg praktisch
resultaat is, bestuderen we in Hoofdstuk 5 approximatie-algoritmes voor hetzelfde
probleem. Deze algoritmes zijn gebaseerd op het idee van kernverzamelingen, wat is
geı̈ntroduceerd door Agarwal en Har-Peled [2]: in plaats van een duur algoritme
op een grote invoerverzameling uit te voeren, is het vaak mogelijk om eerst een
representatieve deelverzameling van de invoer te selecteren en alleen daarop het dure
algoritme los te laten.
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In Hoofdstuk 6 nemen we voor µ de diameter van een puntverzameling: de grootste
afstand tussen twee punten in de verzameling. De diameter is een belangrijke maat
voor de uitgestrektheid van een puntverzameling. We laten zien hoe de bovengrens
in O(n log n) tijd kan worden berekend, zowel voor vierkanten als voor cirkelschijven.
Interessant genoeg kan de ondergrens voor vierkanten ook in O(n log n) tijd berekend
worden, terwijl dit voor cirkels op algebraı̈sche moeilijkheden stuit. Voor dat geval
geven we wel een approximatie-algoritme.

Voorberekenen

In Deel III van dit proefschrift benaderen we data-imprecisie vanuit een andere
richting. In plaats van grenzen te berekenen aan de waardes die een functie kan
aannemen, gaan we er in dit deel vanuit dat alhoewel de punten op dit moment
imprecies zijn, we deze punten later wel te weten zullen komen. In dit geval is de
uitdaging om zoveel mogelijk van de moeilijke berekeningen die we moeten doen,
nu al te doen, zodat we later, al we de “echte” punten krijgen en misschien niet veel
tijd meer hebben, de berekening zo snel mogelijk kunnen afronden.

Het is natuurlijk wat optimistisch om te denken dat imprecieze punten later ineens
precies zullen worden. Maar ook al is dit niet mogelijk, het is wel vaak mogelijk om
zo nodig bepaalde metingen met hogere nauwkeurigheid over te doen. Een andere
mogelijkheid is dat in de werkelijkheid we helemaal geen betere metingen doen,
maar dat we een groot aantal mogelijke puntverzamelingen “raden”, door steeds één
willekeurig punt uit elke gebied te nemen. Als we voor al deze puntverzamelingen
onze berekening doen, kan op de uitkomsten een statistische analyse worden gedaan.
In dit geval is het ook belangrijk dat de berekening op de echte punten zelf zo snel
mogelijk is.

Ook vanuit een theoretisch oogpunt is het interessant om te weten hoeveel moeilijke,
of op z’n minst tijdsintensieve, berekeningen van een algoritme al van te voren
kunnen worden gedaan, en dus niet afhankelijk zijn van de exacte posities van de
punten. Om dit precies te maken, hebben we weer een onbekende puntverzameling
P en een verzameling gebiedenR zodanig dat elk punt van P in één van die gebieden
ligt. We zijn nu geı̈nteresseerd in een meetkundig object S(P), bijvoorbeeld een
triangulatie van de punten. We hebben een exact algoritme dat S(P) kan berekenen als
P gegeven is, en wat een bepaalde tijd kost, in het geval van triangulatie O(n log n).
De vraag is nu of het mogelijk is om een tussenprodukt H(R) te berekenen dat
later kan helpen met de berekening van S(P) wanneer P bekend is. We hebben nu
twee nieuwe algoritmes nodig: een voorberekeningsalgoritme dat H(R) kan berekenen,
en een reconstructiealgoritme dat S(P) kan berekenen als P en H(R) gegeven zijn.
Figuur 21 geeft een visuele illustratie van dit idee. Het moge duidelijk zijn dat beide
algoritmes samen nooit sneller kunnen zijn dat het snelste algoritme om S(P) direct
te berekenen. De vraag is echter hoe snel we het reconstructiealgoritme kunnen
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Figuur 21 Een schema dat de datastroom laat zien bij gebruik van voorberekenings-
en reconstructiealgoritmes, in vergelijking met directe berekening.

krijgen, door zoveel mogelijk berekeningen naar het voorberekeningsalgoritme te
verschuiven.

In Hoofdstuk 7 beschouwen we een triangulatie van P als de structuur S(P). We
modelleren de imprecieze punten in R als niet-overlappende polygonen, en laten
zien dat het mogelijk is om deze voor te berekenen in O(n log n) tijd, zodanig dat
het reconstructiealgoritme nog maar O(n) tijd kost. Dit resultaat is optimaal, en is
een verbetering van eerder werk door Held en Mitchell [65], die hetzelfde resultaat
bewijzen voor een verzameling eenheidscirkels. Een belangrijk deelresultaat dat
we gebruiken om het probleem op te lossen is een algoritme om een triangulatie
te splitsen: gegeven een triangulatie waarvan de knopen rood en blauw gekleurd
zijn, kan ons algoritme een triangulatie van alleen de blauwe (of de rode) knopen
berekenen in O(n) tijd.

In Hoofdstuk 8 geven we een soortgelijk resultaat, maar nu is S(P) niet een willekeu-
rige triangulatie maar specifiek de Delaunay triangulatie. Dit is een triangulatie die
voor het eerst is beschreven door Delaunay [35], en een belangrijke plaats inneemt in
de computationele meetkunde. Ook hier geven we een voorberekeningsalgoritme dat
in O(n log n) tijd loopt en een reconstructiealgoritme dat O(n) tijd nodig heeft, maar
de imprecisiegebieden zijn minder algemeen: we nemen aan dat dit eenheidscirkels
zijn. De oplossing is gebaseerd op de minimaal opspannende boom van de impre-
cieze punten, en we laten zien dat dit genoeg informatie is om een samenhangende
deelverzameling van de Delaunay triangulatie te reconstrueren wanneer P gegeven
is. Vervolgens kan de triangulatie worden voltooid met het algoritme van Chin en
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Figuur 22 Een bundel lijnen. De bundel bevat alle lijnen die volledig binnen het
grijze gebied liggen.

Wang [30]. Dit algoritme werkt in O(n) tijd, maar is helaas wel nogal ingewikkeld en
niet erg bruikbaar in de praktijk.

In Hoofdstuk 9 laten we zien hoe hetzelfde resultaat op een andere manier kan worden
bereikt. De aanpak in dit hoofdstuk is gebaseerd op quadtrees: een subdivisie van
het vlak volgens een boomstructuur. Deze methode is makkelijker te implementeren
dan die in het vorige hoofdstuk, maar is wel gerandomiseerd, dat wil zeggen, de
looptijd is niet gegarandeerd O(n) bij iedere invoer maar de kans dat het niet zo is
is (verwaarloosbaar) klein. Bovendien is dit resultaat op een optimale manier uit te
breiden naar algemenere imprecisiegebieden, namelijk cirkels die niet even groot zijn
of deels overlappen, of gebieden die geen cirkels zijn maar wel in zekere zin “dik”.

Meer dan Punten

Een verzameling punten is één van de meest voorkomende vormen van meetkundige
invoer, maar er zijn ook andere mogelijkheden. Een algoritme kan ook een verza-
meling lijnen als invoer krijgen, of een samengestelde figuur die is opgebouwd uit
meerdere punten en lijnen of lijnstukken. In Deel IV van dit proefschrift gaan we hier
verder op in.

Een imprecieze lijn kan op dezelfde manier als een imprecies punt worden gemodel-
leerd: als een deelverzameling van de verzameling van alle lijnen in het vlak. Echter,
we zouden graag wat extra eisen aan zo’n deelverzameling stellen om er goed mee te
kunnen werken. Voor een verzameling punten zijn een cirkelschijf of een vierkant
natuurlijke keuzes, maar voor lijnen zijn er geen equivalente begrippen. We definiëren
daarom een bundel lijnen als de verzameling van alle lijnen die tussen twee gegeven
curven in het vlak liggen. Figuur 22 toont een voorbeeld van zo’n bundel.

We eisen van de curven die de bundel omsluiten dat deze stuksgewijs lineair zijn,
en dat het aantal stukken constant is. De verzameling lijnen gegeven door een
bundel is samenhangend, en bovendien in zekere zin convex. Convexiteit is niet
eenduidig gedefiniëerd voor verzamelingen lijnen, hoewel er verschillende definities
zijn voorgesteld in de literatuur [51, 54, 114]. Als we echter aannemen dat een
imprecieze lijn in minstens één richting zeker niet ligt, dan vallen een aantal definities



MEER DAN PUNTEN 191

samen en voldoen onze bundels daaraan.

In Hoofdstuk 10 bestuderen we twee concrete problemen die een verzameling lijnen
als invoer hebben in dit model. Bij lineair programmeren het het de bedoeling om het
laagste punt dat boven een verzameling lijnen ligt te vinden. We laten zien dat de
bovengrens van deze waarde wanneer de lijnen imprecies zijn in lineaire tijd kan
worden berekend. De ondergrens kan in O(n2) time berekend worden, maar in
sommige specifieke gevallen kan het ook sneller. Het andere probleem is de verticale
omvang van een verzameling lijnen: het kortste verticale lijnstuk dat een gegeven
verzameling lijnen snijdt. Wanneer de lijnen imprecies zijn, kunnen we de bovengrens
voor de omvang in O(n log n) tijd berekenen. De ondergrens kan worden berekend
in O(n2 log n) tijd, en onder bepaalde voorwaarden ook in O(n log n) tijd.

Wanneer de invoer van een meetkundig probleem een samengestelde figuur is, is het
minder duidelijk hoe imprecisie op een goede manier gemodelleerd kan worden. Eén
van de eenvoudigste samengestelde figuren is de veelhoek of polygoon: een reeks
punten in het vlak die door lijnstukken worden verbonden. Andere voorbeelden
van samengestelde figuren zijn triangulaties, subdivisies, of de hoger-dimensionale
equivalenten hiervan.

We zouden zo’n imprecies polygoon op dezelfde manier als punten en lijnen kunnen
modelleren, als een deelverzameling van de verzameling van alle mogelijke polygo-
nen. De vraag is echter hoe zo’n deelverzameling op een compacte manier beschreven
kan worden. Als alternatief kunnen we een imprecies polygoon beschrijven door de
hoekpunten van het polygoon als imprecieze punten te modelleren. In Hoofdstuk 11
geven we twee algoritmes om de bovengrens en ondergrens van de lengte van zo’n
polygoon te berekenen. Beide algoritmes werken in O(n) tijd.

Dit model leidt echter wel tot een probleem: als we van het werkelijke polygoon extra
eigenschappen weten, bijvoorbeeld dat het convex is of geen zelfdoorsnijdingen heeft,
dan is het niet duidelijk dat die eigenschappen ook worden gegarandeerd in alle mo-
gelijke instantiaties van het model. Bekijk als voorbeeld Figuur 23. Twee mogelijkhe-
den voor het werkelijke polygoon zijn te zien, waarvan er één zelfdoorsnijdingen
heeft.

Veel polygonen in praktische toepassingen hebben geen zelfdoorsnijdingen, bijvoor-
beeld als zo’n polygoon de grens van een gebied weergeeft. Een belangrijke algorit-
mische vraag is nu, wanneer een imprecies polygoon in dit model is gegeven, hoe
de hoekpunten geplaatst kunnen worden zodat het resulterende precieze polygoon
inderdaad geen zelfdoorsnijdingen heeft. In Hoofdstuk 12 laten we zien dat dit een
NP-moeilijk probleem is. Uit een kleine aanpassing van de constructie volgt boven-
dien dat een aantal andere problemen, zoals het berekenen van het kortste pad zonder
zelfdoorsnijdingen dat een gegeven reeks gebieden in de juiste volgorde doorloopt,
ook NP-moeilijk zijn.
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(a) (b) (c)

Figuur 23 (a) Een imprecies polygoon, waarvan de hoekpunten zijn gemodelleerd
als imprecieze punten. (b) Een mogelijke vorm van de “werkelijke” polygoon. (c)
Een andere mogelijkheid. Deze polygoon heeft echter zelfdoorsnijdingen.

Conclusie

Data-imprecisie in de computationele meetkunde is een belangrijk probleem dat
lang genegeerd is, maar langzaamaan steeds meer aandacht krijgt. Het is van groot
belang om een beter beeld te krijgen van hoe imprecisie de uitkomsten van bestaande
algoritmes kan beı̈nvloeden, voordat ze op grote schaal in de praktijk gebruikt zullen
worden. Tegelijkertijd zorgt de enorme afname in kosten voor het verzamelen en
opslaan van grote hoeveelheden data voor een steeds grotere vraag naar betrouwbare
en efficiënte algoritmes.

Dit proefschrift levert een bijdrage aan deze analyse. Het probleem van imprecisie is
daarmee niet opgelost, en zal ook nooit helemaal opgelost kunnen worden. Ondanks
wat theoretische informatici graag zien is het niet mogelijk om data-imprecisie vol-
ledig in modellen te vangen waarbinnen de oplossingen met wiskundige zekerheid
kunnen worden gegeven. Desondanks is het zeker mogelijk om meer te doen dan
simpelweg het probleem negeren, en dit proefschrift toont aan dat in veel gevallen
nuttige informatie over de uitvoer te berekenen is.
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[59] C. Gray, M. Löffler, and R. I. Silveira. Minimizing slope change in imprecise
1.5d terrains. In Proc. 21th Canadian Conference on Computational Geometry, pages
55–58, 2009.
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