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ABSTRACT
Cohort studies are of signi�cant importance in the �eld of health-
care analytics. However, existing methods typically involve manual,
labor-intensive, and expert-driven pattern de�nitions or rely on sim-
plistic clustering techniques that lack medical relevance. Automat-
ing cohort studies with interpretable patterns has great potential
to facilitate healthcare analytics and data management but remains
an unmet need in prior research e�orts. In this paper, we present
a cohort auto-discovery framework for interpretable healthcare
analytics. It focuses on the e�ective identi�cation, representation,
and exploitation of cohorts characterized by medically meaningful
patterns. In the framework, we propose CohortNet, a core model
that can learn �ne-grained patient representations by separately
processing each feature, considering both individual feature trends
and feature interactions at each time step. Subsequently, it employs
K-Means in an adaptive manner to classify each feature into dis-
tinct states and a heuristic cohort exploration strategy to e�ectively
discover substantial cohorts with concrete patterns. For each iden-
ti�ed cohort, it learns comprehensive cohort representations with
credible evidence through associated patient retrieval. Ultimately,
given a new patient, CohortNet can leverage relevant cohorts with
distinguished importance which can provide a more holistic under-
standing of the patient’s conditions. Extensive experiments on three
real-world datasets demonstrate that it consistently outperforms
state-of-the-art approaches, resulting in improvements in AUC-PR
scores ranging from 2.8% to 4.1%, and o�ers interpretable insights
from diverse perspectives in a top-down fashion.
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1 INTRODUCTION
E�ective data management in healthcare [35, 42, 48–50] is piv-
otal for unlocking the vast potential inherent in electronic health
records (EHRs). To facilitate clinicians in analyzing EHR data, it is
crucial to explore cohorts that characterize patients sharing com-
mon conditions or responses to treatments. Studying the common-
alities of cohorts among their associated patients enables clinicians
to uncover valuable relationships and future outcomes. When as-
sessing new patients, taking their relevant cohorts as auxiliary
information empowers clinicians to gain a deeper understanding
of their health condition, enhancing the quality of patient care.
The signi�cance of cohorts with insights has been con�rmed in a
multitude of studies, underscoring that the incorporation of cohort
studies into healthcare analytics [16, 39, 45, 51, 52] and data man-
agement [17, 27, 29, 44] has the potential to facilitate healthcare
research and patient care.

Cohort studies entail the identi�cation of a speci�c group of
patients, referred to as a “cohort,” based on a discernible “pattern”.
Subsequently, this cohort is compared to other groups without such
a pattern. Traditionally, these cohort-de�ning patterns are manually
crafted by clinical experts, relying on features with speci�c value
ranges (e.g., blood pressure > 140/90mmHg) and are associatedwith
outcomes of interest, such as disease progression and endpoints.
Although these manual processes can yield medically meaning-
ful insights, they demand extensive medical knowledge, and the
subsequent identi�cation of outcomes is both time- and resource-
intensive. As such, incorporating automated approaches [28] for
the auto-discovery of cohorts characterized by meaningful patterns
is imperative for healthcare analytics.

Unfortunately, cohort discovery within the context of EHR data
presents several challenges that have not been e�ectively addressed
in prior studies. Cohort identi�cation calls for the creation of in-
terpretable and generalizable medical patterns, which should be
de�ned at a granular level, e.g., feature level. Existing studies em-
ploy various approaches to form cohorts, including matching based
on static features [23, 29, 34], rule-based formulations [47], and anal-
yses of event trajectories [27]. However, these approaches are not
e�ective for uncovering the underlying patterns in time-series fea-
tures, as they fail to capture dynamic changes or feature interactions
over time. Further, many features are recorded as numerical values,
rendering the discovery of cohorts more challenging. To handle
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Figure 1: The systematic pipeline of cohort learning

such values, conventional approaches, such as discretization, not
only require speci�c value range de�nitions but also constrain the
search space for exploration, leading to suboptimal performance.

Some recent machine learning based approaches propose to em-
ploy clustering [30, 45, 46] or patient similarity [37, 53] to group
patients into distinct “cohorts”. However, these approaches predom-
inantly rely on latent representations at a coarse level, typically
the patient level, lacking concrete and interpretable patterns. The
absence of interpretability restricts their practical utility for clini-
cians. In some other studies [26, 27, 46], cohorts are created based
on a small number of patients (e.g., a batch) for e�ciency, which
are not credible enough to convince clinicians.

To address above challenges, we propose an e�ective cohort dis-
covery framework to identify cohorts with medically interpretable
patterns, learn cohort representations, and utilize these cohorts
in facilitating downstream analytics. Its pipeline sequentially exe-
cutes four steps, as illustrated in Figure 1. At its core, we propose
CohortNet, a novel model consisting of four modules for learning
patients’ �ne-grained EHR data representations for prediction and
personalized cohort representations for calibration.

In Step 1, we introduce theMulti-channel Feature Learning Mod-
ule in CohortNet to learn patients’ �ne-grained representations.
The module models each medical feature separately in a distinct
channel to preserve features’ individuality while simultaneously
capturing feature trends and interactions at each time step.

In Step 2, backed by the learned feature-level representations,
Cohort Discovery Module classi�es each feature into multiple dis-
tinct feature states (e.g., States B1, B2, B3 for feature 51). Thereafter,
we propose a heuristic cohort exploration strategy that jointly con-
siders feature states and interactions to uncover latent patterns
among all patients and across all time steps. As a consequence, we
are able to identify numerous concrete patterns over multivariate
time series EHR data. For instance, Pattern A encompasses 51 at B1,
52 at B1, and 53 at B2. In contrast to prior studies, feature states de-
lineated in our patterns capture a broader spectrum of information,
including value ranges, feature interactions, and others.

In Step 3, for each identi�ed pattern, Cohort Representation
Learning Module retrieves associated patients exhibiting this spe-
ci�c pattern, thereby constructing its respective cohort, exempli�ed
by Cohort A derived from Pattern A. Through an exploration of the
intrinsic information embedded within this cohort, the module de-
rives the cohort’s comprehensive representations that demonstrate
the associated patients’ commonality and thus, facilitate subsequent
analytics tasks. For instance, as substantiated by diagnosis labels

and clinical experts, most of the patients within Cohort A ultimately
manifest respiratory acidosis.

Lastly, in Step 4, by harnessing the learned credible cohorts in
Step 3, Cohort Exploitation Module enables personalized analyses,
concurrently enhancing performance and revealing medically sig-
ni�cant insights. It initially identi�es Patient A’s pertinent cohorts,
referred to as the cohort bitmap. Subsequently, this module assesses
the signi�cance of these cohorts in learning the patient’s cohort
representations and making predictions.

During training, our framework sequentially executes all four
steps for identi�cation, learning, and exploitation of cohorts. When
inference on new patients, the framework performs only Steps
1 and 4 to derive the �nal decisions based on �ne-grained data
representations and personalized cohort representations. Our main
contributions are summarized as follows:
• We propose a novel and general framework for e�ective cohort

discovery without the infusion of external knowledge. Speci�-
cally, it can identify, represent, and utilize medically signi�cant
cohorts with concrete feature patterns, enhancing prediction and
interpretation simultaneously. To the best of our knowledge, the
auto-discovery of cohorts with interpretable patterns, despite its
importance, is not attainable in the past.

• It features a systematic pipeline with four steps for healthcare
analytics, centered around CohortNet’s four innovative modules
tailored for each step. CohortNet is designed to learn feature-
level representations through �ne-grained modeling of feature
trends and interactions, thereby facilitating subsequent feature
state analysis. Through an exploration of the interrelationships
among features, we devise a heuristic cohort exploration strategy
for the auto-discovery of cohorts with concrete feature patterns.
For each pattern, CohortNet retrieves its patients, forming its
cohorts with comprehensive representations. Ultimately, by mod-
eling patients’ individual data and identifying their associated
cohorts with distinguished importance, CohortNet can provide
personalized assessment with interpretable insights.

• We evaluate its e�ectiveness on three real-world EHR datasets.
Extensive experimental results validate that, by taking into ac-
count discovered valuable cohorts, it consistently outperforms
state-of-the-art baselines, with signi�cant improvements in AUC-
PR ranging from 2.8% to 4.1%. Meanwhile, when making deci-
sions, it can o�er medically interpretable insights from di�erent
perspectives that are consistent with �ndings in previous studies.

In the remainder of this paper, we review related work in Section 2,
present our framework in Section 3, and delve into CohortNet
with detailed descriptions of its modules. Following this, Section 5
provides a comprehensive discussion of its experimental results and
the evaluation of interpretability. Finally, we conclude in Section 6.

2 RELATEDWORK
EHR Data Modeling. The burgeoning of deep learning and its ex-
tensive utilization in healthcare analytics [14] andmanagement [40]
has spurred researchers to develop multifarious advanced deep
learning models with libraries [28, 32] for modeling EHR data.
Speci�cally, recurrent neural networks (RNN) such as long short-
term memory (LSTM) [15] and gated recurrent units (GRU) [7] are
widely adopted for handling time-series EHR data. Several studies
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have designed speci�c mechanisms to improve EHR data modeling
performance and interpretability. For instance, for the consideration
of interpretation, RETAIN [5] employs two GRUs in reverse time
order to distinguish attention at the visit and variable levels, while
Dipole [22] adopts attention mechanisms to di�erentiate relation-
ships among patients’ visits. Besides, ConCare [24] embeds each
medical feature separately and designs a multi-head self-attention
mechanism to learn the interrelationships among medical features.
From another perspective, some approaches focus on capturing spe-
ci�c concepts in EHR for boosted performance. T-LSTM [2] devises
a time-aware LSTM to capture the irregular time intervals in EHRs,
and StageNet [12] integrates stage modules to extract and utilize the
information about disease stages. In contrast to the aforementioned
studies that model patients’ representations solely from individual
EHR data, our framework can also discover medically meaningful
cohorts from EHR data, learning overall information, and leverage
these learned cohorts to enhance performance and interpretability.
Clustering. Clustering methods aim to group similar samples
within a dataset based on similarity metrics. Approaches such
as K-Means clustering [25], hierarchical clustering [20], and co-
clustering [9] have demonstrated satisfactory performance across
diverse applications. Unfortunately, their learned cluster results
lack interpretable de�nitions, such as feature-based patterns, which
hampers their acceptance by clinicians. Besides, most clustering
methods fall short when analyzing EHR data due to their limited
consideration of temporal sequences. While some studies have
attempted to incorporate temporal relationships [3, 38, 41], they
struggle to adequately address the complexities inherent in mul-
tivariate time series data from diverse patients - a challenge we
aim to tackle in processing EHR data. Although these methods
may perform well within speci�c datasets, their applicability to
assessing new samples is non-trivial.

A few studies have attempted to facilitate deep learning tasks
with these learned clusters. For instance, GRASP [46] uses the
K-Means algorithm to group batches of patients’ overall represen-
tations into several clusters and employs the K-Nearest neighbor
(KNN) to utilize these clusters. PPN [45] clusters all patients’ repre-
sentations and selects the patients closest to centroids as typical pa-
tients, potentially deviating from centroids. However, both learned
clusters and typical patients are identi�ed and utilized via similar-
ity scores (e.g., Euclidean distance) measured based on patients’
learned representations, which lack explicit feature patterns and
�ne-grained interpretability. In contrast, we focus on discovering
universal cohorts characterized by interpretable feature patterns.
Cohort Study. Cohort studies, as a cornerstone of observational
research in medicine, typically require experts to manually de�ne
concrete patterns in statistics or relevant medical features [29, 31]
to determine cohorts and their constituent patient populations. For
example, authors in [43] use glucose to de�ne groups and inves-
tigate their associated endpoints. However, crafting such explicit
feature patterns could be time-consuming and labor-intensive.

To automate cohort studies, in [27], a heuristic sequence match-
ing algorithm is proposed to derive cohort representation by ag-
gregating patients’ trajectories. However, this approach can be
intricate and computationally intensive when generating represen-
tative cohorts. Further, it is primarily suitable for analyzing patients’
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Figure 2: Our framework for the auto-discovery of cohorts
in healthcare analytics with Patient A as a running example.

actions or events (such as disease occurrence or medication usage)
and is not applicable to more complex numerical medical features.
Besides, some studies attempt to identify similar patient groups
by exclusively relying on static characteristics, such as gender and
occupation. For example, RIM [34] and RB-GBDT [23] match iden-
tical non-time series features in structured data to identify similar
patients. RuDi [47] categorizes patient groups by rules. It designs
operators for features and converts knowledge from black-box
models into rule-based student models. However, precise matching
has restricted potential in learning cohorts for EHR data which
comprises time-series medical features with numerical values.

Di�ering from these existing approaches, we propose CohortNet
that employs deep learning techniques to automatically identify,
learn, and exploit cohorts, facilitating clinical decision-making pro-
cesses with boosted performance and interpretable medical insights.

3 FRAMEWORK
We shall use Patient A in Figure 2 as a running example to illus-
trate how the framework employs CohortNet on patients’ EHR
data to discover cohorts and make predictions, providing valuable
functionalities for medical interpretation.
Data. Our framework initially collects comprehensive EHR data
from hospital databases, including lab tests and vital signs, focus-
ing on patients like Patient A. This dataset is pivotal for learning
patients’ data representations and discovering signi�cant cohorts.
CohortNet. At the heart of our framework lies the model Cohort-
Net, which comprises four advanced modules: (a) Multi-channel
Feature Learning Module (MFLM) utilizes patients’ individual EHR
data to learn informative representations by separately modeling
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each feature while simultaneously capturing feature interactions
and trends; (b) Cohort Discovery Module (CDM) �rst analyzes the
states of features and then employs a heuristic cohort exploration
strategy to unveil substantial cohorts characterized by speci�c fea-
ture patterns; (c) Cohort Representation Learning Module (CRLM)
retrieves each cohort’s associated patients by utilizing its pattern
and further analyzes its representations while extracting other es-
sential information (e.g., label distributions); (d) Cohort Exploitation
Module (CEM) identi�es a patient’s relevant cohorts with di�erenti-
ated importance and generates personalized cohort representations
for calibration. More details about CohortNet are in Section 4.
Functionality. By prioritizing interpretability, we demonstrate our
framework’s capability to yield medically interpretable insights.

• Feature-level Interaction Interpretation.When assessing Patient
A’s abnormal medical features, such as 51, it is crucial to take
into account its related features (e.g., 52, 53, 54), allowing for
a more accurate judgment of Patient A’s conditions (e.g., any
complications). Supported by devised MFLM, our framework can
explicitly model these interactions across timewith di�erentiated
importance, facilitating the analysis for each feature.

• Feature State Interpretation. In our framework, each medical fea-
ture will be grouped into distinct states through CDM to facilitate
subsequent cohort discovery and exploitation processes. In Fig-
ure 2, each of Patient A’s features, such as 51, is classi�ed into
several distinct states, with each state inherently encapsulat-
ing unique meanings. For instance, states B1, B2, and B3 of 51 are
delineated by varying value ranges, transition pathways, and
interactions, gaining a deeper understanding of the feature’s
conditions. Hence, these feature states establish a robust inter-
pretability foundation for cohort creation and subsequent steps.

• Cohort Interpretation. Through CDM, our model acquires the
ability to discover an extensive cohort pool, where each cohort
is characterized by a concrete pattern. In particular, each pat-
tern consists of several medical features and their corresponding
states. As an example depicted in Figure 2, the pattern for Cohort
C#01 involves 51 in B3, 52 in B3, 53 in B1. For each cohort, it deepens
its understanding through further exploration of its associated
patients. Hence, all cohorts learned in our framework are con-
vincing with credible evidence (e.g., the number of associated
patients, the label distribution).

• Personalized Cohort Analytics. As CRLM e�ectively learns signif-
icant cohorts, it is crucial to utilize these cohorts as references
when providing personalized analytics. For instance, in the anal-
ysis of feature 51 for Patient A, CEM identi�es relevant cohorts
(e.g., C#01, C#02, C#03, etc) tailored to Patient A’s changing condi-
tions. Analyzing these cohorts to examine the calibration scores
at both cohort and feature levels, CEM can o�er a granular un-
derstanding of Patient A, facilitating more accurate predictions.

• Predictive Analytics. Our framework analyzes patient health con-
ditions using quanti�ed prediction scores to provide timely alerts
for potential deterioration. By leveraging Patient A’s individual
EHR data as the foundation (with a mortality risk of 47%) and
calibrating with relevant cohorts (increasing risk to 61%), our
framework can e�ectively and accurately predict outcomes, of-
fering medically interpretable insights.

Table 1: Notations in our framework.

Notation De�nition

X EHR data
m masking vector for medical features
e feature embedding
u representation of feature interaction
v representation of feature trend
" attention scores of a feature’s interactions
o fused representation at the feature level

h overall EHR data representation at the feature level
h0 overall cohort representation at the feature level
h̃ overall EHR data representation at the patient level
ĥ overall cohort representation at the patient level

B feature state
7 pattern mask
( cohort pattern

C(() cohort’s overall representation
b cohort

%>>; (b) cohort pool
l labels
# attention scores of a feature’s relevant cohorts
b personalized cohort bitmap
I overall calibration score

Application. Our framework can tackle diverse downstream ap-
plications in healthcare analytics. In this paper, we focus on two
extensively studied tasks, namely in-hospital mortality prediction
and diagnosis prediction, to demonstrate how it facilitates clinicians
in delivering accurate predictions with interpretability.

4 CohortNet
In this section, we delve into the detailed design of CohortNet.
EHR data. A patient’s EHR data comprises multivariate time series
collected over time. Each time series denotes a medical feature
that may have varying frequencies and lengths. We process each
time series at regular intervals, resulting in each patient’s data
being represented as sequences of medical features, denoted as
X = {x1, x2, ..., x |� | }. x8 2 ') represents the sequence of the 8-
th medical feature over ) time steps, and |� | denotes the number
of medical features. Furthermore, we introduce a masking vector
m 2 {0, 1}|� | where <8 = 0 means that the 8-th feature never
presents in a patient’s EHR data. To lay the groundwork for our
investigation, we �rst de�ne several core concepts as below.

De�nition 4.1 (Cohort). A cohort is de�ned as a tuple b = h(, C(()i
where ( denotes the cohort pattern utilized for patient retrieval,
and C(() signi�es the cohort representation used in prediction
tasks. A patient is classi�ed into a cohort if and only if this patient
manifests the speci�c cohort pattern at any time step.

De�nition 4.2 (Cohort Pattern). Each cohort is characterized by
a distinctive cohort pattern, comprising several medical features
along with their respective states, formally de�ned as ( = {(8, B8 )}3 ,
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where 8 is the feature index, B8 represents the state of the 8-th feature,
and 3 indicates the number of involved features in the pattern.

De�nition 4.3 (Cohort Representation). Each cohort’s represen-
tation, denoted as C((), is derived from the retrieved patients’
representations within the cohort and is subsequently utilized in
predictive analyses of patient conditions.

To facilitate automated cohort identi�cation, learning, and ex-
ploitation, we outline an analytic task comprising four sequential
steps: patient representation learning, cohort discovery, cohort rep-
resentation learning, and cohort exploitation, with details below.

De�nition 4.4 (Patient Representation Learning). Given a patient’s
EHR data X, this step to learn a mapping function F to generate
the patient’s overall representation h̃ by summarizing feature-level
representations h. It also strives to encapsulate essential patient
information, including attention scores " of feature interactions,
derived from the patient’s EHR data X, i.e., h̃," = F (X,m).

De�nition 4.5 (Cohort Discovery). For each feature, the step of
cohort discovery initially utilizes a clustering algorithm to partition
each feature into distinct states B . Subsequently, a cohort exploration
strategy is employed in function G to explore a cohort pool %>>; (b)
considering interactions from learned attention scores " , where
each cohort exhibits a speci�c pattern ( as per De�nition 4.2. This
step is formalized as %>>; (b) = G(" , h).

De�nition 4.6 (Cohort Representation Learning). Upon identifying
a cohort pattern (, a representation learning algorithm C is applied
to retrieve all associated patients and learn the corresponding co-
hort representations (as per De�nition 4.3) from these patients.

De�nition 4.7 (Cohort Exploitation). This step of cohort exploita-
tion examines a patient’s EHR data X alongside the cohort pool
%>>; (b). It begins by identifying each patient’s pertinent cohorts
through a cohort bitmap b, subsequently deriving the patient’s per-
sonalized cohort representation ĥ. The �nal prediction ~̃, computed
using the functionU, integrates the patient’s individual data repre-
sentation h̃with the patient’s cohort representation ĥ as calibration.
This function is denoted as ~̃ = U(h̃, ĥ).

Our overall objective is to learn a cohort pool %>>; (b) while
concurrently learning the mapping functions F , G, C, and U to
accurately predict the outcome ~̃. To streamline the presentation,
we frame our prediction task as a binary classi�cation without loss
of generality, where ~̃ 2 {0, 1}. We summarize the notations used
throughout the paper in Table 1. To enhance readability, we omit
the superscript C when analyzing a single time step.

4.1 Multi-channel Feature Learning Module
Some prior methods for processing EHR data, such as Channel-
wise LSTM [13] and ConCare [24], conceptualize a patient as a
composite of her/hismedical features. They employ separatemodels
to encode the raw values of eachmedical feature, thereby preserving
the individuality of each feature. However, these raw values are
insu�cient for modeling complicated feature conditions or feature
interactions [4]. In contrast to these methods, MFLM, as depicted
in Figure 3, attains �ne-grained representations of EHR data at the
feature level, learning feature trends and interactions across time.
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Figure 3: The Multi-channel Feature Learning Module.

To preserve each feature’s individuality, MFLM employs multiple
channels to learn a patient’s overall representation, with each chan-
nel focusing on a particular feature. In each channel, we �rst convert
eachmedical feature’s numerical values into meaningful embedding
vectors e via a Bi-directional Embedding Learning (BiEL) mecha-
nism [4] that has been validated to be bene�cial for embedding
numerical features with a prede�ned bounds 0 and 1:

e8 =
8>><
>>:

1
1 � 0

(V08 (G
0
8 � 0) + V18 (1 � G 08 )), if m8 = 1,

V<8 , if m8 = 0.
(1)

where V0,V1 ,V< 2 R |� |⇤34 are embedding matrices that convert
G 08 into a lower-dimensional feature representation, and |� | and 34
denote the number of features and dimension of e. This mechanism
preserves the advantages of a linear embedding mechanism while
simultaneously controlling the embedding scale and enhancing the
embedding quality. Besides, we also integrate the Feature Interac-
tion Learning (FIL) mechanism [4] which enables the capture of
explicit feature interactions (u) and their corresponding attention
scores (" ) using fewer training parameters. Taking the 8-th feature
for illustration, the FIL mechanism models its interactions with all
the other features at each time step:

(u8,1,U8,1), (u8,2,U8,2), ..., (u8, |� | ,U8, |� | ) = ��!(e1, e2, ..., e |� | ) (2)

By learning these �ne-grained feature interactions, CohortNet can
capture diverse valuable feature patterns, facilitating the subsequent
cohort auto-discovery processes. Further, the temporal trends of
medical features also are essential in the analysis. To capture such
trends, we propose a Feature Trend Learning (FTL) mechanism that
utilizes separate local GRUs (lGRU) to learn the temporal dynamics
of each feature. Speci�cally, given 8-th feature’s embeddings, FTL
leverages an individual ;⌧'*8 to model its temporal behaviors v:

v18 , v
2
8 , ..., v

C
8 = ;⌧'*8 (e18 , e

2
8 , ..., e

C
8 ), C = {1, 2, ...,) } (3)

Next, to derive the overall representation of a certain feature o,
we further devise a Feature Fusion (FeaFus) mechanism in MFLM to
incorporate feature embedding e, feature interactions u, and feature
trend v through a multilayer perception.

oC8 = �40�DB (eC8 , u
C
8 , v

C
8 ) (4)
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Through this adaptive fusion mechanism, we derive a fused repre-
sentation o for each medical feature with reduced dimensionality,
facilitating computations for the following cohort discovery.

Subsequently, to learn each feature’s overall EHR representation
h, MFLM employs separate global GRUs (gGRUs) in each channel
to maintain the learning focus:

h18 , h
2
8 , ..., h

C
8 = 6⌧'*8 (o18 , o

2
8 , ..., o

C
8 ), C = {1, 2, ...,) } (5)

Finally, we propose a feature aggregation (�40�66) mechanism that
integrates the representations of all medical features learned in
their respective channels into a holistic representation h̃C .

h̃C = �40�66(hC1, h
C
2, ..., h

C
|� | ) (6)

In �40�66, we compress and concatenate all feature-level represen-
tations to form the overall patient-level representation, allowing
for a �ne-grained understanding of the patient’s feature conditions.

In CohortNet, MFLM serves as a solid foundation, facilitating
following cohort discovery. Besides, it supports �ne-grained feature-
level interaction interpretation, depicting diverse abnormal feature
conditions. In this step, we compute the feature embedding in e in
O(|� | ⇥) ⇥ 34 ), the feature trend v in O(|� | ⇥) ⇥ (3343C + 33C 2)),
the feature interaction u in O(|� |2 ⇥ 34 ), the fused representation
o in O(|� | ⇥ (234 + 3C )3> ), the overall feature representation h in
O(|� | ⇥) (33>3⌘ + 33⌘2)), and the overall patient representation
h̃ in O(|� | ⇥ (3> ⇥ 3? )) where 34 , 3C , 3> , 3⌘ , and 3? denote the
dimensions of e, v, o, h, and h̃, respectively. Overall, we achieve a
complexity of O(|� | ⇥) ⇥ (3>3⌘ + 3⌘

2
)) in this step.

4.2 Cohort Discovery Module
In medical studies [29, 31, 43], clinicians traditionally engage in
manual pattern identi�cation to classify patients into distinct co-
horts, which is time-consuming and labor-intensive, requiring ex-
tensive domain knowledge. Further, in [27], formalizing cohorts
as trajectories of patient events, particularly in EHR data contain-
ing numerical values, poses signi�cant challenges. While K-Means
clustering employed in [45, 46] can group patients based on their
learned overall representations, the centroids learned in clusters
are limited in interpretability. To overcome these constraints, we
introduce CDM to automate the identi�cation of universal cohorts
exhibiting concrete feature patterns across multiple sequences of
EHR data. The overview of this module is shown in Figure 4.

On account of the necessity of leveraging speci�c features in
patterns, CDM begins by classifying each feature into distinct states
based on the learned representations o. To achieve this, for each fea-
ture, CDM gathers all its possible representations from all samples
at all time steps and then employs a clustering algorithm, denoted
as ⇠;DBC4A , to analyze and identify the feature into distinct states.

{B0, B1, B2, ..., B: } = ⇠;DBC4A (o8 ,<8 ,:) (7)

Compared with alternative clustering techniques such as hierarchi-
cal clustering and co-clustering, we ultimately select K-Means in
this module due to its superior e�ciency, and the centroids learned
in K-Means are easier to apply when assessing new patients. In
detail, we employ the K-Means algorithm in an adaptive manner to
identify : distinct states B8 for the 8-th medical feature. Di�erent
states of the same medical feature re�ect distinct conditions, which
can be approximately characterized by the average feature values
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Figure 4: The Cohort Discovery Module and the Cohort Rep-
resentation Learning Module.

of each state, feature interactions, and state transition pathways.
As part of our algorithm, we particularly classify missing features
(i.e.,<8 = 0) into a distinct state B0 since the absence of a feature
directly represents a particular condition.

Relying solely on a feature’s state to represent the medical pat-
tern can be inaccurate, while analyzing all medical features intro-
duces the curse of dimensionality. More speci�cally, when extract-
ing =0 medical features from EHR data and clustering them into :
clusters for each feature, the search space expands exponentially
to O(:=

0

), leading to a increased computational complexity and a
higher risk of over�tting in pattern discovery.

In practical medical scenarios, when analyzing the feature ab-
normality, clinicians jointly consider several other highly related
features along with their values to achieve a more accurate assess-
ment. Inspired by it, we address the cohort pattern exploration
challenges by introducing a heuristic cohort exploration strategy
in CDM that can leverage feature interactions as guidance without
the infusion of external medical knowledge. Speci�cally, it identify
substantial cohort patterns by analyzing both feature interactions
(i.e., " learned in MFLM) and their corresponding feature states.

When processing 8-th medical feature, CDM analyzes its feature
interactions by transforming attention scores " into an attention-
based pattern mask 78 = {0, 1}|� | :

78 = C>?# ("8 ,=) + >=4⌘>C (8) (8)

where C>?# (·, ·) generates a binary vector identifying = relevant
medical features with the highest attention scores. Additionally,
>=4⌘>C (·) constructs another binary vector where only the 8-th di-
mension is set to one. In CDM, each medical pattern ( is derived
from the combination of both the attention-based mask 7 and the
feature states s, (8 = s � 78 where � denotes the element-wise
product. With such designed cohort exploration strategy employed
in CDM, CohortNet can e�ectively �nd meaningful medical pat-
terns without covering the whole search space, and each pattern (
involves 3k features, | |78 | |1 = 3k = = + 1. In this step, we cluster
feature states in O(|� | ⇥ ( |% | ⇥ ) ):3⌘� ) and analyze patterns in
O|� | ⇥ ( |% | ⇥) ) ⇥ 3k ;>6(( |% | ⇥) ) ⇥ 3k )), where |% | denotes the
number of patients used for discovering cohorts. : and � refer to
the number of clusters and iterations used in K-Means. Thus, the
complexity of CDM is O|� | ⇥ ( |% | ⇥) ) ⇥ 3k ;>6(( |% | ⇥) ) ⇥ 3k )).
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4.3 Cohort Representation Learning Module
In prior studies, cohorts are delineated through various means, en-
compassing patient event trajectories [27], hand-crafted medical
de�nitions [29, 31, 43], and K-Means centroids [46]. However, these
approaches either lack compatibility with deep learning techniques
or encounter challenges regarding interpretability. In contrast, our
framework not only discerns cohorts with medically interpretable
feature patterns but also furnishes informative cohort representa-
tions for predictive tasks. Speci�cally, derived from its pattern (@8
(the @-th pattern for the 8-th feature), the Cohort Representation
Learning Module (as shown in the bottom of Figure 4) retrieves the
patients who exhibit this particular pattern and learns representa-
tions from these patients’ commonalities.

In CohortNet, a patient belongs to the cohort b@8 if and only if all
states of the involved features in its pattern (@8 exactly match the
patient’s feature states at a certain time step. With the retrieved
patients, we derive the cohort’s latent representation C((@8 ) by
learning from these patients’ representations and labels:

C((@8 ) = [
1
|b@8 |

’
?

⌘?8 ; l
@
8 ], ? 2 b@8 (9)

where ? is a speci�c patient in the cohort b@8 , and [·; ·] represents
a concatenation function; l@8 refers to the distribution of patients’
task-relevant labels (e.g., mortality labels and diagnosis labels) and
task-irrelevant labels (e.g., frequencies and demographic distribu-
tions) within this cohort. Hence, a cohort in CohortNet comprises
both the feature-based concrete medical pattern and the general rep-
resentation, denoted as b@8 = h(@8 , C((

@
8 )i. Such an in-depth under-

standing of cohorts enables our framework to deliver interpretable
insights when leveraging these cohorts for personalized analysis.
With numerous patterns discovered in CDM, our CRLM will create
a substantial cohort pool, denoted as %>>; (b) = {b18 , b

2
8 , ..., b

@
8 , ...} 2

R |� |⇤ |⇠ | where |⇠ | = |⇠1 | + |⇠2 | + ... + |⇠ |� | |, and |⇠8 | denotes the
number of cohorts discovered for 8-th medical feature. Overall, this
step’s complexity is O(|� | ⇥ ( |% | ⇥) ) ⇥ (3⌘ + |! |) ⇥ |⇠ |) where |! |
and |⇠ | denote the size of used labels and learned cohorts.

Additionally, we integrate several �lters to narrow down the
search space andmitigate the computation complexity, e.g., the sam-
ple frequency �lter, to identify and exclude medical patterns that
occur infrequently in the training samples, since low frequencies
result in insu�cient evidence to support these cohorts’ credibility.

4.4 Cohort Exploitation Module
The acquired cohorts should be readily applicable to new patients
e�ciently and e�ectively. However, the cohorts learned in earlier
work [46] have been limited by their applicability to speci�c patient
populations. Furthermore, cohorts in [27] require substantial com-
putational resources due to reliance on sequence matching methods.
In CohortNet, CEM can e�ciently leverage these credible and uni-
versal cohorts as supplementary information when assessing indi-
vidual patients’ feature conditions. That is, it takes the cohort pool
%>>; (b) as extensive knowledge and indexes the patient’s relevant
cohort with di�erentiated importance. As a result, CohortNet not
only improves the performance of downstream prediction tasks but
also provides clinicians with interpretable cohort-based insights.
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Figure 5: The Cohort Exploitation Module.

As shown in Figure 5, CDM �rst examines patients’ feature
states s at each time step and subsequently analyze cohort bitmap
b8 = {0, 1}|⇠8 | when analyzing 8-th medical feature:

b@8 = 1, 8 5 9 sC8 � 7@8 = (@8 , C = 1, 2, ...,) (10)

where 7@8 is the pattern mask indicating the involved features in
the pattern(@8 . When integrating these cohorts to facilitate the eval-
uation of the 8-th feature, it is crucial to distinguish the importance
(denoted as #@8 ) of the involved cohorts. To address this, we devise
an attention mechanism that discerns the varying signi�cance of
di�erent cohorts in relation to the target prediction task:

V0@8 = (W& · h)8 ) · (W · C((@8 )), @ = 1, 2, ..., |⇠8 | (11)

V18 , V
2
8 , ..., V

|⇠8 |

8 = B> 5 C<0G (V018 , V
02
8 , ..., V

0 |⇠8 |

8 ) (12)

h08 =
’
@

V@8 (W+ · C((@8 )) (13)

whereW& ,W , andW+ are trainable weights, and C((@8 ) denotes
the cohort representation derived in Equation 9. CEM then sum-
marizes a feature’s cohort representations by weighing them with
the learned attention scores # , to derive the feature’s cohort repre-
sentation ĥ8 . Similar to MFLM, we concatenate all features’ cohort
representations and generate the patient’s overall cohort-related
representation ĥ = [h01; h

0
2; ...; h

0

|� | ].

Finally, based on a patient’s overall data representation h̃ learned
in MFLM and the patient’s individual overall cohort representation
ĥ learned in CEM, we conduct a binary prediction task via:

~̃ = f (w? · h̃ + 1? +w2 · ĥ) (14)

where w? , 1? , w2 are trainable weights, and f (·) is the sigmoid
function. When deriving the �nal prediction via Equation 14, we
can re-express w2 · ĥ as a cohort-related overall calibration score I:

I = w2 · ĥ (15)

=
’
8

w28 · h
0
8| {z }

5 40CDA4�;4E4; 20;81A0C8>= B2>A4

(16)

=
’
8

’
@

w28 · V
@
8 (W+ · C((@8 ))|                      {z                      }

2>⌘>AC�;4E4; 20;81A0C8>= B2>A4

(17)

where the overall calibration score z can be decomposed into feature-
level calibration scores, which can further be subdivided into cohort-
level calibration scores. Consequently, the complexity of cohort
exploitation in this module is O(|� | ⇥) ⇥ |⇠ | ⇥ (3⌘ + |! |) + |� | ⇥
(23⌘ + |! |)) ⇠ O(|� | ⇥) ⇥ |⇠ | ⇥ (3⌘ + |! |).

2493



Our framework is capable of supporting diverse tasks, and we
exemplify it by the binary classi�cation task, where the binary
cross-entropy loss function is employed:

L = �
1
⌫

⌫’
9=1

~ 9 ;>6(~̃ 9 ) + (1 � ~ 9 );>6(1 � ~̃ 9 ) (18)

~ 9 and ~̃ 9 represent the ground truth labels and prediction labels,
respectively, and B denotes the batch size.

4.5 Overall Complexity
We train our framework with all the four aforementioned steps:
learning patients’ �ne-grained representations viaMFLM inO(|� |⇥
) ⇥ (3>3⌘ + 3⌘

2
)), discovering diverse cohort patterns via CDM in

O|� | ⇥ ( |% | ⇥) ) ⇥3k ;>6(( |% | ⇥) ) ⇥3k )), representing cohorts via
CRLM in O(|� | ⇥ ( |% | ⇥) ) ⇥ (3⌘ + |! |) ⇥ |⇠ |), and utilizing these
cohorts via CEM in O(|� | ⇥ ) ⇥ |⇠ | ⇥ (3⌘ + |! |)). Therefore, the
overall computational cost in the training phase is O(|� | ⇥ ( |% | ⇥
) ) ⇥ (3⌘ + |! |) ⇥ |⇠ |). However, when making inferences on new
patients, only the �rst and last steps are required, leading to an
overall complexity of O(|� | ⇥) ⇥ |⇠ | ⇥ (3⌘ + |! |)).

5 EXPERIMENTS
5.1 Experimental Setup
We evaluate the e�ectiveness of our framework on three real-world
benchmark EHR datasets: MIMIC-III, MIMIC-IV, and eICU. We
perform the in-hospital mortality prediction, formulated as a binary
classi�cation task, on the �rst two datasets and conduct diagnosis
prediction as a multi-label classi�cation task on the third dataset.

MIMIC-III Dataset [19] is a publicly available ICU dataset col-
lected at Beth Israel Deaconess Medical Center spanning from 2001
to 2012. We �rst sample 21,139 admissions from this dataset based
on patients’ demographic data and EHR data as suggested by [13]
and subsequently extract 63 clinically aggregated time-series medi-
cal features. related to vital signs and lab tests.

MIMIC-IV Dataset [18], a public contemporary EHR dataset
released in 2023, provides valuable insights into a decade of admis-
sions ranging from 2008 to 2019. Distinguished from MIMIC-III,
this dataset comprises more recent data and a larger sample size. In
particular, we extract 35,122 admissions from this dataset, with a
focus on the top 70 most frequently occurring time-series features.

eICU Dataset [33] is collected from many critical care units
across the contiguous United States, encompassing patients admit-
ted to these units during 2014 and 2015. In our experiments, we
sample 41,547 admissions with 25 diagnosis labels as suggested
by [36], where each sample encompasses the 67 most frequently
occurring features, which include 48 lab tests and 19 chart events.

In these datasets, each sample contains medical features recorded
during the initial 48 hours following admission to the intensive care
unit (ICU), and all features are applied a mean-std standardization.

EvaluationMetrics.We compare CohortNet with baseline mod-
els using the following metrics: the area under the receiver operator
characteristic curve (AUC-ROC), the area under the precision-recall
curve (AUC-PR), and the F1-score. Among these metrics, AUC-PR
is the primary metric because it is the most informative score when

handling a highly imbalanced dataset [6, 8, 46]. We divide the sam-
ples into 80%:10%:10% for training, validation, and testing.

Implementation Details. Our experiments are conducted on a
server with 48 Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz and a
GeForce RTX 3090 GPU. For model training, we employ the Adam
optimizer [21] and set the learning rate to 1e-3.

Baselines.We compare CohortNet with the baselines below.
• LSTM [15] is an RNN-based model for time-series analytics.
• GRU [7] is another RNN-based time-series model but requires

fewer parameters than LSTM.
• RETAIN [5] utilizes two levels of GRU in the reverse time order

to di�erentiate the importance of visits and variables.
• Dipole [22] adopts a bidirectional GRU and devises attention

mechanisms to calculate the relationships among time steps.
• StageNet [12] models disease progression stages and incorpo-

rates them into learning disease progression patterns.
• T-LSTM [2] designs a time decay mechanism to handle irregular

time intervals in EHRs.
• ConCare [24] embeds each time-series medical feature sepa-

rately and employs a self-attention model to learn the relation-
ships among these features.

• GRASP [46] relies on a backbonemodel to learn patients’ general
representations, uses K-Means to �nd a group of similar patients,
and applies K-NN to integrate the groups’ information.

• PPN [45] identi�es typical patients to serve as prototypes and
leverages these prototypes by calculating similaritymetrics when
assessing new patients.

Moreover, we conduct an ablation study to assess the in�uence of
our learned cohorts by comparing it with the following baselines:
• CohortNet w/o c removes all cohort-related modules, namely

CDM, CRLM, and CEM. This evaluation aims to validate the
impact of the learned cohorts on the overall performance.

• CohortNet w c- employs K-Means to cluster patients’ overall
representations directly in CDM and then identi�es patients’
relevant cohorts directly via K-Means in CEM. The comparison
demonstrates the necessity of de�ning cohorts with concrete
patterns at the feature level.

5.2 Main Results
The experimental results of CohortNet compared to baseline mod-
els on the three datasets are illustrated in Figure 6. Among the
baselines, RETAIN exhibits inferior performance, as it prioritizes
interpretability over performance. Dipole, StageNet, T-LSTM, and
ConCare generally outperform the standard time-series models
LSTM and GRU due to their elaborate mechanisms tailored for cap-
turing speci�c characteristics in EHRs. GRASP and PPN enhance
predictive performance by integrating representations of similar
or typical patients. In comparison to the best-performing baseline
models, CohortNet consistently achieves improved performance in
all metrics, demonstrating substantial improvements in AUC-PR,
with increases of 3.5%, 2.8%, and 4.1% on the MIMIC-III, MIMIC-
IV, and eICU datasets, respectively. Furthermore, CohortNet also
achieves higher F1 scores by over 5% on the in-hospital mortality
prediction task. The superior performance of CohortNet stems from
its capability of �ne-grained feature-level representation learning
and e�ectiveness of cohort discovery, learning, and exploitation.
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Figure 6: Experimental results for in-hospital mortality prediction on the MIMIC-III and MIMIC-IV datasets and diagnosis
prediction on the eICU dataset in terms of the three metrics.
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Figure 7: E�ciency and performance analysis of di�erent
clustering techniques for feature state modeling in CDM.

5.3 Ablation Study
We further conduct an ablation study to compare the performance
of CohortNet and its several variants. As shown in Figure 6, Co-
hortNet w/o c, which includes only MFLM, surpasses the other
baselines, con�rming the e�ectiveness of MFLM in �ne-grained
feature-level representation learning by integrating feature inter-
actions and feature trends. The comparison against this variant
underscores the e�cacy of CohortNet, particularly in discovering
signi�cant cohorts de�ned by concrete feature patterns in CDM,
further learned in CRLM, and ultimately exploited in CEM. This
comprehensive pipeline in CohortNet leads to more accurate predic-
tions, as indicated by improved F1 scores. Furthermore, CohortNet
w c- demonstrates merely marginal improvement, indicating that
directly clustering patients’ overall representations cannot capture
su�cient information for these prediction tasks. In contrast, Cohort-
Net achieves substantial improvements, emphasizing the necessity
of �ne-grained cohort learning at the feature level.

To justify the adoption of K-Means for feature state model-
ing within the Cohort Discovery Module, we conduct a compar-
ative analysis against two alternative clustering techniques: co-
clustering [9] and hierarchical clustering [20], which both group
data into prede�ned numbers of clusters. To mitigate the issue of
time complexity in clustering, we sample patient representations

at varying sampling ratios of time step. As illustrated in Figure 7,
co-clustering not only incurs greater time consumption than K-
Means but also yields inferior performance in terms of AUC-PR.
Hierarchical clustering, meanwhile, demonstrates prohibitive time
consumption whenmodeling just 10% of time steps and su�ers from
memory exhaustion issues when handling larger volumes of data.
Further, both co-clustering and hierarchical clustering require extra
computations to determine cluster centroids for evaluating new
patients, while K-Means can streamline this process using learned
centroids. K-Means also achieves better e�ciency and e�ectiveness
which con�rms the its usage in our Cohort Discovery Module.

5.4 Interpretation Study
In this section, we elucidate how our framework interprets predic-
tions with learned cohorts, o�ering medically signi�cant insights
from di�erent perspectives in a top-down fashion, as elaborated in
Section 3. Figure 8(a) showcases Patient A’s standardized data for
several critical features, with more details in the caption.

5.4.1 Predictive Analytics. We start our exploration of its predictive
analytics by examining Patient A. Notably, we observe that our
proposed Multi-channel Feature Learning Module predicts Patient
A’s mortality probability to be 47%, based solely on Patient A’s
EHR data representation h̃. However, as shown in Figure 8(b), upon
identifying and leveraging Patient A’s relevant cohorts, our entire
framework increases this predicted probability to 61%.

5.4.2 Personalized Cohort Analytics. The changes in �nal predicted
probabilities result from the examination of feature-level calibration
scores, which are calculated in Eq.16, representing the in�uence of
each feature on the �nal prediction. We illustrate these scores in
Figure 8(c), with positive scores depicted in blue and negative scores
in pink. Speci�cally, RR and BUN exhibit relatively higher feature-
level calibration scores, thereby contributing to positive e�ects,
while some other features (e.g., PIP) exert negative in�uences.
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Table 2: Statistics of cohorts w.r.t RR.

Cohort Frequency Patients Pos-Rate Cohort Pattern

C#01 472 125 36.8% RR(S3"); BUN(S2"); PCO2(S7")
C#02 12519 2188 29.3% RR(S3"); ALT(S3#); AST(S2#)
C#03 2909 1019 16.0% RR(S3"); HCO3(S3"); PCO2(S7")
C#04 35753 12858 12.1% RR(S2�); HR(S7�); HCO3(S2�)
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Figure 8: An example of how our framework analyzes Patient
A with interpretable insights at di�erent levels. Involved
features include the respiratory rate (RR), alkaline phos-
phate (ALT), aspartate aminotransferase (AST), bicarbonate
(HCO3), blood urea nitrogen (BUN), partial pressure of car-
bon dioxide (PCO2), peak inspiratory pressure (PIP).

Each feature’s feature-level calibration score is aggregated from
the cohort-level calibration scores of its associated cohorts, as de-
rived in Eq. 17. When analyzing the feature RR in Patient A, it
identi�es several relevant cohorts by evaluating features’ states
at di�erent time steps. For instance, Cohort C#01 is identi�ed in
the 34th hour via Eq. 10. As shown in Figure 8(d), delving into the
feature RR, we discover some crucial cohorts with di�erent cohort-
level calibration scores. Certain cohorts (e.g., Cohorts C#01, C#02,
and C#03) contribute to a higher risk of mortality, whereas others
(e.g., Cohort C#04) might not exhibit this tendency. The details of all
four relevant cohorts are presented in Table 2, including the num-
ber of associated patients (Patients) and the rate of patients with
positive labels, i.e., patients’ mortality rate in this cohort (Pos-Rate).

5.4.3 Cohort Interpretation. Backed by the Cohort Discovery Mod-
ule, each identi�ed cohort has a distinct pattern comprised of mul-
tiple features along with their corresponding feature states. For
instance, Cohort C#03 is characterized by the pattern where RR is
in S3 (with lower values#), HCO3 is in S3 (with higher values"),
and PCO2 is in S7 ". More details about the feature states will be
introduced in Section 5.4.4. This cohort is crucial for analyzing the
reason behind Patient A’s lower RR level and deteriorating health
condition, as patients with such a pattern may be experiencing
respiratory acidosis. Respiratory acidosis [10, 11] is a condition
characterized by an elevation in PCO2 in the blood. Typically, it
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Figure 9: Feature state study in RR.

occurs when there is an accumulation of carbon dioxide in the body
due to inadequate breathing or impaired gas exchange in the lungs.
The low respiratory rate observed in the pattern suggests that pa-
tients are not breathing su�ciently to eliminate carbon dioxide
e�ectively, resulting in elevated PCO2 levels. In response, the body
compensates by increasing the concentration of HCO3 to maintain
acid-base balance. In a nutshell, this cohort’s characteristics align
with medical knowledge surrounding respiratory acidosis, which
further validates its interpretability in learned cohorts.

Considering the complexity of a patient’s health condition, a
patient may be associated with multiple cohorts that depict disease
progression. As shown in Figure 8(d), Patient A is also associated
with Cohort C#02 and C#01, which holds greater importance than
C#03. Among them, Cohort C#01 holds Patient A’s highest cohort-
level calibration score. Despite representing only 125 patients, this
cohort exhibits a signi�cantly higher mortality rate (36.8%) com-
pared to other cohorts. Its cohort pattern features elevated BUN in
S2 ", indicating increased blood nitrogen from urea, which is regu-
lated by the liver and excreted by the kidneys. Respiratory acidosis,
a�ecting kidney function, may consequently alter BUN levels. Exist-
ing medical studies [1, 10] explore the renal response to respiratory
acidosis by analyzing relevant features like sodium and chloride.
Given this context, it is promising to investigate this cohort, as ab-
normal features in its pattern may reveal possible interrelationships
and inspire potential medical research advancements.

CohortNet also identi�es several common cohorts such as Co-
hort C#04, which encompasses almost two-thirds of the patients in
our training dataset. All features in its cohort pattern remain at a
normal level (�), re�ecting the patients’ normal conditions. Hence,
C#04 demonstrates a slight negative in�uence on the �nal predic-
tion when compared to the other cohorts with abnormal patterns.
By jointly considering multiple relevant cohorts with varied im-
portance, CohortNet can e�ectively facilitate clinicians with better
assessments of the patient’s condition.

5.4.4 Feature State Interpretation. In Cohort Discovery Module,
each feature is classi�ed into : distinct states, and we take RR as
an example to interpret feature states from three perspectives.

Firstly, the states of features generally correspond to varied
medical values in EHRs. To account for this, we calculate the average
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Figure 10: Sensitivity analysis of CohortNet on : and = in
terms of AUC-PR on the MIMIC-III dataset.

k=3 k=5 k=7 k=9

0k

200k

(a) n=2

k=3 k=5 k=7 k=9

0k

200k

(b) k=7

0

500

1000

1500

0

500

1000

1500

Cohort Number Patient Number

Figure 11: The cohort numbers and the average patient num-
ber in each cohort on the MIMIC-III dataset.

values of RR across all patients in a state-wise manner, as illustrated
in Figure 9(a). Among these states, there is a speci�c state, namely
S1, which is assigned to patients who have not undergone testing
or recording for RR. Besides, we observe that di�erent states of
RR typically indicate di�erent value ranges. For example, when a
patient’s RR signi�cantly exceeds the upper limit of the normal
range (20 breaths per minute), it tends to fall into S6, indicating the
patient’s relatively severe conditions.

Secondly, the transitions between the states of RR follow speci�c
pathways, as shown in Figure 9(b). This diagram, based on all
training samples, uses varying curve thicknesses to indicate the
frequency of each state transition. It is evident that not all state pairs
have direct transitions. For instance, there are one-way transitions
from S2 to S3 and no direct transitions between S5 and S7. These
validate our capability to e�ectively capture the evolution of RR.

Thirdly, the di�erentiation between a feature’s di�erent states
can be visualized by considering their co-existence with other fea-
tures’ states. For instance, as shown in Figure 9(c), although S4
and S7 of RR exhibit similar average values, RR in S4 coexists with
PH in S4 or S7, whereas RR in S7 never exhibit such coexistence.
Delving into state correlations, CohortNet can capture more state
distinctions with interpretable insights.

5.4.5 Feature-level Interaction Interpretation. In addition to learn-
ing from the above cohorts, CohortNet can capture diverse feature-
level interactions through the Multi-channel Feature Learning Mod-
ule. It determines the importance of these interactions, as measured
by " in Eq. 2. Figure 8(e) illustrates an example where our model
analyzes the feature RR, assigning higher signi�cance to features
with extremely abnormal values (such as BUN). Additionally, sev-
eral other features (such as PCO2 and PIP) also receive elevated
attention values, indicating their strong relevance to RR in the med-
ical context. By integrating these crucial feature-level interactions,
the representation learned in CohortNet for each feature can de-
pict the feature’s various abnormal conditions, leading to improved
performance and interpretability.
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Figure 12: Scalability study of CohortNet on varying numbers
of patients, time steps, features on the eICU dataset.

5.5 Sensitivity Study
In this experiment, we investigate the impact of two critical hy-
perparameters, : in Eq. 7 and = in Eq. 8, on the performance of
CohortNet as illustrated in Figure 10. The : determines the number
of states considered when analyzing each feature, while = a�ects
the number of features used to de�ne each cohort pattern.

Notably, CohortNet consistently exhibits improvements across
di�erent settings compared with the best-performing baselines,
which a�rms the e�ectiveness of learning cohorts. The highest
AUC-PR value is achieved when : = 7 and = = 2. We also observe
that moderate values of = and : are crucial for achieving substantial
performance improvements. This is because both hyperparameters
in�uence the trade-o� between cohort granularity and the patient
number associated with each cohort. As shown in Figure 11, smaller
values of : or = result in more general cohorts with larger patient
numbers. However, such cohorts possess coarser-grained states
and fewer selected features, thus preserving less personalized in-
formation. Conversely, larger values of : or = result in cohorts that
maintain more �ne-grained details and tend to attain improved
performance. Nonetheless, selecting overly high values of : or =
may result in over�tting, and consequently, degrade performance.

5.6 Scalability Study
As detailed in Section 4.5, the time complexity of CohortNet is
in�uenced by the number of patients, time steps, and features. To
evaluate its scalability, we vary these factors in the largest eICU
dataset and measure the runtime of each step, as shown in Figure 12.

In Step 1, CohortNet processes features across time steps to learn
patients’ overall representations, with computation time increasing
linearly with the number of features and time steps. In Steps 2 and
3, CohortNet utilizes the complete data across all patients and time
steps to identify cohort patterns and learn cohort representations,
respectively. As illustrated in Figure 12 (a) and (b), the runtime esca-
lates more than linearly with an increase in the number of patients
and time steps. This is because, with more patients and more time
steps taken into consideration, CohortNet identi�es more cohort
patterns and requires a longer time to derive the representations of
these cohorts. Additionally, an increase in the number of features
leads to the discovery of more potential feature interactions during
the cohort modeling process, subsequently extending the runtime
for these two steps, as depicted in Figure 12 (c). Meanwhile, as
CohortNet identi�es an increased number of cohorts through these
two steps, the computational demands also rise for training datasets
or evaluating new patients in Step 4.
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Figure 13: Runtime of models on the MIMIC-III dataset.
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Figure 14: E�ciency analysis on : and = in terms of runtime
on the MIMIC-III dataset with di�erent sample sizes.

5.7 E�ciency Study
E�ciency comparison. We subsequently investigate the runtime
of CohortNet in comparison with the baselines on the MIMIC-III
dataset. The runtime metrics include the training time required
for a batch of patients, the inference time for a new patient, and
the preprocessing time required in Steps 2 and 3 for training. The
comparative runtime results are depicted in Figure 13.

Among the baseline models, GRU and LSTM stand out for e�-
ciently handling time series data, demonstrating superior perfor-
mance in training and inference times. However, more complex
models such as RETAIN andDipole, which feature dual-layer or bidi-
rectional GRU architectures, introduce additional computational
overhead. Likewise, specialized designs like StageNet and T-LSTM,
which are tailored to model disease stage progression and irregular
time intervals respectively, necessitate increased runtime. Besides,
compared with ConCare which also processes features separately,
CohortNet w/o c exhibits relatively prolonged runtime due to its
consideration of �ne-grained feature interactions and trends. Re-
garding cohort modeling, GRASP learns exclusively from batches
of patients, whereas PPN, CohortNet w c-, and CohortNet entail
additional preprocessing time to learn typical patients or cohorts.
E�ect of : and = on e�ciency. We further evaluate the e�ect
of : and = on our framework’s preprocessing e�ciency for train-
ing and inference. During training, it encompasses all four steps,
with : and = speci�cally in�uencing in the preprocesses of feature
state learning and cohort representations learning in Steps 2 and
3. Figure 14 shows that as the number of patients increases, Co-
hortNet demands more time since it needs to process all patients.
Notably, when classifying each feature into fewer states (i.e., :=5)
and exploring cohort patterns with less involved features (i.e., ==1),
training time does not drastically increase with a larger sample size.
It is attributed to the reduced cohort exploration spaces (i.e., lower
: and =). Beyond a certain patient count, the growth of discovered
cohorts is gradual, indicating that the identi�ed cohort patterns are
capable of encompassing future patients. However, CohortNet with
a larger : needs a longer time to model features with more states.
Similarly, a higher = indicates that more features will be considered

when CohortNet discovers cohort patterns. Consequently, as the
training samples increase up to 16.9k, with a rise in both = and : ,
CohortNet discovers more cohorts, thereby elongating the time for
subsequent patient retrieval and cohort learning.

During inference, altering sample size does not a�ect the time of
CohortNet w/o c, which relies solely on individual patient data. In
contrast, CohortNet takes longer for predicting since it leverages
discovered cohorts when making decisions.

5.8 Discussions and Limitations
Selection of : and =. In our experimental setup, the : and = are
�xed across all features determined by prediction performance.
However, incorporating auxiliary information could improve their
selections. For instance, in feature state modeling, the selection of
: can be improved by considering feature characteristics such as
missing rates and value ranges. For = in subsequent cohort pattern
modeling, employing thresholds on " shows promise for automati-
cally selecting=. Hence, adapting these parameters based on feature
characteristics and interactions may improve �nal performance.
Time complexity. As analyzed in Section 4.5, utilizing more pa-
tients, features, and time steps indeed facilitates the discovery of
more meaningful cohorts and improves prediction. However, this
concurrently introduces a higher complexity and extends the time
required for identifying, learning, and exploiting cohorts. To miti-
gate the computational burden, we could consider implementing
advanced cohort �lters and iterative cohort update strategies to
shorten cohort learning time.
Cohort validation and knowledge exploitation. As shown in
Section 5, discovered cohorts can signi�cantly improve the predic-
tion performance and provide medically meaningful insights, often
aligning with previous medical studies. However, we acknowledge
that not all high-performing cohorts demonstrate clear medical
signi�cance, necessitating further validation by clinicians.

6 CONCLUSIONS
In this paper, we present an interpretable healthcare analytics frame-
work that facilitates e�ective cohort discovery with concrete feature
patterns, which is a crucial task not achieved in prior studies. Its
core component, CohortNet, comprises four modules designed for
�ne-grained patient representation learning considering individual
feature trends and feature interactions, the auto-discovery of co-
horts with medically interpretable patterns, comprehensive cohort
representation learning through associated patient retrieval, and
personalized cohort exploitation for enhanced healthcare analytics.
Extensive experiments on three real-world EHR datasets show its
superior performance, with AUC-PR improvements ranging from
2.8% to 4.1% compared to state-of-the-art baselines. These results
con�rm our framework’s e�ectiveness in cohort discovery, learning,
and exploitation for enhancing prediction performance and provid-
ing interpretable insights. In future, we shall further collaborate
with clinicians to validate our �ndings following medical practices.
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