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ABSTRACT
The growing demand for advanced analytics beyond statistical ag-
gregation calls for database systems that support effective model
selection of deep neural networks (DNNs). However, existing model
selection strategies are based on either training-based algorithms
that deliver high-performing models at the expense of high com-
putational cost, or training-free algorithms that enhance compu-
tational efficiency with reduced effectiveness. These strategies of-
ten disregard computational cost and response time Service-Level
Objectives (SLOs), which are of concern to average or budget-
conscious machine learning users. In addition, they lack a well-
designed integration of the model selection algorithms with DBMSs,
which hinders efficient in-database model selection. This paper
presents TRAILS, a resource-efficient and SLO-aware in-database
model selection system. To leverage the strengths of both training-
free and training-based model selection, we first characterize nine
state-of-the-art training-free model evaluation metrics and pro-
pose a more effective one named JacFlow, and then, restructure
the conventional model selection procedure into two phases: fil-
tering and refinement. A novel coordinator is also introduced to
strike a balance between the high efficiency of train-free algorithms
and the high effectiveness of training-based algorithms, ensuring
high-performing model selection while adhering to target SLOs.
Moreover, we incorporate the proposed algorithm into PostgreSQL
to develop TRAILS, thereby both enhancing resource efficiency and
reducing model selection latency. This integration establishes a
foundation for declarative model definition and selection within
DBMSs. Empirical results demonstrate that our TRAILS reduces
model selection time and computational expenses considerably by
up to 24.38x and 29.32x respectively compared to existing model
selection systems.
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1 INTRODUCTION
Database Management Systems (DBMSs) store and manage data for
business daily operations and support analytical processes through
query execution [6, 19, 26, 50, 54]. In-database analytical processes
offer many advantages, such as reducing data management over-
head in separate systems and ensuring data provenance and secu-
rity [22, 60]. Machine Learning (ML) has shown great potential in
data analytics, exhibiting superior performance compared to tra-
ditional statistical aggregation methods [12, 13, 27, 37, 39, 43, 58].
Therefore, not surprisingly, recent works [16, 23, 28, 33, 38, 47] have
proposed to integrate machine learning into DBMSs for complex
analytics via declarative languages such as SQL.

With the continuing trend of devising new Deep Neural Network
(DNN) models in the research community [1–3, 24, 68], automatic
selection of a well-performing model for a specific analytics task
becomes increasingly imperative. This motivates the integration of
model selection into DBMSs as an in-database analytical process,
such that the model selection can be effectively supported by Model
Selection Queries (MSQs) within DBMSs.

Unlike hyper-parameter optimization (HPO), which focuses on
finding the optimal hyper-parameters for a given model, e.g., learn-
ing rate, batch size, and activation functions [55, 61], model se-
lection is dedicated to searching for the best-performing model
with the optimal network topology in a search space of candidate
models. Typically, the network topology of a DNN model can be
represented as a Directed Acyclic Graph (DAG), where nodes and
edges represent certain computation operations. A search space of
network topologies with multiple layers of nodes and connections
can comprise up to 1018 different candidate models [57, 62]. Fully
evaluating these models to select the best one is computationally
prohibitive in both time and resources [40]. Therefore, both the
effectiveness and efficiency of the search process are critical in
real-world model selection, where a strict response-time threshold
is typically predefined by users and must be met by the model selec-
tion task. Such requirements are often specified as response-time
Service-level Objectives (SLOs) [7, 66]. For instance, a user may
submit a model selection query for CTR-Prediction on the Criteo
dataset and expect to receive a higher-performing model within a
two-hour response-time threshold, as illustrated in Figure 1. Failing
to meet the SLOs can lead to reduced query service quality or even
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Figure 1: An in-database model selection example.

financial losses [66]. Therefore, an in-database model selection sys-
tem must execute MSQs in an SLO-aware manner and minimize
resource consumption, particularly in terms of GPU and memory.

Achieving SLO-aware model selection that can consistently pro-
duce a well-performing model within any given response-time
threshold presents great difficulty. Training-based model selection
algorithms can effectively measure the model performance [42, 68],
but they typically require training and evaluating hundreds to
thousands of candidate models, which are computationally heavy
and cannot satisfy the SLO when the time budget is limited. To
improve efficiency, recent works on training-free model selection
algorithms [5, 49, 56] seek to estimate model performance with-
out training by computing certain statistics of candidate models,
namely Training-FreeModel EvaluationMetrics (TFMEMs). Lever-
aging TFMEMs enables efficient evaluation of a large number of
models. However, relying solely on TFMEMs restricts the potential
for finding higher-performing models compared to more accurate
training-based algorithms within a given response-time threshold
constraint. Indeed, a model selection algorithm that is both effective
and efficient, and can adhere to SLOs consistently is still lacking.

Additionally, efficiently integrating the model selection algo-
rithm into a database to reduce data retrieval and preprocessing
overhead, enhance scalability, and reduce memory consumption
presents further challenges from a system perspective. One primary
challenge is how to coordinate data management within a DBMS
with the execution of model selection algorithms. Conventional
approaches typically support model selection using two separate
systems [17, 53] as illustrated in Figure 2, which requires transfer-
ring the entire data from a DBMS to a separate model selection
system. This process is inefficient and prone to errors and breaches
of privacy and security [19, 60]. Further, loading data into a separate
system results in considerable memory usage. Recently, there have
been preliminary attempts to directly integrate model selection
algorithms into DBMSs via User Defined Functions (UDFs) [19, 60].
However, such integration complicates the system implementa-
tion and misses the opportunities to scale out the model selection
algorithms with more computational resources, e.g., leveraging
dedicated hardware such as GPUs to accelerate model training [32].

To address the above challenges, we build an SLO-aware and
resource-efficient in-database model selection system. First, we pro-
pose an SLO-aware and GPU-resource-conserving two-phasemodel
selection algorithm that harnesses the advantages of both training-
free and training-based paradigms. Specifically, we benchmark nine

state-of-the-art TFMEMs regarding their theoretical characteriza-
tion of either the trainability or expressivity of the models. Second,
we combine the best performing TFMEMs by a learned weighted
average of each property to enjoy the benefits of both and obtain a
more effective TFMEM termed as JacFlow. Lastly, we restructure
the model selection into two separate phases, the filtering and re-
finement phases, to leverage the efficiency of training-free and the
effectiveness of training-based model selection algorithms. The fil-
tering phase is designed to quickly explore a large set of candidate
models and approximately derive a set of promising models based
on JacFlow. The refinement phase seeks to accurately pick the best-
performing model from the promising model set through slightly
more expensive training-based model evaluation. To balance the
two phases and achieve SLO awareness, we investigate the inherent
trade-offs in their interaction and introduce a coordinator to deliver
higher-performing model selection while adhering to the target
response-time threshold.

We integrate the proposed two-phase model selection algorithm
into PostgreSQL non-intrusively via stored procedure and build
filTeRing And refInement in-database modeL Selection system
(TRAILS), which is designed to improve efficiency, enhance scala-
bility, and reduce memory consumption. Particularly, we execute
the computationally light but I/O intensive model filtering on the
CPUs and within the DBMS via UDFs to minimize data operation
overhead. For the computationally intensive refinement phase, we
execute it through an external execution engine separate from the
DBMS to enhance scalability. Additionally, we design a data cache
service to facilitate on-the-fly data transformation between the
DBMS and this execution engine. The cache service enables pipeline
parallelism between batch data operations and model training, thus
eliminating the waiting time associated with retrieving and prepro-
cessing data before training and reducing overall memory usage
by avoiding loading the entire dataset into memory.

In summary, we make the following contributions:

• We characterize nine state-of-the-art TFMEMs and compre-
hensively examine their effectiveness. Based on the analy-
sis, we propose a more effective TFMEM termed JacFlow
to estimate model performance efficiently and effectively.

• We propose an SLO-aware and resource-efficient two-phase
model selection algorithmwith a novel coordinator to lever-
age the strengths of both efficient training-free and effective
training-based model selection.

• We build an end-to-end in-database model selection sys-
tem called TRAILS by non-intrusively integrating the two-
phase model selection algorithm on top of PostgreSQL with
optimization on scalability, efficiency, and memory con-
sumption. The TRAILS also functions as a component of
NeuRDB to select well-performing DNN models for down-
stream tasks, such as model inference.

• We construct an extensive benchmark dataset with 160,000
candidate models and their detailed training and evaluation
statistics for benchmarking model selection algorithms on
structure data. Experiments show that TRAILS significantly
reduces the model selection time and the computational
cost by up to 24.38x and 29.32x respectively, and supports
SLO-aware model selection efficiently.
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The remainder of this paper is organized as follows: Section 2
presents the preliminaries, followed by the characterization and
analysis of TFMEMs in Section 3 and the two-phase model selection
algorithm in Section 4. We discuss the integration of the proposed
algorithm on DBMS in Section 5. Experimental results are provided
in Section 6, and related work is summarized in Section 7. Finally,
we conclude the paper in Section 8.

2 PRELIMINARIES
In this section, we introduce the background, problem definition,
and existing model selection systems, followed by two key tech-
niques that are central to our in-database model selection system,
namely training-free model evaluation and fixed-budget algorithms.

2.1 Background and Problem Definition
Model Selection aims to automatically search for the optimal
neural network topology from a vast search space with the highest
performance, measured in certain metrics such as accuracy or AUC,
on a given dataset, which typically involves three key components:
search space, search strategy, and model evaluation.

Search space, denoted as 𝑀 , refers to a collection of possible
models 𝑚, i.e., 𝑀 = {𝑚}, each with a unique topology [18, 65].
Its design defines the solution space, influencing the final model’s
quality and problem complexity.

Search strategy iteratively samples candidate models from the
search space for model evaluation, as denoted by 𝑚 = 𝑓𝑠 (𝑀, 𝑆𝑖 ),
where 𝑆𝑖 represents the state of the current search strategy at itera-
tion 𝑖 . It aims to explore the search space effectively by incorporat-
ing knowledge from previous iterations [9, 53], such as the model
and its performance 𝑝 (AUC or accuracy), to update 𝑆 accordingly.

Model evaluation involves assessing the performance of models
on the validation dataset, i.e., 𝑝𝑚 = 𝐸 (𝑚,𝐷𝑣𝑎𝑙𝑖𝑑 ), where 𝐸 (·, ·) is
the model evaluation function and can be either training-based or
training-free, and 𝐷𝑣𝑎𝑙𝑖𝑑 represents the validation dataset.
Problem Definition. The objective of in-database model selection
is to perform model selection in a DBMS via query execution, i.e.,
Model Selection Queries (MSQs). To achieve SLO awareness and
resource efficiency, the MSQ must be completed within a user-
specified response-time threshold 𝑇𝑚𝑎𝑥 , i.e., 𝑇𝑀𝑆𝑄 ≤ 𝑇𝑚𝑎𝑥 , and
conform to the resource constraints 𝑅𝑚𝑎𝑥 . The overall objective
functions can be formulated as follows:

Maximize: 𝑝𝑚 = 𝐸 (𝑚,𝐷valid)
Subject to: 𝑇𝑀𝑆𝑄 ≤ 𝑇𝑚𝑎𝑥

Resource(𝑀𝑆𝑄 (𝑀,𝐷,𝑇𝑚𝑎𝑥 )) ≤ 𝑅𝑚𝑎𝑥

TraditionalModel Selection Systems in DBMSs aremostly based
on the full model training [42, 53, 67], and can be structured into
four stages: data retrieval, data preprocessing, model sampling,
and training-based model evaluation, as illustrated in Figure 2.
Data retrieval typically exports the entire data table to external
storage, often as a CSV file or multiple partitioned files. Upon model
selection initiation, the entire data is loaded once into memory
for preprocessing. The search strategy then samples models from
the search space. Evaluation workers evaluate these models which

Model Selection  
System

SELECT 
      *  
FROM  
TABLE; 

Search Strategy 
model sampling

p

m

Search Space

Exported Data
Data Partition 2Data Partition 1 Data Partition p…

Data  
Preprocessing

Request for model selection via Python API

Model Evaluation 
via full training

Model Evaluation 
via full training

Model Evaluation 
full training

 Python Interface

Figure 2: Data access pattern in traditional model selection.

require extensive full training of hundreds to thousands of iterations
on the preprocessed data. The evaluation results then guide the
subsequent model sampling.

Traditional model selection systems require data transfer from a
DBMS to external storage and preprocessing of the entire dataset
before training, causing a long waiting time for training. Also, it
requires a substantial amount of memory. Since they are based
on full-model training, they are unaware of the 𝑇𝑚𝑎𝑥 and SLO
requirements. All these limitations call for the design of an in-
database resource-efficient and SLO-aware model selection system.

2.2 Training-Free Model Evaluation
In principle, training-free model evaluation techniques estimate
model performance by calculating certain statistics of the model
using a single forward or backward computation on a single mini-
batch of data without full training. Given a model𝑚 with parame-
ters a 𝜃 , a TFMEM [5, 49, 56] computes a score 𝑠𝑎 to quantitatively
estimate the model performance 𝑝 . A larger absolute value of 𝑠𝑎
typically indicates better model performance. A TFMEM can be
formally defined as:

𝑠𝑎 = 𝐸 (𝑚(𝜃 ),B𝑑𝑎𝑡𝑎) (1)
where 𝐸 denotes the training-free model evaluation function of the
a TFMEM, and B𝑑𝑎𝑡𝑎 refers to a batch of data. The main advantage
of TFMEMs is the extremely high computational efficiency, which
requires computation on only one batch of data and thus enables
the exploration of a wider range of candidate models. Different
TFMEMs are designed considering various properties, including
the evaluation metrics, computational complexity, methods of com-
putation, and access to the data and labels (data/label agnostic). We
summarize these properties in Table 1 and present more compre-
hensive benchmarking and discussion in Section 3.

2.3 Fixed-Budget Algorithm
Fixed-budget algorithms aim to balance exploration and exploita-
tion by allocating resources judiciously across models. These algo-
rithms [8, 21, 25] seek to find the best-performing model without
exceeding the overall budget constraint, such as the 𝑇𝑚𝑎𝑥 . Notable
algorithms include Uniform Allocation (UNIFORM)[25], Successive
Rejects (SUCCREJCT)[8], and SuccessiveHalving (SUCCHALF) [25].
SUCCHALF commences by apportioning an equal, minimal time
budget for training each model. Following each round, a fraction
of the top-performing models (typically half) are retained, and the
time budget for the next training round is doubled. This procedure
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Table 1: A Comparison of Different Training-Free Model Evaluation Metrics (TFMEMs).

TFMEM Evaluation Metric Complexity Computation Data/Label Agnostic Characterization

GradNorm [5] Frobenius norm 1F+1B 𝑠𝑎 = ∥ 𝜕𝐿
𝜕𝜃
∥𝐹 Not Trainability

NASWOT [41] Hamming distance 1F 𝑠𝑎 = 𝑙𝑜𝑔 |𝐾𝐻 | Label Expressivity
NTKCond [15] Neural tangent kernel 1F+1B 𝑠𝑎 =

𝜆𝑚𝑎𝑥 (Θ)
𝜆𝑚𝑖𝑛 (Θ) Not Trainability

NTKTrace [49] Neural tangent kernel 1F+1B 𝑠𝑎 = ∥Θ∥𝑡𝑟𝑎𝑐𝑒 Not Trainability
NTKTraceAppx [48] Neural tangent kernel 1F+1B 𝑠𝑎 = ∥Θ𝑎𝑝𝑝𝑥 ∥𝑡𝑟𝑎𝑐𝑒 Not Trainability
Fisher [5] Hadamard product 1F+1B 𝑠𝑎 =

∑︁𝐿
𝑙=1 (

𝜕L
𝜕𝑎𝑐𝑙

𝑎𝑐𝑙 )2 Not Trainability
GraSP [52] Hessian vector product 1F+1B 𝑠𝑎 =

∑︁−(𝐻 𝜕L
𝜕𝜃
)
⨀︁

𝜃 Not Trainability
SNIP [31] Hadamard product 1F+1B 𝑠𝑎 =

∑︁ | 𝜕L
𝜕𝜃

⨀︁
𝜃 | Not Trainability

SynFlow [51] Hadamard product 1F+1B 𝑠𝑎 =
∑︁ 𝜕L

𝜕𝜃

⨀︁
𝜃 Data/Label Trainability

L: loss function. 𝜃 : model parameters. Θ: Neural Tangent Kernel (NTK) matrix of the model.
⨀︁

: Hadamard product. 𝑠𝑎 : the score of a model.
𝜆: the eigenvalue of NTK matrix. 𝐻 : Hessian vector. 𝐿: number of model layers. ∥ .∥𝐹 : Frobenius norm. 𝑎𝑐𝑙 : activation saliency of one layer.
𝐹 : forward computation. 𝐵: backward computation.

is reiterated until a single model prevails. Similarly, SUCCREJCT
initially allocates an equal, small time budget to each model. After
each evaluation round, the least-performing models are discarded,
and their time budget is redistributed among the remaining mod-
els. In contrast, UNIFORM distributes the budget equitably among
all models, where each candidate model undergoes training and
evaluation using the same fixed-time budget.

3 CHARACTERIZATION OF TFMEMs
3.1 Comparison of TFMEMs
We present the comparison of nine TFMEMs in Table 1. Each
TFMEM is classified based on its ability to capture one of two key
theoretical properties of the models under evaluation: trainability
and expressivity, as summarized in the last column in Table 1. Train-
ability measures the extent to which the model can be effectively
trained via gradient descent. It has been explored in the context
of network pruning [31, 51, 52]. They primarily focus on identify-
ing highly trainable subnetworks by evaluating the importance of
individual parameters within the DNN, followed by pruning less im-
portant connections. A concept known as synaptic saliency [31, 51]
is proposed to quantify the importance of each parameter, formally
defined as follows:

Φ(𝜃 ) = 𝑓 ( 𝜕L
𝜕𝜃
)
⨀︂

𝑔(𝜃 ) (2)

whereL represents the loss function, and
⨀︁

denotes theHadamard
product. Approaches in this category such as SNIP [31], GraSP [52],
and SynFlow [51] mainly differ in how 𝑓 (·) and 𝑔(·) are defined:
e.g., Φ(𝜃 ) = | 𝜕L

𝜕𝜃
|
⨀︁
|𝜃 | in SNIP; Φ(𝜃 ) = −(𝐻 L

𝜕𝜃
)
⨀︁

𝜃 in GraSP;
and Φ(𝜃 ) = 𝜕L

𝜕𝜃

⨀︁
𝜃 in SynFlow. [5] evaluates the architecture

performance by aggregating the synaptic saliency of all parame-
ters in a DNN: 𝑠𝑎 =

∑︁
Φ(𝜃 ). Here 𝐻 is the Hessian vector, and

∑︁
represents the sum over all elements in the Φ(𝜃 ).

Expressivity measures the complexity of the functions that the
model can represent. TE-NAS [15] evaluates it by calculating the
number of linear regions the model can divide. NASWOT [41] eval-
uates it by measuring the distance between the activation pattern
vectors generated by the model for any sample pair in a mini-batch

of data. A larger distance indicates a strong capacity to distin-
guish between different samples. Formally, the NASWOT is cal-
culated as 𝑙𝑜𝑔 |𝐾𝐻 |, where 𝐾𝐻 is an 𝑁 × 𝑁 kernel matrix with
𝐾𝐻 (𝑖,𝑗 ) = 𝑁𝑎 − 𝑑𝐻 (𝑐𝑖 , 𝑐 𝑗 ), 𝑁𝑎 is the number of rectified linear units
in the model and𝑑𝐻 is the Hamming distance between two samples’
activation pattern vectors 𝑐𝑖 and 𝑐 𝑗 .

3.2 Benchmarking of TFMEMs
To benchmark the effectiveness of different TFMEMs, we quantita-
tively measure the evaluation correlation between the score com-
puted by them and the actual performance of models across differ-
ent search spaces and datasets. The results are shown in Table 2. A
TFMEM with consistent signs across different search spaces and
datasets and large absolute correlation values is regarded as more
effective (marked as bold in Table 2). First, expressivity-focused
TFMEMs, e.g., NASWOT, shows a consistent positive correlation
across all experimental settings. However, it disregards the synap-
tic saliency information associated with each parameter, result-
ing in suboptimal correlation values compared to the trainability-
focused TFMEMs such as SNIP and SynFlow on the Criteo and
Frappe datasets. Second, while the trainability-focused TFMEMs
can achieve a higher positive correlation, they involve more intri-
cate computations, which can introduce inconsistencies of signs
when applied across different search spaces, such as NTKTrAppx
and GraSP. In summary, NASWOT and SynFlow demonstrate supe-
rior effectiveness, as indicated by consistently positive and higher
absolute SRCC values across different search spaces and datasets.

3.3 JacFlow TFMEM
To derive a more effective TFMEMs for our system, we propose to
combine the strengths of both expressivity-based and trainability-
based TFMEMs for an enhanced TFMEM termed JacFlow:

𝑠𝑎 = 𝑤1
∑︂ 𝜕L

𝜕𝜃

⨀︂
𝜃 +𝑤2𝑙𝑜𝑔|𝐾𝐻 | (3)

where we combine the best-performing TFMEMs of respective
properties, i.e., SynFlow and NASWOT, into JacFlow by calculating
a weighted average of their scores. The weights 𝑤1 and 𝑤2 are
learned via regression on the actual performance of the models [29].
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Table 2: Spearman Rank Correlation Coefficient (SRCC) of TFMEMs measured on six datasets across three search spaces.

TFMEM NB101+C10 NB201+C10 NB201+C100 NB201+IN16 DNN+Frappe DNN+Diabete DNN+Criteo Average Rank
GradNorm -0.34 0.64 0.64 0.57 0.45 0.39 0.32 N/A
NASWOT 0.37 0.79 0.80 0.78 0.61 0.63 0.69 2.71
NTKCond -0.28 -0.48 -0.39 -0.41 -0.77 -0.56 -0.66 3.71
NTKTrace -0.42 0.37 0.38 0.31 0.54 0.37 0.46 N/A
NTKTrAppx -0.53 0.34 0.38 0.36 0.13 0.31 0.01 N/A

Fisher -0.37 0.38 0.38 0.32 0.48 0.21 0.41 N/A
GraSP 0.14 0.53 0.54 0.52 -0.27 -0.23 -0.18 N/A
SNIP -0.27 0.64 0.63 0.57 0.68 0.62 0.78 N/A

SynFlow 0.39 0.78 0.76 0.75 0.77 0.68 0.74 2.57
JacFlow 0.42 0.83 0.83 0.81 0.77 0.69 0.75 1.00

In the last column of Table 2, we calculate the average rank of
only TFMEMs with consistent signs across six datasets and three
search spaces, i.e., JacFlow, SynFlow, NASWOT, and NTKCond. The
results show JacFlow clearly outperforming other TFMEMs with an
average rank of 1.00. This suggests that the proposed combination
strategy is simple yet effective in augmenting model evaluation by
using complementary TFMEMs for improving the effectiveness of
fast model evaluation.

4 TWO-PHASE MODEL SELECTION
ALGORITHM

With the computationally efficient JacFlow, a straightforward ap-
proach of model selection is to randomly score a large number
of models based on Equation 3 and then select the model with
the highest score. However, such a random sampling approach is
not efficient as compared to more advanced search strategies [45].
Moreover, scores estimated by JacFlow only indicate the estimated
performance of models as discussed in Section 2.2 and supported
by Table 2 (SRCC is less than 1). Therefore, we propose a two-phase
model selection algorithm to enhance the effectiveness of our model
selection algorithm. First, we introduce a filtering phase, which
employs advanced search strategies to efficiently explore promising
models with higher scores in the search space. Second, instead of
simply returning the highest-scored model, we rank the models
by their scores and retain only a small subset of promising models.
Then, we introduce a refinement phase, which employs training-
based model evaluation to more effectively determine the optimal
model from this small subset. Lastly, to coordinate the two phases
and achieve SLO-aware model selection, we design a coordinator
to jointly optimize the two phases via an objective function that
maximizes the performance of the selected model given 𝑇𝑚𝑎𝑥 .

4.1 Filtering Phase - Efficient Exploration
Filtering Phase Algorithm. We adopt the Asynchronous Reg-
ularized Evolution Algorithm (AREA) [35] in the filtering phase,
which supports efficient search space exploration [18, 35]. AREA
maintains a diverse population, and then iteratively samples, mu-
tates, and evaluates them. Better-performing models have a higher
probability of selection and producing offspring. Specifically, as
outlined in Algorithm 1, for each evaluation circle, a worker first
acquires the model encoding (also named genotype) as shown in
Figure 3 from the search strategy, constructs the model (lines 14-15),
and then scores it using JacFlow and sends the score back to the

shared message queue (lines 16-17). The search strategy maintains
a pool of model encodings and the corresponding scores. The model
pool is initialized randomly at the initialization of the search strat-
egy. Once the search strategy receives the request from workers,
it employs AREA to read a small set of model encodings from the
local pool, and then mutates the encoding of the highest score and
returns it to the worker (lines 5-7). Simultaneously, another thread
keeps reading from the shared message queue and updating the
current model pool (lines 10-11). Finally, the search strategy keeps
the top 𝐾 out of the 𝑁 scored models for the refinement phase.
Discussion. The proposed filtering strategy offers several key ad-
vantages. It achieves high efficiency by utilizing AREA for fast ex-
ploration and adopting the JacFlow metric for training-free model
evaluation. Also, the exploration process is readily schedulable.
Given that scoring each model is performed using a fixed-size batch
of data and takes only a single forward and backward computation,
the time required to evaluate a model is relatively constant and can
be measured via the profiling stage as demonstrated in Figure 3.
This predictability allows for easy scheduling based on a given
time budget. In conclusion, TRAILS can efficiently and effectively
explore the large search space and derive a small set of promising
models for further training-based evaluation.

4.2 Refinement Phase - Effective Exploitation
The refinement phase is introduced to employ a training-based
model evaluation to accurately identify the best-performing model
from the 𝐾 models returned by the filtering phase. Given a user-
defined 𝑇𝑚𝑎𝑥 , training all 𝐾 models till convergence suffers from
heavy consumption of both time and GPU resources, and may
violate SLOs. The challenge here is how to effectively identify the
optimal model from the 𝐾 models within a fixed time budget.
Refinement Phase Algorithm.We first experimentally analyze
three widely adopted fixed-budget optimization algorithms for the
refinement phase [10]: Uniform Allocation (UNIFORM) [25], Suc-
cessive Rejects (SUCCREJCT) [8] and Successive Halving (SUC-
CHALF) [25]. The results summarized in Figure 13 demonstrate that
SUCCHALF consistently achieves high model performance given a
time budget. We thus adopt SUCCHALF in two-phase model selec-
tion algorithm. The refinement phase is outlined in Algorithm 2: the
budget controller allocates the initial training epochs 𝑈𝑖𝑛𝑖𝑡 to train
and evaluate the performance of each of the 𝐾 models (lines 2-4),
keeps only 1

𝜂 models (line 5) after the first round, and increases
the 𝑈𝑖𝑛𝑖𝑡 to 𝑈𝑖𝑛𝑖𝑡 · 𝜂 such that each kept model is trained with
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Algorithm 1: Filtering Phase - Efficient Exploration
Input :𝑀 : Search space.𝑇𝑚𝑎𝑥 : Time budget.𝑄𝑚 : Model queue.

𝑄𝑠 : Model score pair queue. B𝑑𝑎𝑡𝑎 : Mini-batch.
𝑛: Initial model pool size.

Output :𝐾 models.
1 Async Aging Evolution (𝑀,𝑇𝑚𝑎𝑥 )
2 𝑃𝑜𝑜𝑙 ← RandomGenotype(𝑛)
3 while Receive worker’s request /* Thread-1 */
4 do
5 genotype← GeneticSelection(𝑃𝑜𝑜𝑙 )
6 genotype’←Mutate(genotype)
7 𝑄𝑚 ← 𝑄𝑚

⋃︁
(genotype’)

8 while True /* Thread-2 */
9 do
10 (genotype, 𝑠𝑎 )← 𝑄𝑠 .FetchScore()
11 UpdateLocalPool(genotype, 𝑠𝑎 )

12 Evaluation Worker (𝐷𝐵 )
13 while True do
14 genotype’← 𝑄𝑚 .FetchGenotype()
15 𝑚←ModelConstruct(genotype’)
16 𝑠𝑎 ← Score(𝑚, B𝑑𝑎𝑡𝑎 )
17 𝑄𝑠 ← 𝑄𝑠

⋃︁
(genotype’, 𝑠𝑎 )

more budget in the next round for more accurate evaluation (line
6). SUCCHALF stops when only one model remains.
Discussion.The refinement phase is budget-aware, resource-efficient,
and easy to scale. With the SUCCHALF algorithm, the refinement
phase can adhere to the predefined time budgets. Additionally, it
performs training-based evaluation in an epoch-wise manner and
can direct more budgets toward more promising models, which
thus avoids wasting resources in training unpromising models.
Lastly, the independent training and evaluation of models in each
evaluation round make the refinement phase easy to scale.

4.3 Coordinator
In practice, both phases are governed by predefined parameters,
namely the number of models explored in the filtering phase (𝑁 ),
the number of promising models to retain for further refinement
(𝐾), and the initial training epochs required to train and evaluate
each model during the refinement phase (𝑈𝑖𝑛𝑖𝑡 ). Given the 𝑇𝑚𝑎𝑥 ,
the coordinator is responsible for determining the values of these
parameters to balance between exploring a diverse range of mod-
els and concentrating on the most promising models for further
evaluation while meeting SLOs.

Algorithm 2: Refinement Phase - Effective Exploitation
Input :𝐾 : Top models.𝑈𝑖𝑛𝑖𝑡 : initial training epochs.

𝜂: 1
𝜂
of the models to keep per-round.

Output :The final selected model.
1 Evaluation Worker (𝐾 )
2 𝑈𝑐𝑢𝑟 ← 𝑈𝑖𝑛𝑖𝑡

3 while 𝐾.𝑙𝑒𝑛𝑔𝑡ℎ ( ) > 1 do
4 {𝑝 } ← {𝐸 (𝑚𝑖 ,𝑈𝑐𝑢𝑟 ) ;𝑚𝑖 ∈ 𝐾 }
5 𝐾 ←𝑇𝑜𝑝 1

𝜂
({p}) /* Only keep top 1

𝜂
models. */

6 𝑈𝑐𝑢𝑟 ← 𝑈𝑐𝑢𝑟 · 𝜂 /* Increase𝑈𝑐𝑢𝑟 per-model. */

Formally, we denote the time required to score a model based on
JacFlow using a single mini-batch of data as 𝑡1 and the time to train
a model for one epoch as 𝑡2, both determined via profiling (Figure 3).
The filtering phase time 𝑇1 then equals the product of 𝑁 models
and 𝑡1, i.e., 𝑇1 = 𝑁 · 𝑡1. The refinement phase employs SUCCHALF
to train and retains only the top 1/𝜂 models at each round. Given
𝐾 models, it spends 𝐾 ·𝑈𝑖𝑛𝑖𝑡 · 𝑡2 evaluating all 𝐾 models at the first
round, each being trained for𝑈𝑖𝑛𝑖𝑡 epochs. Such process iterates for
⌊log𝜂 𝐾⌋ rounds until onemodel remains, with each round allocated
an equal amount of time. i.e., 𝐾 ·𝑈𝑖𝑛𝑖𝑡 · 𝑡2. Therefore, the total time
for the refinement phase is 𝑇2 = 𝐾 · 𝑈𝑖𝑛𝑖𝑡 · 𝑡2 · ⌊log𝜂 𝐾⌋. We can
then define the objective function and constraints as follows:

max 𝑝 = 𝑀𝑆𝑄 (filtering(𝑁, 𝑡1), refinement(𝐾,𝑈𝑖𝑛𝑖𝑡 , 𝑡2, 𝜂))
s.t. 𝑇1 +𝑇2 ≤ 𝑇𝑚𝑎𝑥 (4)
where 𝑇2 = 𝐾 ·𝑈𝑖𝑛𝑖𝑡 · 𝑡2 · ⌊log𝜂 𝐾⌋;

𝑇1 = 𝑡1 · 𝑁 ; 𝐾 < 𝑁

The objective function aims to maximize the performance of the
selected model and guarantee that the overall time usage 𝑇1 +𝑇2
does not exceed the 𝑇𝑚𝑎𝑥 . The primary challenge of achieving the
object lies in striking a balance between 𝑁 and 𝐾 . On the one hand,
exploring more models while neglecting the refinement phase (e.g.,
𝐾 = 1) is highly efficient but may result in reduced effectiveness
of the model being selected. On the other hand, evaluating each
explored model in training-based methods (e.g., 𝐾= 𝑁 ) leads to
excessive time and GPU resource consumption when training more
unpromising models in initial rounds of SUCCHALF. Additionally,
once the 𝑇2 is determined, another challenge arises in trading off
between 𝜂 and 𝑈𝑖𝑛𝑖𝑡 , as more models will compete for the time
budget provided by𝑈𝑖𝑛𝑖𝑡 in a SUCCHALF round with a smaller 𝜂.

To address these challenges, we conduct extensive experiments
across four datasets to find a balance between the trade-offs. As
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shown in Section 6.6, we have two key observations: (1) a small
𝑈𝑖𝑛𝑖𝑡 , e.g., 𝑈𝑖𝑛𝑖𝑡=1 epoch, is sufficient to differentiate the perfor-
mance of the 𝐾 models; (2) 𝑟 = 𝑁 /𝐾≈100 yields a good-performing
final model across different 𝑇𝑚𝑎𝑥 . Accordingly, the coordinator can
thus set the value of 𝑁 and 𝐾 according to Equation 4.
Discussion. Our coordinator jointly optimizes the two phases,
which maximizes the effectiveness of the model selection and mean-
while guarantees adherence to the 𝑇𝑚𝑎𝑥 . Both 𝑡1 and 𝑡2 are dynam-
ically obtained for each dataset by an on-the-fly profiling mecha-
nism, as illustrated in Figure 3, and thus the coordinator can readily
adapt to the given prediction task. Furthermore, the parameters 𝑟
and 𝑈𝑖𝑛𝑖𝑡 are also empirically demonstrated to be general across
datasets as discussed in Section 6.6 and shown in Figure 14.

5 IN-DATABASE MODEL SELECTION
In our two-phase model selection algorithm, only a small subset
of promising models need to be trained, which is thus efficient in
both time and GPU resource usage. We incorporate the two-phase
algorithm into DBMSs to further reduce memory consumption and
data operation overhead, i.e., data retrieval and preprocessing, and
enhance the scalability. Specifically, we adopt PostgreSQL [4] and
PolarDB [14] in our implementation. We note that other databases
such as MySQL can also be readily adopted.

5.1 Efficient Integration to DBMSs
Resource-Efficient Runtime Placement. As introduced in Sec-
tion 2.2, JacFlow requires only one forward and one backward
computation on a single mini-batch of data. The scoring of each
model involves four distinct stages: initializing the model param-
eters 𝜃 , optionally transferring the model parameters to specific
hardware, calculating a score following Equation 3; and finally,
releasing the memory allocated to the model. The filtering phase
typically involves exploring thousands of models. Although GPUs
facilitate faster computation, they introduce significant overhead
due to repeated transfers of model parameters to the GPUs and
the subsequent release of resources after computation. Hence, the
benefits of GPUs, mainly optimized for highly parallelizable tasks,
become less pronounced, as shown in Figure 9a. Considering the
similar latencies in filtering phase performances on both CPUs and
GPUs as well as the limited GPU availability, TRAILS therefore exe-
cutes the filtering phase on CPUs. For the refinement phase, which
involves training-based evaluation of promising models, TRAILS
executes this phase on GPUs to accelerate the training process.
Efficient Data Retrieval and Preprocessing. During the filter-
ing phase, TRAILS needs to obtain a batch of data, formatted as

Refinement Execution Engine
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Data Cache Service
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Preprocessing taskPreprocessing task

Data Cache34 12
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Figure 5: Pipeline parallelism between model training and
data preprocessing in refinement phase through caching.

multi-dimensional tensors suitable for feeding directly into DNN
models [44]. Likewise, the refinement phase requires the dataset to
be represented as an iterative object capable of generating multi-
dimensional tensors for the training process.

However, DBMSs typically store data in formats not inherently
compatible with machine learning algorithms. For example, Post-
greSQL stores data in data types such as characters or text, which
can not be directly used for model scoring or training. Therefore,
data preprocessing is required to convert the data retrieved from
DBMSs into multi-dimensional tensors. Traditional approaches re-
trieve data from the database to external storage for preprocessing,
which is often inefficient due to significant execution latency and
memory consumption, as discussed in Section 2.1.

To minimize these overheads in the filtering phase, characterized
by computationally light but I/O intensive model exploration, we
implement the process within the DBMS using UDFs. This approach
integrates both Rust and Python environments (Figure 4). Specifi-
cally, Rust invokes Python functions to sample new models, which
are stored in the Python environment’s model queue (𝑚 queue).
Then, Rust retrieves data from the DBMS using the Server Program-
ming Interface (SPI) 1. After retrieval, data is preprocessed and
transferred to shared memory. Finally, Rust activates a Python eval-
uation worker for model evaluation. This worker directly reads the
preprocessed data from shared memory into a multi-dimensional
tensor and retrieves the sampled model from the 𝑚 queue. The
worker calculates the JacFlow score, which is stored in the score
queue (𝑠𝑎 queue). This iterative process is repeated 𝑁 times to ex-
plore𝑁 models. This design offers several advantages. First, TRAILS
utilizes UDF, which enables access to more efficient and lower-level
data retrieval APIs provided by DBMSs. Second, TRAILS employs
Rust for data preprocessing, which utilizes shared memory for more
efficient data loading, as empirically demonstrated in Figure 11.

To facilitate data operation and memory usage in the refinement
phase, we introduce a data cache service as shown in Figure 5.
Specifically, the data cache service utilizes a predetermined cache
size to effectively control memory utilization. Upon instantiation,
the service adopts a pull-based mechanism, fetching batches of data
from the DBMS for preprocessing. Then, the service responds to
data retrieval requests from the refinement phase in a First-In-First-
Out (FIFO) sequence. Notably, a background thread is employed to
regularly check the availability of cache space and fetch batches

1https://www.postgresql.org/docs/current/spi.html
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of data from the DBMS, which ensures a steady supply of data for
model training. The data cache service facilitates pipeline paral-
lelism, enabling concurrent data retrieval and preprocessing with
the ongoing model training on preprocessed data batches. This
mechanism significantly reduces the waiting time typically associ-
ated with data retrieval and preprocessing before model training.
Consequently, this service effectively decreases both the overall
model selection execution latency and memory usage, as validated
empirically in Section 6.4.1.
High Scalability. The filtering and refinement phases are designed
to be scalable and can operate in parallel with more evaluation
workers. For the filtering phase, which operates on CPUs, we can
employ more CPUs to support parallel computation of JacFlow
scores for different models as illustrated in Figure 3. The refinement
phase involves several evaluation rounds, each requiring training
multiple models independently, which allows for parallelized model
training when more GPUs are available as illustrated in Figure 5.
Our experimental results shown in Figure 12 confirm the scalability
of TRAILS with respect to computational resources in both phases.

5.2 System Overview
We present the core components of the system TRAILS in Figure 6,
which consists of three types of components: refinement execution
engine, data cache service, and a set of pre-compiled UDFs that
cover the entire model selection pipeline. These components oper-
ate within three dedicated runtimes. The UDF runtime corresponds
to the runtime environment provided by a DBMS server process,
such as "PL/Rust"2 for Rust-based UDFs, the GPU runtime refers to
the execution environment on GPU hardware, and the CPU runtime
represents an isolated process separate from the DBMS, dedicated
explicitly to CPU-based computations.

To initiate the two-phase model selection procedure, users can
submit a Model Selection Query (MSQ) via a DBMS client using
the declarative syntax provided in the following template:

CALL model_selection(params);

where the params include dataset name, selected columns, and
response-time threshold𝑇𝑚𝑎𝑥 . The two-phasemodel selection stored
procedure involves spawning a data cache service on the CPU run-
time and orchestrates the execution of all defined UDFs.

2https://plrust.io/plrust.html

Profiling UDF determines 𝑡1 and 𝑡2 for two phases as introduced
in Section 4.3. It computes the JacFlow in the UDF runtime and
triggers the model training in the refinement execution engine.
Coordinator UDF retrieves profiling results and generates runtime
decisions, i.e., 𝑁 and 𝐾 , based on the Equation 4.
Refinement Phase UDF and Refinement Execution Engine.
This UDF triggers the execution of the refinement phase within
the refinement execution engine in the GPU runtime. The engine
incorporates a budget controller and many training-based model
evaluation workers as introduced in Section 4.2. When receiving
requests from profiling or refinement UDF, it retrieves the necessary
mini-batch of data from the data cache service and proceeds with
the model training process.

6 EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency of our
proposed system TRAILS on six datasets. Furthermore, we analyze
the scalability and components of TRAILS, detailing the algorithm
choices for the refinement phase and coordinator design.

6.1 System Implementation
We have implemented TRAILS with 8.7K lines of code (LoC). Specif-
ically, there are 6K LoC for implementing the three search spaces,
ten TFMEMs, the coordinator, and the main searching process,
1.5K LoC for exhaustive experiments and analysis, and 1k LoC for
building stored procedures and integrated with PostgreSQL 14.

6.2 Evaluation Setup
We conduct experiments on a cluster of three servers, each equipped
with Intel(R) Xeon(R) Silver 4214R CPU (12 cores), 128 GB memory
and 8 GeForce RTX 3090 GPUs. All servers are running on CUDA
11.0 and Ubuntu 20.04.2 LTS.

6.2.1 Datasets. We employ six datasets encompassing both struc-
tured and unstructured data across various real-world domains:
the UCI Diabetes dataset (Diabetes)3 for healthcare analytics, the
Frappe dataset4 for app recommendations, the Criteo dataset5 for
click-through rate prediction, CIFAR-10 (C10), CIFAR-100 (C100) [30]
and ImageNet-16-120(IN16) [18] for image classification. A sum-
mary of the dataset statistics can be found in Table 3.

6.2.2 Search Space. We incorporate three search spaces into our
study: NAS-Bench-101 (NB101) [65], NAS-Bench-201 (NB201) [18],
and DNN search space. NB101 and NB201 are directly adopted from
existing work for vision tasks, and we construct DNN search space
for structured datasets, which is based on a Fully-connected Feed-
forward Network comprising four hidden layers, each offering 20
size choices, resulting in 160,000 distinct and independent models.

6.2.3 Evaluation Metric. We employ the Spearman Rank Correla-
tion Coefficient (SRCC) to evaluate the performance of TFMEMs
as discussed in Section 3. To assess the final selected model’s per-
formance, we use AUC as the performance metric for structured
data tasks and accuracy for vision tasks. To evaluate the efficiency
of executing Model Selection Queries (MSQs) within TRAILS, we
3https://archive.ics.uci.edu/ml/datasets
4https://www.baltrunas.info/research-menu/frappe
5https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
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Table 3: Dataset Statistics.

Dataset Data Type Classes Samples Fields/Resolution Task Adopted Search Space
Frappe Structured Data 2 288,609 10 App Recommendation DNN search space
Diabetes Structured Data 2 101,766 43 Healthcare Analytics DNN search space
Criteo Structured Data 2 45,840,617 39 CTR Prediction DNN search space

CIFAR-10 (C10) Unstructured Data 10 60,000 32x32x3 Computer Vision NB101, NB201
CIFAR-100 (C100) Unstructured Data 100 60,000 32x32x3 Computer Vision NB201
ImageNet (IN16) Unstructured Data 120 151,700 16x16x3 Computer Vision NB201

use query latency as the key performance indicator. Query latency
measures the duration which is from a user submits an MSQ to
when they receive the results. To evaluate GPU resource consump-
tion, we record the duration of GPU usage throughout the entire
model selection process, which is referred to as GPU time.

6.2.4 Baselines. We benchmark the effectiveness of our two-phase
model selection algorithm (2Phase-MS) against three other cate-
gories: training-based, weight-sharing, and training-free.
Training-Based Model Selection (Training-Based MS) . We adopt
AREA as the search strategy and fully train each model to evaluate
its performance. For structured data, we use validation AUC after
training for 14 epochs on Frappe, 1 epoch on UCI, and 10 epochs
on Criteo. For unstructured data, we use test accuracy after 200
epochs of training in NB201 and 108 epochs in NB101.
Weight-Sharing-based Model Selection. We adopt DARTS [36]
and ENAS [11] as baselines. Specifically, for unstructured data, we
implement them in a modified supernet search space derived from
NB201 [18]. We use five operations and four nodes, as compared to
the original eight operations and seven nodes in the original DARTS
search space. For structured data, since there is only one operation
between each neuron connection in the DNN search space, and
the DNN search space only includes 160,000 distinct independent
models, DARTS and ENAS are not directly applicable.
Training-Free Model Selection. We use only the filtering phase
of our two-phase algorithm and denote it as Training-Free MS. We
also compare with training-free algorithms such as KNAS [59] and
TE-NAS [15]. For DNN search space of structured data, since TE-
NAS is based on a supernet where each connection has multiple
operator options, it cannot be directly applicable.

We evaluate the efficiency of TRAILS against two baselines: the
training-based model selection system depicted in Figure 2 and a
decoupled variant of TRAILS, named TRAILS (Decoupled). This
variant executes the two-phase model selection algorithm outside
the PostgreSQL and without cache service. TRAILS (Decoupled)
retrieves data in batches from PostgreSQL via psycopg6 for scoring
models during the filtering phase, and loading all data for model
training during the refinement phase.

6.3 Effectiveness
6.3.1 Effective Combination of Training-free and Training-based
Model Evaluation. To verify the effectiveness of different combina-
tions of JacFlow and SUCCHALF, we construct nine unique combi-
nations using three top-ranked TFMEMs: JacFlow, SynFlow, and

6https://www.psycopg.org/docs/

SNIP based on the results in Table 2, with three training-based
algorithms: SUCCREJECT, SUCCHALF, and full model training. We
report the test accuracy of selected models and time usage after
exploring 𝑁=10000 and training top 𝐾=100 models.

As shown in Figure 7, "JacFlow + SUCCHALF" consistently out-
performs other combinations across all unstructured datasets by
finding better-performing models with less time usage. For struc-
tured data, "JacFlow + SUCCHALF" is highly efficient and achieves
comparable test accuracy with "SynFlow + SUCCHALF". The high
effectiveness of the "JacFlow + SUCCHALF" is mainly due to the
JacFlow in the filtering phase, which achieves a higher correlation
value on unstructured datasets and a correlation comparable to
SNIP and SynFlow on structured datasets as summarized in Table 2.
Moreover, the high efficiency of ’JacFlow + SUCCHALF’ can be
attributed to the SUCCHALF in the refinement phase, which out-
performs both SUCCREJECT and full model training as observed
and discussed in Section 6.6. Therefore, we employ the JacFlow and
SUCCHALF in our 2Phase-MS.

6.3.2 SLO-Aware Coordination. To assess the SLO awareness of
2Phase-MS, we vary 𝑇𝑚𝑎𝑥 from seconds to hours and compare its
selected model’s performance against baselines. We apply 2Phase-
MS to six datasets across three search spaces, running 100 trials per
𝑇𝑚𝑎𝑥 and recording the 25th, 50th (median), and 75th percentiles
of validation AUC or test accuracy.

Figure 8 shows that Training-Based MS requires 5 to 10 minutes
to evaluate a single model, which violates the target SLO when
the 𝑇𝑚𝑎𝑥 is small, e.g., less than 5 minutes. In contrast, our 2Phase-
MS can consistently complete model selection tasks within the
allocated time, delivering high-performing models and adhering
to target SLOs, which can continue to refine the search results as
more time budget is available. This efficiency is mainly due to the
SLO-aware coordinator, which balances the two phases according
to the specified 𝑇𝑚𝑎𝑥 . For example, when the budget is small, the
coordinator prioritizes the filtering phase, using only training-free
evaluation that estimates the performance of each model within
seconds, thereby ensuring effective model selection even under
such strict time constraints.

As for effectiveness, our 2Phase-MS can identify models with
better performance across nearly all 𝑇𝑚𝑎𝑥 . Unlike TE-NAS, which
relies solely on training-freemethods such as NTKCond, 2Phase-MS
implements a more effective TFMEM and also incorporates training-
based evaluations. As a result, 2Phase-MS can identify models with
higher test accuracy under equivalent𝑇𝑚𝑎𝑥 , achieving up to a 3.83%
accuracy increase of the selected model on IN16. Compared with
KNASwhich scores a pre-determined number ofmodels followed by
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Figure 7: Efficiency and effectiveness analysis of various training-free and training-based combinations.
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Figure 8: SLO-aware of 2Phase-MS on six datasets with two search spaces.

fully training the top models, 2Phase-MS employs effective JacFlow
and leverages training-based evaluation scheduled by SUCCHALF
rather than full training, which is more effective and efficient. For
instance, 2Phase-MS achieves an AUC of 97.96% on the Frappe
dataset in only 3.6 minutes, outperforming KNAS which reaches
97.94% in 3.9 minutes. Similarly, for IN16, 2Phase-MS attains an
accuracy of 46.22% in 193 minutes, a notable improvement over
KNAS’s 44.63% in 333 minutes.

Weight-sharing-basedmodel selections such as ENAS andDARTS-
V1/V2 perform poorly because they overfit to models with all skip-
connection edges, as also reported and explained in [15, 18, 41].
Furthermore, they tend to search for similar cell structures [18].
Compared with training-based MS, 2Phase-MS is more efficient and
effective due to the design of the coordinator, which jointly opti-
mizes the two phases to maximize the performance of the selected
model under the given𝑇𝑚𝑎𝑥 . Specifically, 2Phase-MS achieves 8.12x,
7.30x, and 24.38x speedups in searching for models of the same per-
formance in the DNN search space for the three structured datasets
when compared with Training-Based MS. Similarly, 2Phase-MS
achieves 52.10x, 27.27x, and 26.89x speedups in NB201 on the three
unstructured datasets, yielding test accuracy of 94.10% on C10,
72.32% on C100, and 46.40% on IN16, respectively.

6.3.3 Filtering Refinement Collaboration. Training-Free MS rapidly
focuses on well-performing models within seconds and is able
to select relatively higher-performing models at the early 𝑇𝑚𝑎𝑥 ,
as shown in Figure 8. However, as the 𝑇𝑚𝑎𝑥 increases, Training-
Free MS starts to undervalue well-performing models. This is be-
cause Training-Free MS persistently tracks the model with a higher
JacFlow score, which does not always precisely indicate a model’s
superior performance as discussed in Section 3.3. Evidently, the
refinement phases play a crucial role as they can compensate for the
filtering phase’s uncertainty and further enhance the 2Phase-MS
effectiveness. Conversely, without the filtering phase, 2Phase-MS
is unable to benefit from the extremely rapid model evaluation and

accomplish the model selection within seconds. In conclusion, both
phases are essential for improving the efficiency and effectiveness
of the model selection.

6.4 Efficiency
We then evaluate the efficiency of TRAILS regarding resource con-
sumption and query latency and compare TRAILS with baseline
systems. To provide a consistent workload for comparison, we set
fixed workloads of exploring 𝑁 models for the filtering phase and
training 𝐾 models for the refinement phase.

6.4.1 Resource Efficiency.
Resource-Efficient Runtime Placement.We first examine how
various combinations of runtime affect the query latency of TRAILS.
Specifically, we compare the query latency of TRAILS which uses a
hybrid CPU/GPU runtime, against both TRAILS-GPU and TRAILS-
CPU, which use GPU-only and CPU-only runtimes respectively.
This comparison is consistently conducted across three datasets,
with a fixed workload that involves exploring 𝑁=1500 models in
the filtering phase and training as well as evaluating the top 𝐾=15
models in the refinement phase.

As shown in Figure 9a, TRAILS-CPU displays the highest query
latency among the three runtime settings. TRAILS-GPU and TRAILS
exhibit comparable less query latency, with TRAILS-GPUmarginally
outpacing TRAILS. This confirms our resource-efficient runtime
placement strategy illustrated in Section 5.1 where the advantages
of GPUs are not evident in the filtering phase. Specifically, our
TRAILS, based on a hybrid CPU/GPU runtime, reduces GPU time
by 1.37x on Frappe, 1.43x on Diabetes, and 1.37x on Criteo com-
pared with TRAILS-GPU.
ReducedGPU time. Second, we compare TRAILSwith the training-
based model selection system in terms of the total GPU time for
attaining a target model performance, i.e., AUC at 98.00% for Frappe,
67.10% for Diabetes, and 80.30% for Criteo.
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Figure 10: The efficiency of TRAILS in in terms query latency:
A comparison with TRAILS (Decoupled).

Figure 9b illustrates that TRAILS is highly resource efficient by re-
ducing GPU time by factors of 9.85x for Frappe, 15.25x for Diabetes,
and 29.32x for Criteo respectively, compared to the training-based
model selection system. This is because TRAILS uses the GPU run-
time only during the refinement phase and trains fewer models
scheduled by SUCCHALF.

6.4.2 Query Latency of In-Database Model Selection. We then com-
pare the performance of executing the two-phase algorithm inside
and outside PostgreSQL, respectively. Specifically, we compare the
overall query latency of TRAILS against TRAILS (Decoupled) as in-
troduced in Section 6.2.4. Then, we conduct breakdown experiments
to measure the time usage of each phase.
Overall Query Latency. To assess overall query latency, we exe-
cute multiple model selection queries with𝑁 ranging from 500 to 4k
models and 𝐾 set to 𝑁 /100. As illustrated in Figure 10a, TRAILS is
consistently more efficient than TRAILS (Decoupled) for all queries
since its integration of the filtering phase within PostgreSQL us-
ing UDFs and utilization of a caching service to facilitate pipeline
parallelism and reduce the waiting time before model training.
Breakdown Experiments for Refinement Phase. To evaluate
the efficiency of the refinement phase, we set 𝑁=1500, 𝐾=15, and
cache size to ten, and measure the waiting time for data retrieval
and preprocessing before training begins, comparing scenarios with
and without the cache service. Figure 10b shows that the waiting
time of training in the refinement phase is reduced by a factor of
76x on Frappe, 36x on Diabetes, and 148x on Criteo. This is because
the cache service only retrieves and preprocesses a few batches of
data rather than the entire data as in TRAILS (Decoupled).
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Figure 11: Efficiency of in-database filtering phase. In both
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Figure 12: Scalability of the filtering and refinement phase.

Breakdown Experiments for Filtering Phase. To verify the
efficiency of executing the filtering phase inside PostgreSQL via
UDFs, we compare it against execution outside PostgreSQL and
retrieving data via psycopy. This involves exploring 5k models on
three datasets and further adjusting the number of models from
500 to 4k on Criteo. Figure 11a shows that executing the filtering
phase inside PostgreSQL reduces the total time by a factor of 1.15x
on Frappe, 1.19x on Diabetes, and 1.25x on Criteo. Figure 11b fur-
ther demonstrates the consistent efficiency of our approach when
exploring a varying number of models.

These experiments demonstrate that our TRAILS can efficiently
conduct model selection with reduced overheads.

6.5 Scalability
In this subsection, we evaluate the scalability of TRAILS in terms
of more computational resources and larger data sizes.

6.5.1 Scalability with Increased Resources. For the filtering phase,
we adopt the centralized search strategy introduced in Section 4.1,
and deploy multiple evaluation workers running on respective
CPUs. We vary the number of CPUs from 1 to 2, 4, and 8 and record
the time to reach the maximum JacFlow score. As for the refine-
ment phase, we employ the budget controller with SUCCHALF as
discussed in Section 4.2 and deploy multiple evaluation workers
running on respective GPUs for parallel model evaluations. We
vary the number of GPUs used from 1 to 2, 4, and 8, and record the
total time of evaluating 40 models.

As illustrated in Figure 12a, increasing the number of CPUs
allows the filtering phase to deploy more evaluation workers for
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Figure 13: Benchmarking three fixed-budget algorithms.

computing the JacFlow score in parallel. This facilitates the search
strategy in exploring a wider range of models and identifying those
with superior JacFlow scores. Similarly, in Figure 12b, having more
GPUs enables parallel model evaluation per SUCCHALF round,
consequently reducing the total time needed to assess 40 models
in the refinement phase. In conclusion, both phases of TRAILS are
highly scalable with more CPU or GPU resources.

6.5.2 Scalability with Large Data Sizes. To validate the effective-
ness and efficiency of our algorithm on larger datasets, we employ
the large ImageNet dataset [46] with each image at a resolution
of 224x224 pixels. We adopt the whole ImageNet and follow the
setting of [18, 34], where we use the SGD optimizer with a momen-
tum of 0.9, an initial learning rate of 0.002 with a batch size of 32,
and cosine learning rate decay.

In comparison, training-based methods such as NASNET-A and
AmoebaNet-C achieve Top-1 accuracy of 74% and 75.7% with 2000
GPU days and 3150 GPU days, respectively [64]. Meanwhile, TE-
NAS uses training-free methods and can efficiently achieve a Top-
1 accuracy of 75.5% with only 0.17 GPU days [64]. Notably, our
2Phase-MS reaches a Top-1 accuracy of 75.3% in only 0.05 GPU days,
which demonstrates its effectiveness and efficiency in conducting
model selection on large-scale datasets.

6.6 Component Analysis
Refinement Phase Design. We analyze three fixed-budget al-
gorithms introduced in Section 4.2: UNIFORM, SUCCREJCT, and
SUCCHALF. For each predefined 𝑇𝑚𝑎𝑥 , we randomly sample 400
models and allow each algorithm to distribute time for training
each model. This process is conducted 100 times, with the model’s
performance recorded at the 25th, 50th (median), and 75th per-
centiles. Figure 13 shows SUCCHALF outperforms others in either
efficiency and effectiveness across four datasets, this is attributed
to its efficient allocation of time to train more promising models.
SUCCREJCT demands more time for evaluation since it eliminates
only the worst model each round. UNIFORM is highly effective in
a larger 𝑇𝑚𝑎𝑥 by fully training each model, but it is less efficient
since it requires consistently allocating the same time budget to
evaluate each model. We, therefore, adopt SUCCHALF as the budget
controller in our system.
Coordination Design. We experimentally investigate the influ-
ence of the parameters 𝑟 and 𝑈𝑖𝑛𝑖𝑡 on coordinator performance,
where 𝑟 = 𝑁 /𝐾 . We fix 𝑈𝑖𝑛𝑖𝑡 to one epoch, set 𝑇𝑚𝑎𝑥 from 4 to 32
minutes, experiment with 𝑟 values from 1 to 1k, and evaluate on
four datasets. The results in Figure 14 demonstrate that a setting
of 𝑟 ≈ 100 and 𝑈𝑖𝑛𝑖𝑡 = 1 consistently facilitates the discovery of
high-performing models across all four datasets. This indicates that
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Figure 14: Impact of parameter on coordinator performance.

the chosen values for 𝑟 and𝑈𝑖𝑛𝑖𝑡 exhibit a level of generalizability,
making our coordinator broadly applicable and capable of adapting
to new datasets without the need for further adjustment.

7 RELATEDWORK
Existing model selection algorithms for structured data, including
AgEBO-Tabular [20] and TabNAS [63], share a similar goal with
TRAILS, which is to efficiently identify high-performing models
from a large search space for structured data. However, both ap-
proaches rely on full training and provide limited optimization for
expensive model evaluation. Furthermore, they lack an integrated
end-to-end system that considers data operations before model
training and does not address practical system requirements such
as SLO awareness and resource efficiency. In-database machine
learning has been studied by [16, 23, 28, 33, 47], yet their focus is
primarily on model training or inference, which neglects critical
tasks such as model selection. [67] incorporates model selection
into databases, while it still depends on training-based algorithms
and is thus not as computationally efficient as our TRAILS.

8 CONCLUSION
In this paper, we focus on building a resource-efficient and SLO-
aware in-database model selection system TRAILS, which enables
average machine learning users to obtain well-performing models
within their specified response-time threshold. TRAILS encom-
passes a novel two-phase model selection algorithm, combining
the strengths of highly efficient training-free and effective training-
based model evaluation algorithms. From a system perspective, we
have seamlessly integrated the proposed algorithm into PostgreSQL
by allocating the I/O intensive filtering phase into UDF runtime and
the computational intensive refinement phase into GPU runtime
to minimize high-end hardware consumption. To further reduce
the latency and memory overhead caused by data retrieval and
preprocessing in the refinement phase, we designed a data cache
service to facilitate on-the-fly data transformations and caching.
Experimental results demonstrate that TRAILS consistently selects
higher-performingmodels compared to training-based and training-
free model selection algorithms while adhering to SLOs ranging
from seconds to hours. Furthermore, our system exhibits reduced
MSQ execution latency and resource consumption.
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