
Can LearnedModels Replace Hash Functions?
Ibrahim Sabek

∗

MIT CSAIL

sabek@mit.edu

Kapil Vaidya
∗

MIT CSAIL

kapilv@mit.edu

Dominik Horn

TUM

dominik.horn@tum.de

Andreas Kipf

MIT CSAIL

kipf@mit.edu

Michael Mitzenmacher

Harvard University

michaelm@eecs.harvard.edu

Tim Kraska

MIT CSAIL

kraska@mit.edu

ABSTRACT
Hashing is a fundamental operation in database management, play-

ing a key role in the implementation of numerous core database data

structures and algorithms. Traditional hash functions aim to mimic

a function thatmaps a key to a random value, which can result in col-

lisions, wheremultiple keys aremapped to the same value. There are

many well-known schemes like chaining, probing, and cuckoo hash-

ing to handle collisions. In thiswork,we aim to study if using learned

models instead of traditional hash functions can reduce collisions

and whether such a reduction translates to improved performance,

particularly for indexing and joins. We show that learned models

reduce collisions in some cases, which depend on how the data is

distributed. To evaluate the effectiveness of learned models as hash

function, we test them with bucket chaining, linear probing, and

cuckoo hash tables. We find that learned models can (1) yield a 1.4x

lower probe latency, and (2) reduce the non-partitioned hash join

runtimewith 28% over the next best baseline for certain datasets. On

the other hand, if the data distribution is not suitable, we either do

not see gains or see worse performance. In summary, we find that

learned models can indeed outperform hash functions, but only for

certain data distributions.

PVLDBReference Format:
Ibrahim Sabek, Kapil Vaidya,

Dominik Horn, Andreas Kipf, Michael Mitzenmacher, and Tim Kraska. Can

Learned Models Replace Hash Functions?. PVLDB, 16(3): 532 - 545, 2022.

doi:10.14778/3570690.3570702

PVLDBArtifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/DominikHorn/hashing-benchmark.

1 INTRODUCTION
Hashing and hashing-based algorithms and data structures find

countless applications throughout computer science, such as in ma-

chine learning, computer graphics, bioinformatics, and compilers

(e.g., [13, 42, 51, 55]). Hashing is also a fundamental operation in

database management (e.g., [8, 37, 66]), including playing a key role

in the implementation of numerous core database data structures

∗
Both authors have equal contributions and their names are sorted alphabetically.

This work is licensed under the Creative Commons BY-NC-ND

4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/

to view a copy of this license. For any use beyond

those covered by this license, obtain permission by emailing info@vldb.org. Copyright

is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 3 ISSN 2150-8097.

doi:10.14778/3570690.3570702

and algorithms (e.g., indexes [37, 38], filters [36], joins [8], partition-

ing [63], and aggregation [26]). Due to its numerous applications,

considerable research efforts have focused on introducing efficient

hashing functions (e.g., [48, 51, 60, 66]).

Traditionally, hash functions aim to mimic a function that maps a

key to a random value in a specified output range. For typical cases

where the size of the output range is linear in the number of keys,

this random assignment results in colliding keys. A collision occurs

when multiple keys get mapped to the same output value. A typi-

cal hash index approach allocates a number of fixed size slots (the

number of slots generally being a constant times the expected num-

ber of keys) and maps incoming keys into these slots using a hash

function. The ideal case for indexes would have no keys collide, so

each key goes to its own separate slot. This wouldmake key lookups

and updates faster, as one would simply check the corresponding

slot for the key. With truly random hash functions, collisions are

unavoidable, and one can readily calculate the expected number of

collisions given the number of slots and keys [54].

Naturally, there are many well-known schemes like chaining,

probing, and cuckoo hashing to handle collisions. As the name sug-

gests, chaining handles collisions by creating a chain of colliding

keys. Probing checks neighboring slots to find an empty slot to place

the key. Cuckoo hashing handles collisions by using multiple hash

functions to provide alternate slots for colliding keys. For each of

these schemes, more collisions reduces their performance.

Another approach to build hash indexes is to use perfect hash func-
tions instead of truly random hash functions. Perfect hash functions

have no collisions; however, theymust be specially constructed for a

given dataset, and have other costs in storage and computation time.

In recent years, several works have utilized the idea of using ma-

chine learning to improve the performance ofmany database compo-

nents (e.g., [39, 53, 69]) and basic data structures (e.g., [24, 25, 43, 49]).

By using machine learning to explicitly capture trends in the under-

lying data, thesemethods can aim for instance-optimal performance.

For example, in a recent benchmarking study [52], it has been shown

that learned index structures (e.g., RMI [43], RadixSpline [40]),which

employ CDF-based learned models, can outperform traditional in-

dexes on practical workloads.

As one direction in this line of research, it was suggested in [43]

that such learned models can be used to obtain an efficient hash

function with fewer collisions. They also provided some empirical

evidence that a hash index with learned model as the hash function

can have better performance than using a truly random hash func-

tion. What is unclear, however, is when such learned models are

effective in replacing existing hash functions in applications. At one

end, traditional hash functions [29, 80] are fast to compute, but suffer

532

https://doi.org/10.14778/3570690.3570702
https://github.com/DominikHorn/hashing-benchmark
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3570690.3570702
https://www.acm.org/publications/policies/artifact-review-and-badging-current

from collisions [77] that can reduce query performance. On the other

hand, perfect hash functions [51] avoid collisions, but are difficult

to construct [45], and are not scalable [21], in the sense that the size

of the function representation grows with the size of the input data.

As an alternative, learned models can potentially provide a better

tradeoff between computation and collisions. If the model learns

a good approximation of the empirical CDF of the input keys, we

may achieve few collisions; and if the data allows a compact learned

model, we may achieve a model size independent of or very slowly

growing with the input data size.

Surprisingly, though,wearenotawareof a thoroughexperimental

study examining the learnedmodels against both traditional and per-

fect hashing in query processing operations like indexing and joins.

We aim to remedy that here. We make the following contributions:

• We provide an analysis of the factors affecting collisions for

learned models, helping us to identify situations where they

can have fewer collisions than traditional hash functions.

• Weperformanextensivebenchmarkingstudy for traditional,

perfect, and learned model based hash functions. We bench-

mark them through three different applications: hash table

probing/inserting, range querying, and joins. We test using

multiple synthetic and real-world datasets.

• Through the empirical study and analysis we find useful in-

sights on when to use learned models instead of traditional

and perfect hashing in various database applications.

• We provide a unified open-source implementation for the

baselines used in our experiments
1
.

In summary, our collisions analysis and experimental benchmark-

ing demonstrate that, for datasetswith awell-ordered distribution of

gapsbetween their keys, learnedmodels can result in lower collisions

than traditional hash functions. For these datasets, using learned

models can improve the probe and insert throughputs of hash tables.

Such improvement varies with the hashing scheme (strongest with

bucket chaining, and weakest with cuckoo hashing), the load factor,

and the bucket capacity. In many other cases, however, such as with

data from typical distributions (e.g., normal) or having string keys,

we do not see collision reduction using learned models. We also find

that using learned models with bucket chaining can support range

queries, and provides the best throughput inmixedworkloads (point

and range queries) that have a majority of point queries. Finally, we

find that using learned models in non-partitioned hash join [44, 79]

results in improved performance for favourable datasets.

2 TRADITIONALHASH FUNCTIONS
A uniform hash function ℎ(𝑥) :𝑋 ↦→𝑈 attempts to map arbitrary

inputs to independent and identically distributed (i.i.d.) uniform

random outputs. Obtaining true randomness is not feasible in prac-

tice [42]. However, state-of-the-art hash functions appear to come

reasonably close to imitating true randomness in many practical set-

tings [59, 80]. The extent to which a hash function avoids collisions,

i.e., instances where two distinct inputs map to the same output, is

often referred to as the its’ quality. There is a seemingly endless sup-

ply of different proposed hash functions to choose from [80]. Here,

we briefly give a background on some of the well-known functions

that we study in the paper.

1
https://github.com/DominikHorn/hashing-benchmark

Multiplicative Hashing (MultiplyPrime). This method is promi-

nently described by Donald Knuth [42] as a family of hash functions

with great properties for practical applications. He explicitly adver-

tises their non-uniform random properties, i.e., sensitivity to the

data distribution, as a strength [42]. Let𝐴 be a constant, relatively

prime 2
𝑤
with𝑤 being the machine word size. Then, the following

function produces outputs in [0,𝑀).

ℎ(𝑥)=
⌊
𝑀 ·

((
𝐴

2
𝑤
𝑥

)
mod 1

)⌋
The trick tomake this efficient is to avoid fractional computations by

shifting thecalculationby𝑤 , i.e., tomultiplywith
𝐴
2
𝑤 ≪𝑤 =𝐴 instead

of the complex decimal computation: ℎ(𝑥) =
⌊
𝑀
2
𝑤 · (𝐴𝑥 mod 2

𝑤)
⌋
.

Neatly, this gets rid of themodulo sincemost physicalmachineswith

awordsize𝑤willnaturallycomputeeverything mod2
𝑤
.According

to Knuth,𝑀 should be some power of the machine’s radix [42] to en-

sure that we are including themore significant bits in the final result.

Fibonacci Hashing (FibonacciPrime). It is an instance of mul-

tiplicative hashing, choosing
𝐴
𝑤 = Φ−1 =

(√
5−1

)
/2 based on the

golden ratio. It promises to inherit Φ−1
’s neat scattering character-

istics, i.e., that each added consecutive element falls in the largest

remaining interval, dividing it by the golden ratio [6, 42, 74, 75, 82].

As in multiplicative hashing, we implement Fibonacci hashing us-

ing the integer multiplication trick. However, this time we choose

𝐶 =Φ·2𝑤 with𝑤 as the machine word size. Some implementations

also round𝐶 to the next closest prime.

MurmurHashing (Murmur). It is a family of simple and fast hash

functions developed by Austin Appleby [3, 4], and has been studied

extensively in previous works (e.g., [2, 66]). Its name is derived from

the original idea for its implementation, i.e., repeatedly applying

multiply and rotate instructions to imitate true randomness. How-

ever, it ended up being implemented as a sequence of multiply, shift,

and xor operations. In particular, its 64-bits finalizer merely consists

of three xors, three shifts, and two multiplications [3, 66].

XXHash. It is awidelyusedopen-sourceuniformhash functionwith

support formanyprogramming languages [18]. It targetsRAMspeed

limits for hashing large enough blobs of data, all while promising

decent performance on small inputs.

AquaHash. It is a uniform hash function that utilizes Advanced

Encryption Standard (AES) intrinsics [33], i.e., AES encryption prim-

itives implemented in hardware on many modern CPUs [68]. In a

previous study, AquaHash has shown promising results compared

to XXHash andMurmur for small keys [70].

3 LEARNEDMODELS ASHASH FUNCTIONS
Learned index structures [43] approximate the cumulative distribu-

tion function (CDF) of the data to predict the position of a lookup key

in a sorted array. When the data has a learnable pattern, i.e., has low

entropy, learned indexes can be much smaller than the input data

itself. While initial proposals considered using neural networks to

approximate the CDF, state-of-the-art learned indexes use a collec-

tion of simple linear models, which we refer to as submodels; these

are fast to both learn and evaluate. Some indexes aim to minimize

the root-mean-squared-error (i.e., L2 loss) [43] and others bound

the maximum prediction error. Assuming a perfect modeling of the

CDF, a learned index would constitute a perfect order-preserving

533

hash function, i.e., a collision-free mapping from keys to positions.

For the rest of this paper, we refer to Learned Model based Hash

functions asLMH . Since real-world data containsmany irregularities

that make it hard to approximate, a learned index inevitably needs

to trade off precision for space. With larger models, inference time

increases because of limited cache sizes [52]. We describe the three

main learned indexes we evaluate for hashing.

RecursiveModel Indexes (RMI). The RMI index is a multi-stage

model combining simpler models [43]. When the data fits into mem-

ory, anRMI rarelyhasmore than two stages. It is built in a “top-down”

fashion. The stage-one model computes a rough approximation of

the CDF, which is scaled between 0 and the branching factor 𝐵. This

value is used to select a second-stage model, which approximates

the local distribution of the data and is used to produce the final

approximation. In other words, the stage-one model partitions the

data into 𝐵 buckets and each second-stage model approximates the

data that falls into its corresponding bucket. A recent study [52]

showed that RMI, amongst other indexes, achieves the best tradeoff

between inference time and space.

Radix Spline Indexes (RadixSpline). It is another learned in-

dex variant [40], that is built “bottom up”, and consists of a linear

spline [58] to approximate the CDF and a radix lookup table that

indexes resulting spline points. Compared to RMI, RadixSpline can

be built in a single passwith constant cost per element. RadixSpline’s

spline-building algorithm [58] bounds the maximum prediction er-

ror. Besides the maximum error, RadixSpline is parameterized with

a certain number of radix bits that define the size of the radix table.

Lookups first consult the radix table, which indexes 𝑟 -bit prefixes of

spline points and is used to narrow the search range over the spline

points. Then binary search is used on the narrowed range to identify

the two spline points surrounding the lookup key. Finally, linear

interpolation between the two spline points is used to obtain a predic-

tion. Thenecessity to search over the spline pointsmake it somewhat

slower than RMI which does not require any search in inner nodes.

Piece-wise Geometric Model Indexes (PGM). Similar to RadixS-

pline, the PGM index [30] provides an error-bounded approximation

of the CDF. It consists of multiple levels where each level represents

an error-bounded piece-wise linear regression (PLR). In contrast

to a spline where consecutive spline points are connected, a PLR

additionally stores an intercept value with each point. Like RadixS-

pline, PGM is built “bottom up” but instead of using a radix layer it

recursively applies its PLR algorithm until a certain error threshold

has been met. PGM can also be built in a single pass with constant

amortized cost per element. Due to its multi-level structure, PGM

can have slightly higher inference cost than RadixSpline [52] but is

more robust when outliers are present. Note that we explore static

PGM only in our study.

4 PERFECTHASHING
Where traditional hash functions aim to produce (near)-i.i.d. uniform

random outputs, perfect hash functions provide an injective function
that maps a set of elements into a range. That is, for a given input set,

the functionwill produce no collisions [10, 28, 32, 51]. Here,we focus

on two types of perfect hash functions:minimal perfect (MPHF), and

order preserving minimal perfect (OMPHF). We first explain the cor-

responding definitions, and then describe the state-of-the-art MPHF

and OMPHF algorithms we study.

Perfect. A hash functionℎ(𝑥) :𝑋 ↦→ [0,𝑁] is perfect for the domain

𝑋 if it is injective. Equivalently, it produces zero collisions in the

output domain (∀𝑥1,𝑥2 ∈𝑋 :ℎ(𝑥1)=ℎ(𝑥2) =⇒ 𝑥1=𝑥2).

Minimal. A hash functionℎ(𝑥) :𝑋 ↦→ [0,𝑁] isminimal perfect if it is
perfect and a bijection; that is, each element of the output range has

a single corresponding domain element (Perfect, and additionally

∀𝑦 ∈ [0,𝑁] : ∃𝑥 ∈𝑋 | ℎ(𝑥) =𝑦). The information theoretical lower

bound for storing a minimal perfect hash function is lg𝑒≈1.44 bits
per key [10, 15, 28, 32, 35] since key-related information is not re-

tained after construction. For this reason, querying with non-keys

(unknown keys) generally yields arbitrary results.

Order Preserving. Order preserving perfect hash functions order

their outputs according to the original relative order ⪯ of input el-

ements (∀𝑥1,𝑥2 ∈𝑋 :𝑥1 ⪯𝑥2 =⇒ ℎ(𝑥1) ≤ℎ(𝑥2)). Being able to store
any arbitrary data order induces an Ω(𝑛log𝑛) space cost [10].
Comparison to Traditional Hashing. In general, building a MPHF,

ℎ(𝑥) :𝑋 ↦→ [0,𝑁], requires knowing the entire input set𝑋 a priori.

In many implementations, the set𝑋 is not stored or reconstructible

after the MPHF is built. Querying with a non-key 𝑥 ′∉𝑋 generally

yields some arbitrary output value; most often, ℎ(𝑥 ′) ∈ [0,𝑁], but
this is not guaranteed. MPHF are generally not easily updated in

place; often a full rebuild is performed if a new element is inserted, or

other expensive (non-constant) time work. Compared to traditional

hashing, where only constant work is necessary for initialization,

MPHF and OMPHF generally require running a one time O(𝑛) build
algorithm before they can be used.

RecursiveSplitting (RecSplit). It is aMPHFwhichhas been shown

to deliver state-of-the-art results in regards to space usage, lookup,

and build time [28]. Specifically, it comes close to achieving the the-

oretically optimal 1.44 bits per key in practice, while only requiring

expected linear and constant times for construction and lookups,

respectively [28]. RecSplit works by recursively partitioning inputs

into ever smaller buckets until brute force search for a MPHF, i.e.,

a bijection, is viable. The threshold for this search, called leaf size 𝑙 ,
as well as the average bucket size 𝑏 for partitioning are parameters

of the construction algorithm. RecSplit utilizes an indexed family of

uniform randomhash functions (examples in Section 2). This enables

efficiently encoding the tree of brute-force determined indexes using

an optimal Golomb-Rice instantaneous code [28, 71].

MWHC. It was originally proposed as a family of OMPHFs with

expected O(𝑛) construction and O(1) access time [51]. It has been

extended to provide a practical MPHF with constant access and re-

quiring 3 bits per key storage [10, 14]. We refer to our simplified im-

plementationof the latter approachasBitMWHC.Abstractly,MWHC

utilizes a hypergraph to efficiently find a solution for a randomly gen-

erated system of linear equations that is used to store the desired or-

derpreservinghash function 𝑓 (𝑥) :𝑋 ↦→𝑈 givenby 𝑓 (𝑥)=𝑣 (ℎ1 (𝑥))⋄
...⋄𝑣 (ℎ𝑘 (𝑥)), where eachℎ𝑖 denotes a distinct uniform random hash

function, 𝑣 (𝑥) maps each hash function output to a value in𝑈 and

⋄ reduces𝑈 ×𝑈 to𝑈 . In practice, 𝑣 (𝑥) may, for example, be imple-

mented as a simple array of values,ℎ𝑖 as a family of reasonably high

quality hash functions such as Murmur with seed values, and ⋄ as
xor or as additionwith an additional modulo computation at the end.

The construction algorithm first builds a 𝑘-hypergraph with each

of the 𝜆 |𝑋 | vertices corresponding to one entry of 𝑣 (𝑥) and one edge

534

[ℎ1 (𝑥),...,ℎ𝑘 (𝑥)] for each input, where 𝑘 and 𝜆 are user-defined pa-

rameters. Allℎ𝑖 are randomly chosen from a suitable family of hash

functions as described above. A valid assignment for 𝑣 (𝑥) exists,
i.e., 𝑓 (𝑥) is solvable iff this hypergraph is acyclic. A simple peeling

scheme is used to both determine acyclicity and the order in which

we can safely assign values to each 𝑣 (𝑥) to yield the desired values
for 𝑓 (𝑥) for each 𝑥 ∈𝑋 . We simply restart if the acyclicity test fails,

hence the expected O(𝑛) construction time [51]. For𝑘 =3, we require

𝜆≥ 1.23 to efficiently find a suitable acyclic hypergraph [51, 56].

5 HASHING SCHEMES
Whencollisions occur in ahash table, they are resolvedusinghashing
schemes. In this section, we give a brief background on the hashing
schemes we study in this paper. In each scheme, we discuss how the

hash table is implemented and how collisions are handled.

5.1 Bucket Chaining (CHAIN)
Bucket chaining is a classic collision resolving scheme [8, 66, 70].

In this scheme, the hash table is implemented as an array of pre-

allocated buckets, where each bucket storesmultiple tuples, with col-

lidedkeys, at a specificslot in the table.To insert a tuple, thekeyof this

tuple isfirsthashed toaslot in thehash table, and then thewhole tuple

is first tried to be placed in the corresponding bucket at this slot. If the

current bucket is already filled up, a newone is created, pre-allocated

and chained to it. To query for a tuple, the query key is first hashed to

a slot in the table (similar to what happens in inserts), then the chain

of buckets at this slot is traversed until either the matching tuple is

found or the end of the chain is reached (i.e., the matching tuple is

not found). In general, bucketization improves the data locality, and

reduces the number of cache misses. That being said, choosing the

bucket size should be carefully tuned to avoid wasting large spaces.

5.2 Open-Addressing
In open-addressing, all tuples are inserted in the hash table slots

themselves, without extra chains to handle collisions. In case of a tu-

plewith a collidingkey, the hash table slots are probed (i.e., searched),

until a slot is found to place the tuple [19, 66]. Typically, a probing
scheme decides the set of hash table slots to check, referred to as

a probing sequence, till a place is found to insert the tuple. Query

operations follow the same probe sequence. There are two main

categories of probing schemes: (1) schemes that probe for the first

available (i.e., empty) slot, and (2) schemes that evict the existing

tuple at the probe location (i.e., when a collision occurs) and replace

it with the new tuple. In this paper, we study an example of each of

these two categories (linear probing and cuckoo hashing).

Linear Probing (LP). This is the most basic probing scheme for colli-

sion handling in open-addressing. In this scheme, when inserting (or

querying) a tuple, the key of this tuple is first hashed to obtain a hash

table slot (i.e., initial probe location). Then, the hash table is sequen-

tially traversed starting from this slot. In case of insertion, the traver-

sal stops if an available slot is found. In case of querying, the traversal

stops ifwefind either thematching tuple or an empty slot (i.e.,match-

ing tuple is not found). Linear probing has two main advantages:

(1) its simple design, and (2) cache efficiency due to the sequential

scan. In contrast, its performance degrades when large contiguous

blocks of hash table slots are occupied, referred to as primary clusters.

In this case, thenumberofnearbyemptyslots aroundeachprobe loca-

tion is significantly reduced, and the scheme tends tohave longprobe

sequences. Such performance issue can be avoided by either (1) in-

creasing the hash table size such that the percentage of its occupied

slots (a.k.a load factor) is always kept less than 60% [66] or (2) care-

fully tuning its update operations [11]. We note that there are two

other popular variants of linear probing: (1) quadratic [19, 42], and

(2) robinhood [17], which are efficient for write-heavy and high un-

successful lookup workloads, respectively. However, according to a

recent study [66], linear probing outperforms both of them using the

appropriate load factor. Therefore, we focus on linear probing here.

Cuckoo Hashing (CUCKOO).Cuckoohashing [60]provides another

useful alternative hash table design. A simple variation of cuckoo

hashing uses two subtables, where each subtable has an independent

hash function. To insert a tuple, the key of this tuple is hashed with

the first (or primary) hash function to obtain a slot in the primary

table. If this primary slot is available, then the tuple is inserted and

the probe sequence ends. Otherwise, the tuple tries to be inserted in

the second (or secondary) subtable using the second hash function.

If the secondary slot is occupied as well, then a kicking strategy

is applied to evict the existing tuple in either the primary or the

secondary slot, and replace it with the current input tuple. After

that, the evicted tuple is reinserted again, following the same steps.

The eviction chain continues until either all evicted tuples are suc-

cessfully inserted or a maximum chain length is reached. This last

case is a failure; one solution is for all tuples in both hash tables

to be rehashed with two new hash functions.

With balanced kicking [60], the primary or the secondary slot is

randomly selected for eviction. In biased kicking [22, 38], the tuple

in the secondary slot is preferred for eviction, which has been shown

to improve performance for positive lookups. We experimentally

found that biased kicking performs better, so we use it throughout

all our experiments involving cuckoo hashing.

To probe for a tuple, we need only to check the primary and sec-

ondary slots, which yields at most two cache misses regardless of

the load factor. However, a major drawback of the simple variation

of cuckoo hashing is the failure case, where the maximum length of

the eviction chain is reached, happens at low loads. Higher loads can

be handled by generalizing to use more hash tables (e.g., 4 instead

of 2) [31, 66] or allowing multiple tuples per slot [2, 23, 70]. In this

paper, we employ the bucketized variant, where each hash table slot

allows more than one tuple, which again limits to two cache misses

when a bucket fits in a cache line.

6 COLLISIONS ANALYSIS FORHASHING
Here, we identify and analyze the factors affecting collisions for

both LMH and traditional hash functions. This analysis helps us

to identify situations where LMH can have fewer collisions than

traditional hash functions. We specifically focus on LMH functions

with piece-wise linear submodels for this analysis.

Notation. For ease of analysis, we start by focusing on the task of
mapping 𝑁 keys to 𝑁 locations. This analysis readily generalizes,

and the high-level conclusions are independent of this assumption,

with the main difference being the number of locations increases,

the number of collisions decreases. Assume that we apply a hash

function 𝑓 on the keys,where 𝑓 could be a traditional hash (Section 2)

or a LMH function (Section 3). Let 𝑥0,𝑥1,...,𝑥𝑁−1 be the sorted array

535

of the 𝑁 input keys, and let𝑦0,𝑦1,...,𝑦𝑁−1 be the sorted array of the
hashing outputs 𝑓 (𝑥0), 𝑓 (𝑥1), ..., 𝑓 (𝑥𝑁−1) (note that 𝑦𝑖 = 𝑓 (𝑥 𝑗) for
some 𝑗 , but𝑦𝑖 is not necessarily 𝑓 (𝑥𝑖)). For LMH functions, the𝑦𝑖 ’s

may be on the real-valued range [0,𝑁), andwewould thenmap each

key to the location corresponding to the value of𝑦𝑖 rounded down to

an integer. For convenience, we let𝑦−1=0. The sorted output values

generate a set of gaps𝑔0,𝑔1,𝑔2,... such that𝑦𝑖 =

(∑𝑖
𝑡=0𝑔𝑡

)
. We assume

that 𝑔𝑖 ’s are i.i.d, with probability density function 𝑓𝐺 (𝑧) and CDF
𝐹𝐺 (𝑧); this is a reasonable approximation for analysis. For example,

for uniformly randomly distributed outputs 𝑓 (𝑥𝑖), the gaps between
𝑦𝑖 are approximately exponentially distributed [54].

Characterizing Collisions.A collision occurs when two keys are

mapped to the same location. The key insight regarding collisions

is that they depend on the gaps between consecutive sorted hashing

output values (𝑦𝑖−𝑦𝑖−1). If the gap between two consecutive values
is greater than one (i.e.,𝑦𝑖−𝑦𝑖−1 ≥1), then the corresponding keys

would definitely be placed in separate locations. On the other hand,

if the gap is smaller than one (i.e.,𝑦𝑖−𝑦𝑖−1 ≤ 1), the corresponding

keys may be mapped to the same location; it depends where𝑦𝑖 and

𝑦𝑖−1 relative to the integer boundary.
Ideally, we would want all the gaps to be more than one, to have

zero collisions. However, the gap values are constrained by the con-

dition that the sum of all the gaps should be less than the number of

locations which is 𝑁 here.
2
Thus, the gap distribution would have

to be the trivial distribution that is always 1 to avoid collisions.

Let𝑐 be thenumber of collidingkeys (i.e., keys that are not alone in

a location). Assuming that 𝑓 is not a lattice distribution3, we can de-

scribe the expected number of colliding keys E[𝑐] with the following
lemma. In the below, recall {𝑥}=𝑥−⌊𝑥⌋ .

Lemma 1. As 𝑁 grows large, E[𝑐] converges to

𝑁

(
1−

∫
1

𝑢=0

(∫ ∞

𝑡=1−𝑢
(1−𝐹𝐺 (1−{𝑡+𝑢})) · 𝑓𝐺 (𝑡)𝑑𝑡

)
𝑑𝑢

)
.

We remark that the proof reveals that this formula is also a good

approximation for large 𝑁 .

Proof. Let 𝑍𝑖 be the indicator random variable that is 1 if𝑦𝑖 is

alone in its own location. We first consider the position of𝑦𝑖−1. For
sufficiently large 𝑖 , {𝑦𝑖−1}, the fractional part of 𝑦𝑖−1, is known to

converge to the uniform distribution on [0,1] (see, e.g., Thm 5.8.4.

of [41]). We therefore treat {𝑦𝑖−1} as being distributed uniformly on

[0,1]. Accordingly, the probability𝑦𝑖 is in a different location from
𝑦𝑖−1 is given by ∫

1

𝑢=0

(∫ ∞

𝑡=1−𝑢
𝑓𝐺 (𝑡)𝑑𝑡

)
𝑑𝑢.

Wealso need, however, that𝑦𝑖+1 is also in a different location from
𝑦𝑖 . This depends on the value of {𝑦𝑖 }. Taking this into consideration
yields the following probability for𝑍𝑖 :

𝑃𝑟 (𝑍𝑖 =1)=
∫

1

𝑢=0

(∫ ∞

𝑡=1−𝑢
(1−𝐹 (1−{𝑡+𝑢})) · 𝑓𝐺 (𝑡)𝑑𝑡

)
𝑑𝑢.

As𝑁 grows large, the approximation of uniformly distributed {𝑦𝑖−1}
is arbitrarily accurate for almost all 𝑖 , giving the convergence. □

2
Sum of gaps is:

∑𝑁−1
𝑡=1 (𝑦𝑡 −𝑦𝑡−1) =𝑦𝑁−1−𝑦0 ≤𝑁 .

3
Lattice Distribution: A discrete probability distribution concentrated on a set of points

of the form a+nh, where h>0, a is a real number and n=0,±1,±2,.

Collisions for TraditionalHash Functions. In case of a truly ran-
dom hash function, the output values will be uniformly distributed

in the range [0,𝑁] irrespective of the input distribution. Therefore,
the gap distribution of the output values is very well approximated

by the exponential distribution with mean 1. Most traditional hash

function displayed this behaviour in our evaluation.

Collisions forLMH FunctionswithPiece-wiseLinear Submod-
els. To gain intuition, let us start by using a single linear model to

approximate the CDF of the input data 𝑥0,𝑥1,..., and this will give us

our hash function 𝑓 . Let the linear model be𝑚∗(𝑥−𝑥0) where𝑚 is

(𝑁 −1)/(𝑥𝑁−1−𝑥0). Note that the slopewould be approximately the

mean of the gap distribution of the input keys. The resulting hash

function would be ℎ(𝑥) =𝑚 ∗ (𝑥 −𝑥0) which maps the input keys

in the range [0,𝑁). After applying this hash function to obtain the
output values𝑦0,𝑦1,..., we notice that the gaps between the output

values are simply the scaled version of the gaps between the input

keys:𝑦𝑖+1−𝑦𝑖 = (𝑥𝑖+1−𝑥𝑖)∗𝑚. At a high level, if the input is evenly

spaced, then our outputs will similarly be evenly spaced, resulting

in fewer collisions. If the input gaps are high in variance, we would

expect more collisions. In LMH functions, this scalingwould happen

at the submodels scale.

Accordingly, if the data is generated similarly to our theoretical

model, with a gap distribution 𝑔
′
(𝑥0,𝑥1=𝑥0+𝑔

′
0
,𝑥2=𝑥1+𝑔

′
1
,....), the

gap distribution of the input keys determines the gap distribution of

the output keys and thus the amount of collisions. In certain cases,

like auto-generated keys (1,2,3,4,5,...) perhaps with some deletions

or noise, the input gaps are mostly constant. In this scenario, a piece-

wise linear model can lead to fewer collisions than a traditional hash

function. However, if the input keys are generated by sampling from

a distribution instead of sequentially, multiplying the CDF value of

the key by the array size will behave as an order-preserving hash

function. A LMH function that approximates this underlying distri-

bution would behave essentially the same as a truly random hash

function in terms of collisions.

Increasing the number of submodels can improve the accuracy

of when using a piece-wise linear model to approximate a CDF. This

helps in the case of indexing an item, but from our argument above,

we see that this does not necessarily reduce the number of colli-

sions.We show this via an example.Wemapped 100million uniform

randomly and normally distributed keys to 100 million slots using

RMI with varying number of submodels. In Figure 1, we plot the

proportion of collisions as we increase the number of submodels

in RMI. We observe that for uniform randomly distributed keys in-

creasing the number of linear submodels does not affect collision

metric until we reach 50 million submodels. RMIs with 100 submod-

els and 100000 submodels are both able to approximate the CDF

of the distribution well and the output is approximately uniformly

randomly distributed in both cases. The larger RMI provides better

accuracy than the smaller one but essentially the same number of

collisions. TheRMIwith 50million submodels essentiallymemorizes

the empirical CDF of the dataset and thereby results in lower colli-

sions. For the normal distribution, an initial increase in the number

of submodels reduces collisions as an RMI with only 1-2 submodels

fails to approximate the CDF of normal distribution well.

536

Figure 1: Proportion of collisions with increasing RMI size.

Table 1: Default numbers of submodels in LMH functions.

wiki fb osm book gap_10 uniform norm lognorm

RMI 10
3

10
7

10
7

10
6

10 10
2

10
2

10
4

RadixSpline 10
3

10
8

10
8

10
7

10 10
2

10
2

10
4

Figure 2: Gap distribution of various datasets

7 EVALUATION
In this section, we present an empirical study for the performance of

LMH functions and compare them against both traditional and per-

fect hashing. Ourmain objective is to answer the following question:

what are the main workload characteristics, scenarios, and operations
where employing LMH functionswould improve performance?Wefirst

study the collisions and computation time tradeoffs (Section 7.2).

Then, we evaluate the performance of the various types of hash

functions in supporting the main hash table operations, lookup and

insertion, for different types of hash tables (Section 7.3). We also

provide more detailed experiments regarding issues such as how

collisions, key types, and payload size affect performance in practice,

as well as the impact of construction time for LMH (Section 7.4). Fi-

nally, we move to some higher-level operations that use hash tables,

and show cases where LMH can improve the performance of range

queries (Section 7.5) and non-partitioned hash join (Section 7.6).

7.1 Experimental Setup
Datasets.We use both real and synthetic key datasets in our exper-

iments. All keys are 64-bit integers
4
. For real keys, we use the four

datasets from the SOSD benchmark [52]. These datasets are (1) fb,
which has randomly sampled Facebook user IDs, (2) wiki, which
has timestamps of edits fromWikipedia, (3) osm, which has cell IDs

from Open Street Map, and (4) book, which has keys representing
the popularity of books from Amazon. Each dataset has 200 million

keys. In any experiment, we use either the whole dataset or a sample

from it (details are mentioned in each experiment separately).

For synthetic keys,we use four different key generation processes:

(1) gap_10, in which sequential keys are first generated at regular

intervals of 10 and then 10% of the keys are uniformly randomly

4
We focus on integer keys in our study. However, for completeness, we provide a single

experiment in Section 7.4 to investigate the performance with string keys.

deleted (this represents the case of auto-generated IDs after removal

of certain users), (2) uniform, in which keys are generated uniformly

at random in the range [0,250], (3)normal and (4) lognormal, inwhich
keys are generated from normal (𝜇=100 and 𝜎 =20) and lognormal

(𝜇 = 0 and 𝜎 = 1) distributions, respectively, and then are linearly

scaled to the range [0,250].
As discussed in Section 6, the gaps between sorted hash outputs

determine collisions. In order to understand the distribution of these

gaps in our datasets,weuse anRMI,with 1million submodels, tomap

100 million keys from each dataset to 100 million slots and then plot

thegapsbetweenconsecutive sortedoutputvalues. InFigure2, x-axis

shows the gap value and y-axis shows the count of this gap for some

of the used datasets. We observe that gap_10 andwiki datasets have
gaps concentrated around1.uniform,normal, and lognormal datasets
have very similar gap distributions concentrated around 0.25-0.35,

while fb, osm, and book datasets have significant counts of gaps

concentrated around 0.1 (fb and osm have higher counts than book).
In all hash table, range query, and join experiments, we generate

8-byte payloads chosen randomly from the range [0,264]5. All tuples
(or keys) are randomly shuffled before running any experiment.

Hardware. All experiments are conducted in the main memory

on a machine with 256 GB of RAM and an Intel(R) Xeon(R) Gold

6230 CPU@ 2.10GHz with Skylake micro-architecture (SKX) and

L3 cache of 55MiB. The operating system is Arch Linux with a

page size of 4KB (default page size). The implementation of all

hashing functions and schemes is our own and in C++. The bi-

naries are compiled with clang++ (12.0.1) using optimization -O3.

We have activated prefetching.

Default Settings. Unless otherwise mentioned, we set the number

of submodels in RMI and RadixSpline as stated in Table 1. Each value

represents the least number of submodels needed to give the least

amount of collisions in a specific dataset. For PGMmodels, we set the

error bound to 10. The number of tuples (or keys) in each synthetic

dataset is set to 100 million. We use a default bucket size of 1 in

bucket chaining. To support cuckoo hashing with a load factor up

to 90%, we use a bucket size of 4 as described in [2]. As mentioned

in Section 5, we use the biased kicking strategy as it performs better

than the balanced one. We set 50000 as a maximum number of kicks.

This value led to a suitably small number of insert failures.

Metrics. Throughput is the default metric in most of the experi-

ments. When studying the hash function itself, we use the compu-
tation throughput, which is the number of hash function operations

executed per second. In the hash table and range query experiments,

we use the number of completed queries (e.g., probe/insert queries

on hash tables) per second (i.e., queries throughput). For the join ex-
periments, we use the runtime instead of the throughput to perform

a breakdown for the join phases.

Measurement and Profiling. For all experiments, we report the

average of three independent runs, where we use a different random

seed for generating and shuffling synthetic and real data, respec-

tively, in each run.We use the PerfEvent library [50] to profile the

low-level hardware counters in Section 7.3. These counters include

L1 and LLC cache misses, branch misses and cycles.

5
We focus on 8-byte payloads in our study. However, for completeness, we provide

a single experiment in Section 7.4 to investigate the effect of varying the payload size.

537

Beyond Scope.Our study focuses only on the single-threaded setup
to fairly compare the performance of LMH functionswith traditional

and perfect hashing, without parallelism optimizations. That being

said, we believe that multi-threaded implementations of these hash-

ing schemes should be evaluated in a standalone study, which we

currently plan as an extension for this work.

7.2 Computation Throughput vs Collisions
In this experiment, we are interested in studying the tradeoff be-

tween the hash function quality and its efficiency. We use the eleven

hash functions previously discussed and five from our datasets
6
.

In each dataset, we map a randomly-selected 100 million keys into

100 million hash table slots, and measure both the hash function

computation throughput, and the proportion of colliding keys.

Figure 3 shows the results of this experiment. Note that each tra-

ditional and perfect hash function is represented as a single point in

the scatter plot. However, in LMH functions, we vary (1) the number

of submodels in RMI and RadixSpline from 1 to 50million and (2) the

error bound of PGM from 1 to 10000, yielding multiple points on the

plot. As expected, traditional hash functions have a significant num-

ber of collisions, and perfect hash functions are slow. All traditional

functions have similar throughput (90-100 million operations/sec)

and colliding keys proportion (0.63-0.65) across all datasets. This

proportion of colliding keys nearly matches that for truly random

hash function which is approximately (1−1/𝑒≈0.632). All perfect
hash functions have no collisions (by definition), but low throughput

(10-20million operations/sec) due to the high computation overhead

coming from either an expensive traversal over the splitting tree in

RecSplit [28] or multiple random accesses to the array storing the

hypergraph-related values in MWHC [51].

The performance of LMH functions, however, depends on the gap

distribution of the input datasets as discussed in Section 6. The RMI

and RadixSpline hash functions, at their best configurations, can

achieve low collisions (0.2 and 0.3) and high throughput (80 to 120

million operations/sec) in two datasets, gap_10 andwiki. For these
datasets, the gaps are more or less evenly spaced, and hence LMH
functions yield a very low number of collisions. In addition, the num-

ber of submodels needed for these datasets is small, whichmakes the

LMH computation overhead efficient. For fb, the variance in the gap
distribution is veryhigh, yielding a largenumber of collisions. Reduc-

ing these collisions requires using a large number of submodels (the

best proportion of colliding keys is 0.5), yielding low throughput.

In the case of uniform and normal datasets, we observe that LMH
and traditional functions have similar collision behavior, regardless

of the used number of submodels. This matches our understanding

that the CDF-based hashing of LMH for these datasets will lead to a

distribution of items in buckets that is nearly the same as traditional

hashing (as described in Section 6). In general, as discussed in Sec-

tion 6, increasing the number of submodels in LMH functions does

not necessarily decrease the collisions. For example, inwiki, the pro-
portion of colliding keys usingRMI significantly drops from0.9 to 0.3

after an initial increase in the number of submodels from 1 to 1000,

and then becomes stable regardless the number of submodels used.

For the rest of our experiments, we compare LMH functions with

the best traditional and perfect hash functions, in terms of both

6
Tradeoffs in osm and book are similar to fb, and in lognormal are similar to normal.

computation time and collisions: Murmur and MultiplyPrime for

traditional hashing, and MWHC for perfect hashing.

7.3 Hash Table Performance
Here, we are interested in studying the performance of two main

hash table operations; probe and insert.

Probe Throughput. In this experiment, we first insert 100 million

tuples in a hash table with varying number of slots (i.e., buckets).

Then, we probe the hash table with all the inserted tuples (i.e., query

workload), after randomly shuffling them, and measure the through-

put.Wegenerate different load factors byvarying thenumberof slots.

Figure 4 shows the results for this experiment while using seven

input datasets (uniform and normal nearly have the same results).

For each hashing scheme, we use a different range of load factors

that are suitable for the scheme. For example, we use load factors

≥ 100% in bucket chaining as it can support inserting tuples more

than the total slots in a hash table. Also, we only use high load factors

(≥ 75%) with cuckoo hashing because, in smaller load factors, cuckoo

hashing is always dominated by other schemes [66].

For bucket chaining, RMI has the best throughput in gap_10, nor-
mal, lognormal, andwiki datasets, averaging 1.4x better throughput
than the second best function,whether it isMultiplyPrime or RadixS-

pline. This is because RMI has the fewest collisions in these four

datasets. Fewer collisions result in shorter chains that need to be

traversed during the probe queries, and hence fewer cache misses.

In addition, both PGM and MWHC have the worst throughput in

gap_10 andwiki datasets due to their high computation overhead
7
.

For RadixSpline, we observe an interesting variance in performance

in these datasets. It is competitive with RMI throughput in non-

skewed datasets (gap_10 and wiki), but becomes the worst in the

skewed datasets (normal and lognormal). This is because in skewed
datasets outlier keys lead to having a large radix tablewith amajority

of its entries being useless (i.e., more data structure overhead and

cachemissesduring lookups).ThisweaknessofRadixSplinehasbeen

noted in [52]. In fb, osm, and book datasets, we observe a clear rank-
ing among the different hash functions. AlthoughMWHC still has

the highest computation overhead,LMH functions become theworst

options (except book in which RMI is slightly better thanMWHC)

with an average throughput of only 2.5million queries/sec. This is be-

cause of the high number of collisions for LMH functions when used

with these datasets that have high variance in their gaps distribution.

We also look at the throughput across different load factors. In-

creasing the load factor increases collisions because there are fewer

slots, which degrades the throughput. For example, Murmur has

throughputs of 16 and 8.5 million queries/sec at load factors of 25%

and 200%, respectively. However, we observe two exceptions to this

throughput trendwhenusing: (1)RMIandRadixSpline at load factors

between 25% and 100% in gap_10 and wiki, where the throughput
actually increases, and (2) MWHC in all load factors, where the

throughput is fixed around 8 million queries/sec, regardless of the

dataset. The reason for thefirst exception is that collisions are already

close to zero in these two datasets, so increasing the load factor from

25% to 100% primarily reduces empty hash table slots, leading to

better caching behavior. The reason for the second exception is that

7
Note that PGM has high inference cost because of its multi-level structure.

538

Figure 3: Computation throughput and collisions tradeoffs for various hash functions and using different datasets.

Figure 4: Probe throughput for combinations of 6 hash functions and 3 hashing schemes: (A) bucket chaining, (B) linear probing,
and (C) cuckoo hashing. Results are shown for 7 different datasets, and various load factors for each hashing scheme.

the MWHC computation overhead for each tuple is constant [51],

regardless of the used load factor.

For linear probing, the throughput depends on the length of the

sequential scan needed to handle collisions. We observe that the

throughputs achieved byusingMurmur,MultiplyPrime, andMWHC

have the same trend as in bucket chaining. In contrast, RMI and

RadixSpline have the following two notable changes. First, their

performance gain over traditional hashing in gap_10 decreases or
even vanishes (e.g., they yield 10% less throughput in normal and
lognormal). Although the number of collisions using LMH func-

tions is slightly smaller in these datasets (Section 7.2), the effect of

this difference can be hidden by the sequential scan benefits (e.g.,

prefetching) of linear probing, and hence the overhead of RMI and

RadixSpline hash computation becomes more significant. Second,

RMI and RadixSpline result in worse throughput than traditional

hashing inwiki (average 40% less throughput thanMultiplyPrime).

This was a bit surprising as LMH functions result in significantly

fewercollisions than traditionalhashing.However,we found that ina

fewparts of thewiki dataset RMImaps up to 100 keys to the same slot,

creating clusters that result in long sequential scans during probing.

For cuckoo hashing, we observe that the throughputs achieved by

any hash function are pretty much similar within the same dataset,

regardless of the load factor used. This is expected as handling col-

lisions in cuckoo hashing is typically performed in constant time

(two cache misses at most). Even better, we employ a biased kicking

strategy, inwhichmost of the tuples are placed in their primary hash

slots (i.e., one cachemiss formost of the probes). Thismakes the hash

function computation (model prediction in case of LMH functions)

have a great impact on the probe latency in cuckoo hashing, and

explains why the throughput using LMH functions is worse than

using traditional hashing in all datasets, except in gap_10 andwiki
where RMI is almost similar to Murmur. Note that using RMI failed

to construct the cuckoo hash table for fb and osm (similarly, RadixS-

pline and PGM failed in fb, osm, and book at load factors > 90%)

because the resulting number of collisions is extremely high, and

the required number of kicks to handle them exceeds the maximum

threshold. For traditional hashing, we also noticed that Murmur

succeeded in constructing the hash tables in all datasets, while the

construction failed using MultiplyPrime at load factor 95% because

of highnumber of collisions. In general, cuckoohashing significantly

539

Figure 5: Insert throughput for the same hash functions and
schemes used in Figure 4, yet forwiki and fb datasets only.

reduces the impact of collisions, regardless of the hash function used,

and hence the performance improvement of LMH over traditional

hashing becomes negligible.

Insert Throughput. Here, we use the same setup in the probe

throughput experiment, while changing the queryworkload. To gen-

erate the insert workload, we first uniformly and randomly sample

101million tuples from an input dataset. Then, we initialize the hash

table by bulk-inserting 100 million tuples from this sample as in the

probe throughput experiment, anduse the remaining 1million tuples

as the query workload. Figure 5 shows the results of this experiment

for two input datasets only,wiki and fb (the remaining datasets show

similar performance trends).

In general, the relative ranking and throughput trends remain the

same as in the probe throughput experiment (including the failure

cases in cuckoo hashing). We also observe that, in wiki, the per-
formance benefit that RMI offers over MultiplyPrime - when used

with bucket chaining - in insertion is not as high as in probing (only

an average of 10% throughput improvement in insertion compared

to 30% in probing). Probing time mainly depends on the length of

the chain to be traversed whereas insertion requires allocating and

adding new buckets to the chain, and hence the collision reduction

improves only a portion of the total insert time. Another interesting

observation is that at load factor 95% using cuckoo hashing with

MWHC is the best as the overhead of kicking operations becomes

higher than the complex computation of MWHC.

Performance Counters. To deeply understand what happens on
the hardware level, we investigate the following four performance

counters: cycles, L1 cache misses, last-level cache (LLC) misses, and

branch misses. Figure 6 shows the average values of these counters

per tuple when using RMI, MultiplyPrime andMWHC in the probe

throughput experiment (Figure 4) at load factor 80% and only for two

Figure 6: Performance counters per tuple for the probe
experiment in Figure 4 using the gap_10 (first row) and fb
(second row) datasets at load factor 80%.

Figure 7: Effect of (1) gap distribution on LMH collisions (left),
and (2) dataset size on building time (right).

datasets gap_10 (first row) and fb (second row). ForMWHC, we only

show chained results as other schemes have similar performance.

For gap_10, the three RMI-based variants achieve the lowest per-

formance counter values (e.g., one L1/LLCmiss per tuple for RMI-

CHAIN and RMI-LP) compared to other variants. This is because the

number of submodels needed for any LMH function is only 10 (as

shown in Table 1), which can totally fit in the cache. For fb, we found
that scanning very large clusters, as in RMI-LP or MULT-LP, signifi-

cantly increases both cache and branchmisses, and in turn increases

cycles (high cache and branchmisses lead to an excessive increase in

theamountofCPUstalls andwasted cycles, respectively). In contrast,

RMI-CHAINsignificantly reduces theeffectof thehighcollisionspro-

duced by RMI in fb (RMI-CHAIN has at least 3X less LLCmisses and

cycles thanRMI-LP). Even in gap_10, RMI-CHAIN still has at least 2X

and4X less cycles thanRMI-LPandRMI-CUCKOO, respectively.This

confirms our conclusion about the impact of hashing schemes on the

probe throughput using LMH functions. Another interesting obser-

vation in fb is that MULT-CHAIN andMULT-CUCKOO have close

values in all counters, yetMULT-CUCKOOis a bit better in cycles and

branch misses. This shows that bucket chaining can provide a com-

petitive performance at challenging datasets and high load factors.

7.4 More Performance Analysis
In this section, we study more parameters related to LMH functions

and their performance in hash tables.

540

Figure 8: Effect of increasing the bucket capacity on the probe
throughput of a chained hash table at load factor of 50%.

Gap Distribution. In this experiment, we vary the gap distribution

to display that gaps concentrated around the mean have lower colli-

sions. Assuming that the variance of the gap distribution of uniform
keys is𝑋 , we generate 4 different variations of the uniform dataset,

such that the gap distribution variances of their keys are 2𝑋 , 4𝑋 ,

0.5𝑋 and 0.25𝑋 (i.e., scaled variances)
8
. Then, we insert the keys

of each dataset variation in a hash table using RMI, and calculate

the proportion of colliding keys. The left part of Figure 7 shows the

proportion of colliding keys with varying load factors. As expected,

the amount of collisions can be decreased by decreasing either de-

creasing the gap variance or the load factor. Lower gap variance

cause the gap distribution to concentrate around the mean value

resulting in lower collisions.

Build Time. Unlike traditional hash functions, LMH and perfect

hash functions require a building stage. In the right part of Figure 7,

we show the building time for LMH andMWHC functions using the

uniform dataset, varying the number of keys between 10
6
and 10

8
.

We see that the building time of MWHC is consistently 2.5 and 2

orders of magnitude slower than the building times of RMI (or PGM)

and RadixSpline, respectively. Although MWHC has an expected
O(𝑛) construction time [51], its hypergraph building process re-

quires an excessive amount of randommemory accesses, and hence

cache misses (check Section 4). In contrast, building LMH functions

requires only sorting the data once and doing multiple sequential

passes over it, which is a cache-friendly process.

Bucket Capacity. In this experiment, we study how increasing the

bucket capacity (i.e., number of tuples in the bucket) affects the probe

throughput. For each dataset, we build different hash tables with a

load factor of 50%, and are bulk-loaded with 100 million tuples. Note,

sincewe fix the load factor, increasing the bucket capacity by a factor

𝑋 reduces the number of buckets by a factor
1

𝑋
. We use the same

inserted tuples as a probe workload, after randomly shuffling them,

and measure the throughput as in Figure 8.

In bucket chaining, increasing the bucket capacity reduces the

length of needed chains (i.e., extra buckets) to handle collisions, as

any colliding key now has a high probability to be in the main hash

table bucket. However, this increases the probe time as well because

finding a key in the bucket requires larger scan overhead as the

bucket becomes larger. In wiki, LMH functions already produce a

low number of collisions, and hence increasing the bucket capacity

will not benefit chaining, yet causes probes to scan unnecessary keys,

8
Each dataset variation is generated by scaling the gaps between the uniform keys

with the corresponding factor (e.g., the "2𝑋 Variance" dataset scales the gaps between

uniform keys by a factor of 2).

Figure 9: (1) Effect of payload size on the probe throughput
(left), and (2) Computation throughput and collisions tradeoff
when using string keys (right).

and hence the throughput significantly decreases (this is also true

for MWHC as it has no collisions by definition). We can see that

RMI and RadixSpline are affectedmore than PGMbecause their hash

computation is lighter, and hence the effect of collision handling,

with any extra overhead, becomes more obvious in the total probe

time. In fb, LMH produces a lot of collisions that result in longer

chains. In this case, increasing the bucket capacity improves the

probe throughput a bit. In the case of Murmur andMultiplyPrime,

they significantly suffer from the extra scan overhead within the

bucket only beyond size of 4.

Payload Size.Here, we study the effect of increasing the payload
size on the probe throughput of hash tables built with different hash

functions. In this experiment, we use thewiki dataset and a chaining
scheme with a 100% load factor. For each hash function, the hash

tables are built and probed as described in the bucket capacity ex-

periment, yet, with tuples of different payload sizes: 4, 8, 16 and 64

bytes. The left part of Figure 9 shows the probe throughput (x-axis

has a logscale). As expected, increasing the payload size significantly

reduces the probe throughput of all functions, except MWHC and

PGM, inwhich the overhead of cachemisses (coming from accessing

payloads) does not affect their already high computation time until

the payloads become very large (e.g., 64 bytes).

String Keys.Workloads with string keys are common in the real-

world (e.g., [5, 16]). Unfortunately, learned models and indexes have

no efficient support for string keys. The most relevant work in this

area is RadixStringSpline (RSS) [76], which constructs a tree of radix

splines, each indexing a fixed number of bytes in the string. Here, we

investigate the robustness of RSS against Murmur, which is known

for its efficiency in hashing strings. We repeat the computation

throughput-collisions experiment (Section 7.2), while using two

string datasets: (1) Emails, which is a real-world email dataset used

in [12], and (2) URLs, which is a dataset of Wikipedia URL tails used

in [76]. The right part of Figure 9 shows the results of this experi-

ment. We can see that RSS, at its best configurations, can actually

achieve 28% lower collisions than Murmur but with extremely slow

computation throughputs. This slowness is because strings typically

have both long shared prefixes and relatively low discriminative

content per byte, which require a very large number of submodels

(i.e., tree nodes) in the RSS to capture the strings distribution.

7.5 Range Queries Performance
Hash tables support fast point queries, and do not support range

queries. On the other hand, index structures like B-Tree, ART [46],

and RMI [43] support both point and range queries. However, the

541

Figure 10: Effect of both point queries percentage (first row),
and range query size (second row) on the queries throughput.

performance of index structures in point queries is not as efficient as

hash tables. In case of a mixed workload of point and range queries,

where range queries represent only a small proportion, one cannot

use a hash table and is forced to use an index to be able to answer

the range queries. This results in a huge performance degradation

for the majority of the point queries. Fortunately, we can use "mono-

tonic" LMH functions, such as RMI and RadixSpline, along with

bucket chaining to build a hash table that supports range queries in

addition to its natural support for fast point queries. In this case, a

range query can be processed by scanning the buckets between the

locations corresponding to the query lower and upper bound keys.

PointQueriesPercentage. In thisexperiment,westudythe through-

put of a mixed workload using (1) RMI-CHAIN and RadixSpline-

CHAIN hash tables (bucket size of 8 and load factor of 50%), which

are our proposed solutions, and (2) a sorted array of the input data

with a typical RMI on top of it (RMI-SORT). We use wiki and fb,
where we sample 100 million tuples as input data and we generate

a mixed workload by first randomly sampling𝑋% of the input data

to be used as point queries, and then the rest(i.e., 100-𝑋%) are used

to generate random range queries that retrieve about 25-50 tuples

(shown in upper half of Figure 10). In bothwiki and fb, RMI-CHAIN

and RadixSpline-CHAIN have faster throughput than RMI-SORT

when the workload has a majority of point queries, and vice versa.

This is because for a point query, they just need to scan the bucket

pointed out by the model, whereas RMI-SORT needs a local search

to find the key. For a range query, RMI-CHAIN and RadixSpline-

CHAIN scan the buckets that fall within the range query and the

chains associatedwith them. This leads to randommemory accesses,

and a decrease in the throughput. In contrast, RMI-SORT only needs

to sequentially scan the relevant keys in the sorted range.

Range Query Size.Here, we reuse the setup of the previous experi-
ment, while focusing only on 100% range queries workload.We vary

the range query size from 1 to 1024. The bottom half of Figure 10

shows the results for this experiment (x-axis has a logscale). With

Figure 11: Runtime breakdown for the different implementa-
tions of non-partitioned hash join using various hash tables.

increasing the range size, RMI-CHAIN and RadixSpline-CHAIN be-

come slower thanRMI-SORT as they need to scan additional chained

buckets.

7.6 Hash-based Join Performance
In this experiment, we are interested in understanding the perfor-

manceofnon-partitionedhash join (NPJ)over two input relations [44,

79]. Note that we do not investigate partitioned hash join [72, 79] as

it employs small cache-fit hash tables and using any traditional hash

function will be the best choice. In contrast, NPJ builds a large global

hash table for the smaller input relation and the probability of having

performance degradation, due to large number of collisions, is high.

Therefore, employing an efficient hash function is crucial to improve

the join performance. We use wiki and fb datasets, where we uni-
formly and randomly sample two variations from each dataset with

10M and 25M tuples. These variations will be used to perform the

NPJ on, using the best function in each hashing category. Figure 11

shows the running time of the NPJ build and probe phases.

Interestingly,wecanobserve thatRMI-CHAINandMULT-CHAIN

have the best join performance in bothwiki and fb. Specifically, RMI-

CHAIN has 28% less total runtime (build and probe) than MULT-

CHAIN in wiki (e.g., in the 25Mx25M variant, the build times of

RMI-CHAIN andMULT-CHAIN are 3.2 and 4.3 sec, while their probe

times are 1.488 and 2.193 sec, respectively), and they both have the

same total runtime in fb. Looking at the build phase, we can see that
RMI-CHAIN and RMI-LP build the hash table more efficiently. This

is because RMI sorts the data to build its submodels, and then uses

them to insert each tuple. Although sorting the data is a bit expen-

sive, it helps themodel-based insertion to happen in a cache-friendly

manner, and is significantly less than randomly inserting tuples (i.e.,

more cache misses) using MultiplyPrime andMurmur. Due to the

efficiency of RMI in building the hash table, the total time of NPJ

using RMI-CHAIN becomes more competitive with MULT-CHAIN

in a challenging dataset like fb because the performance gain in

building compensates for the performance degradation in probing,

and the total running time becomes very close.

542

8 RELATEDWORK
Traditional Hashing. Traditional hash functions can be catego-

rized as either non-cryptographic [29] or cryptographic [1]. Non-
cryptographic hash functions [2, 18–20, 42, 66, 68, 70], which we

mainly focus on in our study, are mostly used in building data struc-

tures and algorithms due to their good balance between computation

time and collision rates.More recentwork has focused on optimizing

theperformance of non-cryptographic hashingonmodernhardware

by either proposing new hash functions [80] (e.g., CLHash [47], and

tabulation hashing [64]) or customizing the existing ones to utilize

the underlying hardware (e.g., GPU [48] and SIMD vectorization [9,

34]).Cryptographic hash functionshave thepropertyofbeingcompu-

tationally hard to invert (e.g., MD5 [67], SHA1 [27] and SipHash [7]).

These functions can still be used in building data structures, yet their

performance can be much slower than non-cryptographic ones [18].

Perfect Hashing. Perfect hashing has beenwidely studied; see, e.g.,
the survey in [51]. Perfect hashing solutions can be divided into two

categories: static and dynamic. When inserting new tuples to the

hash table, the static solutions (e.g., [14, 28, 51, 61]) reconstruct the

whole table from scratch, while the dynamic solutions (e.g., [21, 81])

reconstruct the table parts that are related to the update only.

LearnedModels for Indexing andHashing.During the last few
years, the idea of using CDF-based learned models to replace tradi-

tional indexes has been investigated extensively including single-

dimension (e.g., [30, 40, 43]), multi-dimensional (e.g., [24, 57]), updat-

able (e.g., [25]), and spatial (e.g., [49, 62, 65]) indexes. Interestingly,

the authors of [43] also discussed the idea of using learned mod-

els as order-preserving hash functions further investigated by the

study [70]. In contrast, our proposed study ismore comprehensive as

it spans additional hash function types, hashing schemes, workload

types, andhash-basedoperations.Another recentwork [36] employs

an entropy-learned approach to reduce the hashing overhead.

HashingExperimentalStudies.SMHasher [80] isawidely-known

test-suite for evaluating non-cryptographic hash functions. [78]

provided both theoretical and experimental analysis for crypto-

graphic hash functions. [2] did a detailed experimental comparison

between the performance of two hashing schemes (cuckoo hashing

and quadratic probing) and two radix tree variations. [73] micro-

benchmarked theperformanceof SIMD-awarevariations of different

hashingschemes. [66] is another recentcomprehensiveexperimental

study for the different combinations of hash functions and schemes.

However, it only focused on non-cryptographic traditional hash

functions and hash table operations. For learned models, they have

been extensively benchmarked in [52] for indexing only, and not for

hashing. In this paper, we try to fill this gap.

9 LESSONS LEARNEDAND FUTUREWORK
Gaps distributionmatters for LMH collisions.Assuming the in-

put keys are sorted, collisions of LMH functions (that employ linear

submodels) depend on the distribution of gaps between consecu-

tive sorted keys. The more evenly spaced these gaps are, the fewer

collisions LMH functions have; in fact there can be fewer collisions

than traditional hashing. When data is from typical distributions

(e.g., normal), we observe that LMH functions have a similar (or even

higher) number of collisions compared to traditional hashing.

Number of submodels matters for LMH efficiency. Building an
LMH functionwith very few submodels (fewer than a certain thresh-

old) reduces its accuracy, as it will not capture the input distribution

effectively. On the other hand, increasing the number of submodels

decreases the computation throughput. For datasets with evenly

spaced gaps, tuned LMH functions can achieve the best tradeoff

between computation throughput and collisions, compared to tradi-

tional and perfect hash functions, as shown in Section 7.2. Generally

speaking, RMI is the best in achieving this tradeoff, while PGM is

the worst. For RadixSpline, it depends on the dataset skewness. The

more skewed the dataset is, the worse the RadixSpline performance.

Throughputsofbuilding/probinghash tablesusingLMH func-
tions vary across different hashing schemes. Collision reduc-
tion due to LMH translates to improved hash table probe and insert

throughputs, more evident with bucket chaining, and diminish with

cuckoo hashing, as shown in Section 7.3. We also found that RMI

and MultiplyPrime are the best LMH and traditional hash functions,

respectively, to use along with bucket chaining in all load factors

ranging from 20% to 200%.

For string keys, traditional hashing is better than LMH . Effi-

cient support for strings in learned models is still an open research

question. RSS [76], which is a preliminary attempt, shows a signif-

icantly less hash computation throughput than traditional hashing

due to the difficulty of modeling strings that typically have long

shared prefixes and relatively low discriminative content per byte.

Efficient support of LMH formixed workloads of point and
range queries as well as non-partitioned hash join (NPJ).Any
monotonic (i.e., order-preserving) LMH function, along with bucket

chaining, canbeused tobuild onehash table for efficiently answering

both point and range queries at the same time (i.e., mixedworkloads).

In fact, using LMH functions along with chaining is also more ef-

ficient than other traditional options in building and probing the

shared hash table in NPJ. Among the different LMH -based variants,

RMI-CHAIN shows the most efficient and robust performance.

Future Directions. The multi-threaded implementations and eval-

uations of LMH , perfect hashing, and traditional hash tables remains

open. Also, our study primarily focused on piece-wise linear models,

and more complex models like decision trees and neural networks

may lead to different and further interesting tradeoffs.

ACKNOWLEDGMENTS
This research is supported by Google, Intel, and Microsoft as part

of the MIT Data Systems and AI Lab (DSAIL) at MIT, and NSF IIS

1900933. This research was also sponsored by the United States Air

Force Research Laboratory and the United States Air Force Artificial

Intelligence Accelerator and was accomplished under Cooperative

Agreement Number FA8750-19-2-1000. The views and conclusions

contained in this document are thoseof the authors and shouldnot be

interpreted as representing the official policies, either expressed or

implied, of the United States Air Force or the U.S. Government. The

U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation

herein. Finally, this research was partially supported by the NSF,

under grant #2030859 to the Computing Research Association for

the CIFellows Project.Michael Mitzenmacher was supported in part

by NSF grants CCF-2101140, CNS-2107078, and DMS-2023528.

543

REFERENCES
[1] Mohammad Alahmad and Imad Fakhri Taha Alshaikhli. Broad View of Cryp-

tographic Hash Functions. International Journal of Computer Science Issues, 2013.
[2] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. A Comparison of

Adaptive Radix Trees and Hash Tables. In ICDE, pages 1227–1238, 2015.
[3] Austin Appleby. Murmurhash3 64-bit finalizer. https://code.google.com/p/

smhasher/wiki/MurmurHash3.

[4] Austin Appleby. MurmurHash. https://sites.google.com/site/murmurhash/, 2011.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload Analysis of a Large-Scale Key-Value Store. In Proceedings of the ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, 2012.

[6] AudouinAudouin andBrongniart Brongniart. Annales des sciences naturelles-vol.

7 (series-2). In Annales des Sciences Naturelles, volume 7, pages 42–110. Crochard,

1837.

[7] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-Input

PRF. In Progress in Cryptology - INDOCRYPT, 2012.
[8] Cagri Balkesen, Jens Teubner, GustavoAlonso, andM. TamerÖzsu. Main-memory

hash joins on multi-core CPUs: Tuning to the underlying hardware. In ICDE,
pages 362–373, 2013.

[9] Tobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Breß, and Volker Markl.

Efficient SIMD Vectorization for Hashing in OpenCL. In EDBT, 2018.
[10] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Theory

and practice of monotone minimal perfect hashing. Journal of Experimental
Algorithmics (JEA), 16:3–1, 2008.

[11] Michael A. Bender, Bradley C. Kuszmaul, andWilliam Kuszmaul. Linear Probing

Revisited: TombstonesMark the Death of Primary Clustering. In IEEE Symposium
on Foundations of Computer Science, 2021.

[12] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. HOT:

A Height Optimized Trie Index for Main-Memory Database Systems. In SIGMOD,
2018.

[13] C++ Team Blog. Linker Throughput Improvement in Visual Studio 2019.

https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-in-

visual-studio-2019/, 2019.

[14] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and Space-Efficient

Minimal Perfect Hash Functions. In Proceedings of the International Conference
on Algorithms and Data Structures, 2007.

[15] Fabiano C Botelho and Nivio Ziviani. External perfect hashing for very large key

sets. In Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management, pages 653–662, 2007.

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. Characterizing,

Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In

Proceedings of the USENIX Conference on File and Storage Technologies, 2020.
[17] Pedro Celis. Robin Hood Hashing. PhD thesis, University of Waterloo, CAN, 1986.

[18] Yann Collet. xxHash repository. https://cyan4973.github.io/xxHash/.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[20] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.

A Reliable Randomized Algorithm for the Closest-Pair Problem. Journal of
Algorithms, 25(1):19–51, 1997.

[21] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der

Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic Perfect Hashing: Upper

and Lower Bounds. SIAM J. Comput., 23(4):738–761, 1994.
[22] Martin Dietzfelbinger,MichaelMitzenmacher, andMichael Rink. Cuckoo hashing

with pages. In Camil Demetrescu andMagnúsM.Halldórsson, editors,Algorithms
- ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, September
5-9, 2011. Proceedings, volume 6942 of Lecture Notes in Computer Science, pages
615–627. Springer, 2011.

[23] MartinDietzfelbinger andChristophWeidling. BalancedAllocationandDictionar-

ies with Tightly Packed Constant Size Bins. In Theortical Computer Science, 2007.
[24] Jialin Ding et al. Tsunami: A Learned Multi-Dimensional Index for Correlated

Data and SkewedWorkloads. In Proc. VLDB Endow., 2020.
[25] JialinDing,UmarFarooqMinhas, JiaYu,ChiWang, JaeyoungDo,YinanLi,Hantian

Zhang, BadrishChandramouli, JohannesGehrke,DonaldKossmann,David Lomet,

and Tim Kraska. ALEX: An Updatable Adaptive Learned Index. In SIGMOD, 2020.
[26] Kayhan Dursun, Carsten Binnig, Ugur Cetintemel, and Tim Kraska. Revisiting

Reuse in Main Memory Database Systems. In SIGMOD, 2017.
[27] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174, IETF,

9 2001.

[28] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. Recsplit:

Minimal perfect hashing via recursive splitting. In 2020 Proceedings of the
Twenty-SecondWorkshop on Algorithm Engineering and Experiments (ALENEX),
pages 175–185. SIAM, 2020.

[29] César Estébanez, Yago Saez, Gustavo Recio, and Pedro Isasi. Performance of

the Most Common Non-Cryptographic Hash functions. Softw. Pract. Exper.,
44(6):681–698, 2014.

[30] Paolo Ferragina and Giorgio Vinciguerra. The PGM-Index: A Fully-Dynamic

Compressed Learned Index with Provable Worst-Case Bounds. Proc. VLDB
Endow., 13(8):1162–1175, 2020.

[31] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space

Efficient Hash Tables with Worst Case Constant Access Time. In Proceedings
of the Annual Symposium on Theoretical Aspects of Computer Science, 2003.

[32] Michael L Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table

with 0 (1) worst case access time. Journal of the ACM (JACM), 31(3):538–544, 1984.
[33] Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions Set.

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-

standard-new-instructions-set-paper.pdf.

[34] Bala Gurumurthy, David Broneske, Marcus Pinnecke, Gabriel Campero Durand,

and Gunter Saake. SIMD Vectorized Hashing for Grouped Aggregation. In

Advances in Databases and Information Systems, 2018.
[35] Torben Hagerup and Torsten Tholey. Efficient minimal perfect hashing in nearly

minimal space. In Annual Symposium on Theoretical Aspects of Computer Science,
pages 317–326. Springer, 2001.

[36] Brian Hentschel, Utku Sirin, and Stratos Idreos. Entropy-Learned Hashing: 10x

Faster Hashing with Controllable Uniformity. In SIGMOD, 2022.
[37] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski,

and Gor Nishanov. Exploiting Coroutines to Attack the "Killer Nanoseconds".

Proc. VLDB Endow., 11(11):1702–1714, 2018.
[38] Andreas Kipf, Damian Chromejko, Alexander Hall, Peter A. Boncz, and David G.

Andersen. Cuckoo Index: A lightweight secondary index structure. Proc. VLDB
Endow., 13(13):3559–3572, 2020.

[39] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and

Alfons Kemper. Learned Cardinalities: Estimating Correlated Joins with Deep

Learning. In CIDR, 2019.
[40] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. RadixSpline: A Single-Pass Learned Index.

In Proc. of aiDM@SIGMOD, 2020.
[41] Oliver Knill. Probability and stochastic processes with applications. Havard

Web-Based, page 5, 1994.
[42] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting

and Searching. AddisonWesley Longman Publishing Co., Inc., USA, 1998.

[43] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The

Case for Learned Index Structures. In SIGMOD, page 489–504, 2018.
[44] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and Alfons

Kemper. Massively Parallel NUMA-Aware Hash Joins. In In-Memory Data
Management and Analysis, IMDM, 2015.

[45] Sylvain Lefebvre and Hugues Hoppe. Perfect Spatial Hashing. ACM Transactions
on Graphics., 25(3):579–588, 2006.

[46] Viktor Leis, Alfons Kemper, and Thomas Neumann. The Adaptive Radix Tree:

ARTful Indexing for Main-Memory Databases. In ICDE, 2013.
[47] Daniel Lemire and Owen Kaser. Faster 64-bit Universal Hashing Using Carry-less

Multiplications. Journal of Cryptographic Engineering, 6:171–185, 2015.
[48] Brenton Lessley and Hank Childs. Data-Parallel Hashing Techniques for GPU

Architectures. IEEE Transactions on Parallel and Distributed Systems, 31(1), 2020.
[49] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. LISA: A Learned

Index Structure for Spatial Data. In SIGMOD, 2020.
[50] PerfEvent Library. PerfEvent Library. https://github.com/viktorleis/perfevent,

2019.

[51] Bohdan S Majewski, Nicholas CWormald, George Havas, and Zbigniew J Czech.

A family of perfect hashing methods. The Computer Journal, 39(6):547–554, 1996.
[52] RyanMarcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and Tim Kraska. Benchmarking Learned

Indexes. In Proc. VLDB Endow., 2020.
[53] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad

Alizadeh, and Tim Kraska. Bao: Making Learned Query Optimization Practical.

In SIGMOD, 2021.
[54] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization

and probabilistic techniques in algorithms and data analysis. Cambridge university

press, 2017.

[55] Hamid Mohamadi, Justin Chu, Benjamin P. Vandervalk, and Inanc Birol. ntHash:

Recursive Nucleotide Hashing. Bioinformatics, 32(22):3492–3494, 2016.
[56] Michael Molloy. Cores in random hypergraphs and boolean formulas. Random

Structures & Algorithms, 27(1):124–135, 2005.
[57] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. Learning

Multi-Dimensional Indexes. In SIGMOD, 2020.
[58] Thomas Neumann and Sebastian Michel. Smooth interpolating histograms

with error guarantees. In Sharing Data, Information and Knowledge, 25th British
National Conference on Databases, BNCOD ’08, pages 126–138, 2008.

[59] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal

space. SIAM Journal on Computing, 38(1):85–96, 2008.
[60] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Journal of

Algorithms, 51(2):122–144, 2004.
[61] Shekhar Palit and Kevin A.Wortman. Perfect Tabular Hashing in Pseudolinear

Time. In IEEE Annual Computing and CommunicationWorkshop and Conference

544

https://code.google.com/p/smhasher/wiki/MurmurHash3
https://code.google.com/p/smhasher/wiki/MurmurHash3
https://sites.google.com/site/murmurhash/
https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-in-visual-studio-2019/
https://devblogs.microsoft.com/cppblog/linker-throughput-improvement-in-visual-studio-2019/
https://cyan4973.github.io/xxHash/
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://github.com/viktorleis/perfevent

(CCWC), 2021.
[62] Varun Pandey, Alexander van Renen, Andreas Kipf, Ibrahim Sabek, Jialin Ding,

and Alfons Kemper. The Case for Learned Spatial Indexes. In Proceedings of the
AIDBWorkshop @VLDB, 2020.

[63] Orestis Polychroniou and Kenneth A. Ross. A Comprehensive Study of

Main-Memory Partitioning and Its Application to Large-Scale Comparison- and

Radix-Sort. In SIGMOD, 2014.
[64] Mihai Pundefinedtraşcu and Mikkel Thorup. The Power of Simple Tabulation

Hashing. Journal of the ACM, 59(3), 2012.

[65] JianzhongQi, Guanli Liu, Christian S. Jensen, and Lars Kulik. Effectively Learning

Spatial Indices. In VLDB, 2020.
[66] Stefan Richter, Victor Alvarez, and Jens Dittrich. A Seven-Dimensional Analysis

of Hashing Methods and Its Implications on Query Processing. Proc. VLDB
Endow., 9(3):96–107, 2015.

[67] Ronald L. Rivest. The MD5Message-Digest Algorithm. RFC, 1321:1–21, 1992.
[68] J. Andrew Rogers. AquaHash. https://github.com/jandrewrogers/AquaHash/.

[69] Ibrahim Sabek, Tenzin Samten Ukyab, and Tim Kraska. LSched: A Workload-

Aware Learned Query Scheduler for Analytical Database Systems. In SIGMOD,
page 1228–1242, 2022.

[70] Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, and Tim Kraska.

When Are Learned Models Better Than Hash Functions? In Proceedings of the
AIDBWorkshop @VLDB, 2021.

[71] David Salomon. Data compression. In Handbook of massive data sets, pages
245–309. Springer, 2002.

[72] Stefan Schuh, Xiao Chen, and Jens Dittrich. An Experimental Comparison of

Thirteen Relational Equi-Joins in Main Memory. In SIGMOD, 2016.

[73] Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K. DK Panda. SimdHT-Bench:

Characterizing SIMD-AwareHash Table Designs on Emerging CPUArchitectures.

In IEEE International Symposium onWorkload Characterization, IISWC, 2019.
[74] Malte Skarupke. Fibonacci Hashing: The Optimization that the

World Forgot (or: a Better Alternative to Integer Modulo). https:

//probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-

the-world-forgot-or-a-better-alternative-to-integer-modulo/.

[75] Vera T Sós. On the theory of diophantine approximations. i 1 (on a problem of

a. ostrowski). Acta Mathematica Hungarica, 8(3-4):461–472, 1957.
[76] Benjamin Spector, Andreas Kipf, Kapil Vaidya, ChiWang, Umar FarooqMinhas,

and Tim Kraska. Bounding the Last Mile: Efficient Learned String Indexing. In

Proceedings of the AIDBWorkshop @VLDB, 2021.
[77] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday

Paradox for Multi-Collisions. In Proceedings of the International Conference on
Information Security and Cryptology, 2006.

[78] Jacek Tchórzewski and Agnieszka Jakóbik. Theoretical and Experimental

Analysis of Cryptographic Hash Functions. Journal of Telecommunications and
Information Technology, 2019.

[79] JensTeubner,GustavoAlonso, Cagri Balkesen, andM.TamerOzsu. Main-Memory

Hash Joins onMulti-Core CPUs: Tuning to the Underlying Hardware. In ICDE,
2013.

[80] Reini Urban. Smhasher. https://github.com/rurban/smhasher.

[81] Yuhan Wu, Zirui Liu, Xiang Yu, Jie Gui, Haochen Gan, Yuhao Han, Tao Li, Ori

Rottenstreich, and Tong Yang. MapEmbed: Perfect Hashing with High Load

Factor and Fast Update. In SIGKDD, 2021.
[82] S. Świerczkowski. On successive settings of an arc on the circumference of a

circle. Fundamenta Mathematicae, 46(2):187–189, 1958.

545

https://github.com/jandrewrogers/AquaHash/
https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
https://github.com/rurban/smhasher

	Abstract
	1 Introduction
	2 Traditional Hash Functions
	3 Learned Models as Hash Functions
	4 Perfect Hashing
	5 Hashing Schemes
	5.1 Bucket Chaining (CHAIN)
	5.2 Open-Addressing

	6 Collisions Analysis for Hashing
	7 Evaluation
	7.1 Experimental Setup
	7.2 Computation Throughput vs Collisions
	7.3 Hash Table Performance
	7.4 More Performance Analysis
	7.5 Range Queries Performance
	7.6 Hash-based Join Performance

	8 Related Work
	9 Lessons Learned and Future Work
	Acknowledgments
	References

