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ABSTRACT
Querying cohesive subgraphs on temporal graphs with various time
constraints has attracted intensive research interests recently. In
this paper, we study a novel Temporal𝑘-Core Query (TCQ) problem:
given a time interval, find all distinct 𝑘-cores that exist within any
subintervals from a temporal graph, which generalizes the previous
historical 𝑘-core query. This problem is challenging because the
number of subintervals increases quadratically to the span of time
interval. For that, we propose a novel Temporal Core Decomposi-
tion (TCD) algorithm that decrementally induces temporal 𝑘-cores
from the previously induced ones and thus reduces “intra-core” re-
dundant computation significantly. Then, we introduce an intuitive
concept named Tightest Time Interval (TTI) for temporal 𝑘-core,
and design an optimization technique with theoretical guarantee
that leverages TTI as a key to predict which subintervals will in-
duce duplicated 𝑘-cores and prunes the subintervals completely in
advance, thereby eliminating “inter-core” redundant computation.
The complexity of optimized TCD (OTCD) algorithm no longer de-
pends on the span of query time interval but only the scale of final
results, which means OTCD algorithm is scalable. Moreover, we
propose a compact in-memory data structure named Temporal Edge
List (TEL) to implement OTCD algorithm efficiently in physical
level with bounded memory requirement. TEL organizes temporal
edges in a “timeline” and can be updated instantly when new edges
arrive in dynamical temporal graphs. We compare OTCD algorithm
with the incremental historical 𝑘-core query on several real-world
temporal graphs, and observe that OTCD algorithm outperforms it
by three orders of magnitude, even though OTCD algorithm needs
none precomputed index.
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Figure 1: A running example of temporal graph.
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1 INTRODUCTION
1.1 Motivation
Discovering communities or cohesive subgraphs from temporal
graphs has great values in many application scenarios, thereby
attracting intensive research interests [1, 5, 12, 19, 25, 27, 34, 37]
in recent years. Here, a temporal graph refers to an undirected
multigraph in which each edge has a timestamp to indicate when it
occurred, as illustrated in Figure 1. For example, consider a graph
consisting of bank accounts as vertices and fund transfer transac-
tions between accounts as edges with natural timestamps. For ap-
plications such as anti-money-laundering, we would like to search
communities like 𝑘-cores that contain a known suspicious account
and emerge within a specific time interval like the FIFA World Cup,
and investigate the associated accounts.

To address the community query/search problem for a fixed
time interval, the concept of historical 𝑘-core [37] is proposed
recently, which is the 𝑘-core induced from a projected subgraph
of the temporal graph in which all edges occurred out of the time
interval have been excluded and the parallel edges between each
pair of vertices have been merged. Also, the PHC-Query method
is proposed to deal with historical 𝑘-core query/search by using a
precomputed index efficiently.

However, we usually do not know the exact time interval of
targeted historical 𝑘-core in real-world applications. Actually, if we
can know the exact time interval, a traditional core decomposition
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on the projected subgraph over the given time interval is efficient
enough to address the problem. Thus, it is more reasonable to
assume that we can only offer a flexible time interval and need to
induce cores from all its subintervals. For example, for detecting
money laundering by soccer gambling during the FIFA World Cup,
the 𝑘-cores emerged over a few of hours around one of the matches
are more valuable than a large 𝑘-core emerged over the whole
month.

Therefore, we aim to generalize historical 𝑘-core query by allow-
ing the result 𝑘-cores to be induced by any subinterval of a given
time interval, like “flexible versus fixed”. The historical 𝑘-core query
can be seen as a special case of our problem that only evaluates the
whole interval. Consider the following example.

Example 1. As illustrated in Figure 1, given a time interval [1,8],
historical 𝑘-core query only returns the largest core marked by the
grey dashed line. In contrast, our temporal 𝑘-core query returns four
cores marked by dashed lines with different colors. These cores can
reveal various insights unseen by the largest one. For example, some
cores like red and blue that emerge in bursty periods may be caused
by special events. Also, some persistent or periodic cores may be found.
Further, we can analyze the interaction between cores and how they
evolve over time, such as the small cores like red and blue are merged
to the large cores like yellow. Lastly, some underlying details may be
found. During the merge, the vertex 𝑣5 may play a vital role because
it appears in all the cores.

The general and flexible temporal 𝑘-core query we study is natu-
rally a generalization of existing query models like historical 𝑘-core
and potentially supports various temporal graph analytics tasks
mentioned in the above example.

1.2 Contribution
In this paper, we study a novel temporal 𝑘-core query problem: given
a time interval, find all distinct 𝑘-cores that exist within any subin-
tervals from a temporal graph. Although the existing PHC-Query
returns the historical 𝑘-core of a fixed time interval efficiently, it
cannot be trivially applied to deal with the new problem. Because
inducing 𝑘-cores for each subinterval individually from scratch is
not scalable, since the number of subintervals increases quadrat-
ically to the span of time interval. Moreover, PHC-Query suffers
from two other intrinsic shortcomings. Firstly, it relies on a PHC-
Index that precomputes the coreness of all vertices over all time
intervals, thereby incurring heavy offline time and space overheads.
Secondly, due to its sophisticated construction, it is unclear if PHC-
Index can be updated dynamically. It is against the dynamic nature
of temporal graphs.

In order to overcome the above challenges, we present a novel
temporal core decomposition algorithm and auxiliary optimization
and implementation techniques. Our contributions can be summa-
rized as follows.

• We formalize a general time-range cohesive subgraph query
problem on ubiquitous temporal graphs, namely, temporal
𝑘-core query. Many previous typical 𝑘-core query models
on temporal graphs can be equivalently represented by
temporal 𝑘-core query with particular constraints.

• To address temporal 𝑘-core query, we propose a simple
and yet efficient algorithm framework based on a novel

temporal core decomposition operation. By using temporal
core decomposition, our algorithm always decrementally
induces a temporal k-core from the previous induced tempo-
ral k-core except the initial one, thereby reducing redundant
computation significantly.

• Moreover, we propose an intuitive concept named tightest
time interval for temporal k-core. According to the proper-
ties of tightest time intervals, we design three pruning rules
with theoretical guarantee to directly skip subintervals that
will not induce distinct temporal 𝑘-core. As a result, the op-
timized algorithm is scalable in terms of the span of query
time interval, since only the necessary subintervals are
enumerated.

• For physical implementation of our algorithm, we propose
a both space and time efficient data structure named tem-
poral edge list to represent a temporal graph in memory.
It can be manipulated to perform temporal core decom-
position and tightest time interval based pruning rapidly
with bounded memory. More importantly, temporal edge
list can be incrementally updated with evolving temporal
graphs, so that our approach can support dynamical graph
applications naturally.

• Lastly, we evaluate the efficiency and effectiveness of our
algorithm on real-world datasets. The experimental results
demonstrate that our algorithm outperforms the improved
PHC-Query by three orders of magnitude.

2 PRELIMINARY
2.1 Data Model
A temporal graph is normally an undirected graph G = (V, E)
with parallel temporal edges. Each temporal edge (𝑢, 𝑣, 𝑡) ∈ E is
associated with a timestamp 𝑡 that indicates when the interaction
happened between the vertices 𝑢, 𝑣 ∈ V . For example, the temporal
edges could be transfer transactions between bank accounts in a
finance graph. Without a loss of generality, we use continuous
integers that start from 1 to denote timestamps. Figure 1 illustrates
a temporal graph as our running example.

There are two useful concepts derived from the temporal graph.
Given a time interval [𝑡𝑠, 𝑡𝑒], we define the projected graph of G
over [𝑡𝑠, 𝑡𝑒] as G[𝑡𝑠,𝑡𝑒 ] = (V[𝑡𝑠,𝑡𝑒 ] , E[𝑡𝑠,𝑡𝑒 ] ), where V[𝑡𝑠,𝑡𝑒 ] =

V and E[𝑡𝑠,𝑡𝑒 ] = {(𝑢, 𝑣, 𝑡) | (𝑢, 𝑣, 𝑡) ∈ E, 𝑡 ∈ [𝑡𝑠, 𝑡𝑒]}. Moreover,
we define the detemporalized graph of G[𝑡𝑠,𝑡𝑒 ] as a simple graph
𝐺 [𝑡𝑠,𝑡𝑒 ] = (𝑉[𝑡𝑠,𝑡𝑒 ] , 𝐸 [𝑡𝑠,𝑡𝑒 ] ), where 𝑉[𝑡𝑠,𝑡𝑒 ]=V[𝑡𝑠,𝑡𝑒 ] and 𝐸 [𝑡𝑠,𝑡𝑒 ] =
{(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E[𝑡𝑠,𝑡𝑒 ] }.

2.2 Query Model
For revealing communities in graphs, the 𝑘-core query is widely
adopted. Given an undirected graph 𝐺 and an integer 𝑘 , 𝑘-core
is the maximal induced subgraph of 𝐺 in which all vertices have
degrees at least 𝑘 , which is denoted by C𝑘 (𝐺). The coreness of a
vertex 𝑣 in a graph 𝐺 is the largest value of 𝑘 such that 𝑣 ∈ C𝑘 (𝐺).

For temporal graphs, the Historical 𝑘-Core Query (HCQ) [37]
is proposed recently. It aims to find a 𝑘-core that appears during a
specific time interval. Formally, a historical 𝑘-coreH𝑘

[𝑡𝑠,𝑡𝑒 ] (G) is a
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𝑘-core in the detemporalized projected graph 𝐺 [𝑡𝑠,𝑡𝑒 ] of G. Thus,
HCQ can be defined as follows.

Definition 1 (Historical𝑘-CoreQuery). For a temporal graph
G, given an integer𝑘 and a time interval [𝑡𝑠, 𝑡𝑒], returnH𝑘

[𝑡𝑠,𝑡𝑒 ] (G) =
C𝑘 (𝐺 [𝑡𝑠,𝑡𝑒 ] ).

In this paper, we propose a novel query model called Temporal
𝑘-Core Query (TCQ) that generalizes HCQ. The main difference is
that the query time interval [𝑇𝑠,𝑇𝑒] of TCQ is a range but not fixed
query condition like [𝑡𝑠, 𝑡𝑒] of HCQ. In TCQ, 𝑇𝑠 and 𝑇𝑒 are the
minimum start time and maximum end time of query time interval
respectively, and thereby the 𝑘-cores induced by each subinterval
[𝑡𝑠, 𝑡𝑒] ⊆ [𝑇𝑠,𝑇𝑒] are all potential results of TCQ. Moreover, TCQ
directly returns the maximal induced subgraphs of G in which all
vertices have degrees (note that, the number of neighbor vertices
but not neighbor edges) at least 𝑘 as results. We call these sub-
graphs as temporal 𝑘-cores and denote by T𝑘

[𝑡𝑠,𝑡𝑒 ] (G) a temporal
𝑘-core that appears over [𝑡𝑠, 𝑡𝑒] on G. Obviously, a historical 𝑘-
coreH𝑘

[𝑡𝑠,𝑡𝑒 ] (G) is the detemporalized temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] (G).

Therefore, TCQ can be seen as a group of HCQ and HCQ can be
seen as a special case of TCQ. The formal definition of TCQ is as
follows.

Definition 2 (Temporal 𝑘-Core Query). For a temporal graph
G, given an integer 𝑘 and a time interval [𝑇𝑠,𝑇𝑒], return all distinct
T𝑘
[𝑡𝑠,𝑡𝑒 ] (G) with [𝑡𝑠, 𝑡𝑒] ⊆ [𝑇𝑠,𝑇𝑒].

Note that, TCQ only returns the distinct temporal𝑘-cores that are
not identical to each other, since multiple subintervals of [𝑇𝑠,𝑇𝑒]
may induce an identical subgraph of G. For brevity, T𝑘

[𝑡𝑠,𝑡𝑒 ] (G) is
abbreviated as T𝑘

[𝑡𝑠,𝑡𝑒 ] if the context is self-evident.

2.3 Baseline Algorithm
A straightforward solution to TCQ is to enumerate each subinterval
[𝑡𝑠, 𝑡𝑒] ⊆ [𝑇𝑠,𝑇𝑒] and induce T𝑘

[𝑡𝑠,𝑡𝑒 ] respectively, which takes
𝑂 ( |𝑇𝑒 − 𝑇𝑠 |2 |E |) time. However, the span of query time interval
(namely, 𝑇𝑒 −𝑇𝑠) can be extremely large in practice, which results
in enormous time consumption for inducing all temporal 𝑘-cores
from scratch independently. Therefore, we start from a non-trivial
baseline based on the existing PHC-Query.

2.3.1 A Short Review of PHC-Query. PHC-Query relies on a heavy-
weight index called PHC-Index that essentially precomputes the
coreness of all vertices in the projected graphs over all possible time
intervals. The index is logically a table that stores a set of timestamp
pairs for each vertex 𝑣 ∈ V (column) and each reasonable coreness
𝑘 (row). Given a value of 𝑘 , the coreness of a vertex 𝑣 is exactly
𝑘 in the projected graph over [𝑡𝑠, 𝑡𝑒] for each timestamp pair 𝑡𝑠
and 𝑡𝑒 in the cell (𝑘, 𝑣). In particular, due to the monotonicity of
coreness of a vertex with respect to 𝑡𝑒 when 𝑡𝑠 is fixed, PHC-Index
can reduce its space cost significantly by only storing the necessary
but not all possible timestamp pairs. Specifically, for a vertex 𝑣 , a
coreness 𝑘 and a start time 𝑡𝑠 , only a discrete set of core time need
to be recorded, since the coreness of the vertex over [𝑡𝑠, 𝑡𝑒] will
not change with the increase of 𝑡𝑒 until 𝑡𝑒 is a core time. Conse-
quently, given an HCQ instance, PHC-Query leverages PHC-Index

to directly determine whether a vertex has the coreness no less
than the required 𝑘 , by comparing the query time interval with the
retrieved timestamp pairs, and then induces historical 𝑘-cores with
qualified vertices.

2.3.2 Incremental PHC-Query Algorithm. The main idea of our
baseline algorithm is to induce temporal 𝑘-cores incrementally,
thereby reducing redundant computation. With a temporal 𝑘-core
T𝑘
[𝑡𝑠,𝑡𝑒 ] , we induce T

𝑘
[𝑡𝑠,𝑡𝑒+1] simply by appending new vertices to

T𝑘
[𝑡𝑠,𝑡𝑒 ] , whose coreness has become no less than 𝑘 due to the ex-

pand of time interval. Those vertices can be directly identified by
using core time retrieved from PHC-Index since 𝑡𝑠 is fixed. The cor-
rectness of baseline algorithm is guaranteed while the correctness
of PHC-Query holds.

The pseudo code of incremental PHC-Query (iPHC-Query) algo-
rithm is presented in Algorithm 1. It enumerates all subintervals
of a given [𝑇𝑠,𝑇𝑒] in a particular order for fulfilling efficient in-
cremental temporal 𝑘-core induction. Specifically, it anchors the
value of 𝑡𝑠 (line 1), and increases the value of 𝑡𝑒 from 𝑡𝑠 to 𝑇𝑒 (line
5), so that T𝑘

[𝑡𝑠,𝑡𝑒+1] can always be incrementally generated from

an existing T𝑘
[𝑡𝑠,𝑡𝑒 ] . For each 𝑡𝑠 anchored and the input 𝑘 , the algo-

rithm firstly retrieves the core time of all vertices from PHC-Index,
and pushes the vertices into a minimum heap H𝑣 ordered by their
core time (line 3). Moreover, all temporal edges with timestamps
in [𝑡𝑠,𝑇𝑒] are pushed into another minimum heap H𝑒 ordered by
their timestamp (line 4). Then, the algorithm maintains a vertex
set V and an edge set E, which represent the vertices and edges
of T𝑘
[𝑡𝑠,𝑡𝑒 ] respectively, whenever 𝑡𝑒 is increased by the following

steps. It pops remaining vertices with core time no greater than 𝑡𝑒

from H𝑣 and adds them to V (line 6), since the corenesss of these
vertices are no less than 𝑘 according to PHC-Index. Also, it pops
remaining edges with timestamp no greater than 𝑡𝑒 from H𝑒 and
adds them to E if both vertices linked by the edges are in V (line 7).
Then, it puts back the popped edges that are not in E into H𝑒 (line
8), because they could still be contained by other temporal 𝑘-cores
induced later. Lastly, a temporal 𝑘-core comprised of V and E that
are not empty is collected if it has not been induced before (line 9).
The complexity analysis of baseline algorithm can be found in our
full technical report [35].

Although the baseline algorithm can achieve incremental induc-
tion of temporal k-core for each start time, PHC-Index incurs a
huge amount of extra space and time overheads. Moreover, its in-
cremental induction only offers a kind of “intra-core” optimization
that reduces the redundant computation in each temporal 𝑘-core
induction, and lacks of a kind of “inter-core” optimization that can
directly avoids inducing some temporal 𝑘-cores.

3 ALGORITHM
In this section, we propose a novel efficient algorithm to address
TCQ. Our algorithm leverages a fundamental operation called tem-
poral core decomposition to induce T𝑘

[𝑡𝑠,𝑡𝑒 ] from T
𝑘
[𝑡𝑠,𝑡𝑒+1] decre-

mentally. More importantly, our algorithm does not require any
precomputation and index space, and can still outperform the base-
line algorithm.

1170



Algorithm 1: Baseline iPHC-Query algorithm.
Input: G, 𝑘 , [𝑇𝑠,𝑇𝑒]
Output: all distinct T𝑘

[𝑡𝑠,𝑡𝑒 ] with [𝑡𝑠, 𝑡𝑒] ⊆ [𝑇𝑠,𝑇𝑒]
1 for 𝑡𝑠 ← 𝑇𝑠 to 𝑇𝑒 do
2 V← ∅, E← ∅, H𝑣 ← ∅, H𝑒 ← ∅
3 for 𝑘 and 𝑡𝑠 , retrieve the core time of each vertex in G

from PHC-Index and push them into H𝑣
4 push the temporal edges with timestamps in [𝑡𝑠,𝑇𝑒] in

G into H𝑒
5 for 𝑡𝑒 ← 𝑡𝑠 to 𝑇𝑒 do
6 pop a vertex from H𝑣 and add it to V, until the min

core time of H𝑣 exceeds 𝑡𝑒
7 pop an edge from H𝑒 and add it to E if both vertices

linked by this edge are in V, until the min
timestamp of H𝑒 exceeds 𝑡𝑒

8 push all edges that have been popped from H𝑒 and
are not added to E back to H𝑒

9 collect T𝑘
[𝑡𝑠,𝑡𝑒 ] = (V,E) if it is neither empty nor

identical to other existing results

3.1 Temporal Core Decomposition (TCD)
Firstly, we introduce Temporal Core Decomposition (TCD) as a
basic operation on temporal graphs, which is derived from the
traditional core decomposition [2] on ordinary graphs. TCD refers
to a two-step operation of inducing a temporal 𝑘-core T𝑘

[𝑡𝑠,𝑡𝑒 ] of
a given time interval [𝑡𝑠, 𝑡𝑒] from a given temporal graph G. The
first step is truncation: remove temporal edges with timestamps not
in [𝑡𝑠, 𝑡𝑒] from G, namely, induce the projected graph G[𝑡𝑠,𝑡𝑒 ] . The
second step is decomposition: iteratively peel vertices with degree
(the number of neighbor vertices but not neighbor edges) less than
𝑘 and the edges linked to them together. The correctness of TCD is
as intuitive as core decomposition.

An excellent property of TCD operation is that, it can induce
a temporal 𝑘-core T𝑘

[𝑡𝑠,𝑡𝑒 ] from another temporal 𝑘-core T𝑘
[𝑡𝑠′,𝑡𝑒′ ]

with [𝑡𝑠, 𝑡𝑒] ⊂ [𝑡𝑠′, 𝑡𝑒′], so that we can develop a decremental
algorithm based on TCD operation to achieve efficient processing
of TCQ. To prove the correctness of this property, let us consider
the following Theorem 1. All proofs of the following lemmas and
theorems can be found in our full technical report [35].

Lemma 1. Given time intervals [𝑡𝑠, 𝑡𝑒] and [𝑡𝑠′, 𝑡𝑒′] such that
[𝑡𝑠, 𝑡𝑒] ⊂ [𝑡𝑠′, 𝑡𝑒′], we have T𝑘

[𝑡𝑠,𝑡𝑒 ] is a subgraph of T𝑘
[𝑡𝑠′,𝑡𝑒′ ] .

Theorem 1. Given a time interval [𝑡𝑠, 𝑡𝑒] and a temporal 𝑘-core
T𝑘
[𝑡𝑠′,𝑡𝑒′ ] with [𝑡𝑠, 𝑡𝑒] ⊂ [𝑡𝑠

′, 𝑡𝑒′], the subgraph induced by using

TCD operation from T𝑘
[𝑡𝑠′,𝑡𝑒′ ] for [𝑡𝑠, 𝑡𝑒] is T

𝑘
[𝑡𝑠,𝑡𝑒 ] .

For example, Figure 2 illustrates the procedure of TCD from
T 2
[2,6] to T

2
[5,6] on our running example graph in Figure 1. The edges

with timestamps not in [5, 6] (marked by dashed lines) are firstly
removed from T 2

[2,6] by truncation, which results in the decrease
of degrees of vertices 𝑣5, 𝑣7 and 𝑣8. Then, the vertices with degree
less than 2 (marked by dark circles), namely, 𝑣7 and 𝑣8 are further
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Figure 2: Temporal core decomposition from T 2
[2,6] to T

2
[5,6] .

Algorithm 2: TCD algorithm.
Input: G, 𝑘 , [𝑇𝑠,𝑇𝑒]
Output: all distinct T𝑘

[𝑡𝑠,𝑡𝑒 ] with [𝑡𝑠, 𝑡𝑒] ⊆ [𝑇𝑠,𝑇𝑒]
1 for 𝑡𝑠 ← 𝑇𝑠 to 𝑇𝑒 do // anchor a new start time
2 𝑡𝑒 ← 𝑇𝑒 // reset the end time

3 if 𝑡𝑠 = 𝑇𝑠 then
4 T𝑘

[𝑡𝑠,𝑡𝑒 ] ← TCD(G[𝑇𝑠,𝑇𝑒 ] , 𝑘 , [𝑡𝑠, 𝑡𝑒])
5 else
6 T𝑘

[𝑡𝑠,𝑡𝑒 ] ← TCD(T𝑘
[𝑡𝑠−1,𝑡𝑒 ] , 𝑘 , [𝑡𝑠, 𝑡𝑒])

7 collect T𝑘
[𝑡𝑠,𝑡𝑒 ] if it is distinct

8 for 𝑡𝑒 ← 𝑇𝑒 − 1 to 𝑡𝑠 do // iterative TCD

9 T𝑘
[𝑡𝑠,𝑡𝑒 ] ← TCD(T𝑘

[𝑡𝑠,𝑡𝑒+1] , 𝑘 , [𝑡𝑠, 𝑡𝑒])
10 collect T𝑘

[𝑡𝑠,𝑡𝑒 ] if it is distinct

peeled by decomposition, together with their edges. The remaining
temporal graph is T 2

[5,6] .

3.2 TCD Algorithm
We propose a TCD algorithm to address TCQ by using the above
TCD operation. In general, given a TCQ instance, the TCD algo-
rithm enumerates each subinterval of [𝑇𝑠,𝑇𝑒] in a particular or-
der, so that the temporal 𝑘-cores of each subinterval are induced
decrementally from previously induced temporal 𝑘-cores except
the initial one.

Specifically, we enumerate a subinterval [𝑡𝑠, 𝑡𝑒] of [𝑇𝑠,𝑇𝑒] as
follows. Initially, let 𝑡𝑠 = 𝑇𝑠 and 𝑡𝑒 = 𝑇𝑒 . It means we induce the
largest temporal 𝑘-core T𝑘

[𝑇𝑠,𝑇𝑒 ] at the beginning. Then, we will
anchor the start time 𝑡𝑠 = 𝑇𝑠 and decrease the end time 𝑡𝑒 from
𝑇𝑒 until 𝑡𝑠 gradually. As a result, we can always leverage TCD to
induce the temporal 𝑘-core of current subinterval [𝑡𝑠, 𝑡𝑒] from the
previously induced temporal 𝑘-core of [𝑡𝑠, 𝑡𝑒 + 1] but not from
G[𝑡𝑠,𝑡𝑒 ] or even G. Whenever the value of 𝑡𝑒 is decreased to 𝑡𝑠 , the
value of 𝑡𝑠 will be increased to 𝑡𝑠 + 1 until 𝑡𝑠 = 𝑇𝑒 , and the value
of 𝑡𝑒 will be reset to 𝑇𝑒 . Then, we induce T𝑘

[𝑡𝑠+1,𝑡𝑒 ] from T
𝑘
[𝑡𝑠,𝑡𝑒 ] ,

and start over the decremental TCD procedure. The pseudo code
of TCD algorithm is given in Algorithm 2. Note that, the details of
TCD(G, 𝑘 , [𝑡𝑠, 𝑡𝑒]) function is left to Section 5.2, in which we design
a specific data structure to implement TCD operation efficiently in
physical level.

Figure 3 gives a demonstration of TCD algorithm for finding
temporal 2-cores of time interval [1,8] on our running example
graph. The temporal 𝑘-cores are induced line by line and from
left to right. Each arrow between temporal 𝑘-cores represents a
TCD operation from tail to head. We can see that, compared with
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Figure 3: A demonstration of TCD algorithm for finding tem-
poral 2-cores of time interval [1,8].

inducing each temporal 𝑘-core independently, the TCD algorithm
reduces the computational overhead significantly. For most induced
temporal 𝑘-cores, a number of vertices and edges have already been
excluded while inducing the previous temporal 𝑘-cores. Moreover,
with the increase of 𝑡𝑠 and the decrease of 𝑡𝑒 when 𝑡𝑠 is fixed, the
size of T𝑘

[𝑡𝑠,𝑡𝑒 ] will be reduced monotonically until no temporal
𝑘-core exists over [𝑡𝑠, 𝑡𝑒], so that the time and space costs of TCD
operation will also be reduced gradually.

Lastly, we compare TCD algorithm with baseline algorithm.
When 𝑡𝑠 is fixed, Baseline algorithm conducts an incremental pro-
cedure, in which each vertex is popped once and each edge may be
popped and pushed back many times, and in contrast, TCD algo-
rithm conducts a decremental procedure, in which each vertex is
peeled once and each edge is also removed once due to Lemma 1.
Therefore, TCD algorithm that is well implemented in physical level
(see Section 5.2) can be even more efficient than Baseline algorithm,
though it does not need any precomputed index.

4 OPTIMIZATION
In this section, we dive deeply into the procedure of TCD algorithm
and optimize it dramatically by introducing an intuitive concept
called tightest time interval for temporal 𝑘-cores. In a nutshell,
we directly prune subintervals without inducing their temporal
𝑘-cores if we can predict that the temporal 𝑘-cores are identical to
other induced temporal 𝑘-cores, and tightest time interval is the
key to fulfill prediction. In this way, the optimized TCD algorithm
only performs TCD operations that are necessary for returning all
distinct answers to a given TCQ instance. Conceptually, the new
pruning operation of optimized algorithm eliminates the “inter-core”
redundant computation, and the original TCD operation eliminates
the “intra-core” redundant computation. Thus, the computational
complexity of optimized algorithm no longer depends on the span
of query time interval [𝑇𝑠,𝑇𝑒] like the baseline algorithm and the

original TCD algorithm but only depends on the scale of final
results.

4.1 Tightest Time Interval (TTI)
We have such an observation, a temporal 𝑘-core of [𝑡𝑠, 𝑡𝑒] may only
contain edges with timestamps in a subinterval [𝑡𝑠′, 𝑡𝑒′] ⊂ [𝑡𝑠, 𝑡𝑒],
since the edges in [𝑡𝑠, 𝑡𝑠′) and (𝑡𝑒′, 𝑡𝑒] have been removed by core
decomposition. For example, consider a temporal 𝑘-core T 2

[4,8] il-
lustrated in Figure 3. We can see that it does not contain edges with
timestamps 4, 7 and 8. As a result, if we continue to induce T 2

[4,7]
from T 2

[4,8] and to induce T 2
[4,6] from T

2
[4,7] , the returned tempo-

ral 𝑘-cores remain unchanged. The sameness of temporal 𝑘-cores
induced by different subintervals inspires us to further optimize
TCD algorithm by pruning subintervals directly. As illustrated in
Figure 3, the subintervals such as [4,7], [4,6], [5,8], [5,7] and [5,6]
all induce the identical temporal 𝑘-cores to [4,8], so that they can
be potentially pruned in advance.

For that, we propose the concept of Tightest Time Interval (TTI)
for temporal 𝑘-cores. Given a temporal 𝑘-core of [𝑡𝑠, 𝑡𝑒], its TTI
refers to the minimal time interval [𝑡𝑠′, 𝑡𝑒′] that can induce an
identical temporal 𝑘-core to T𝑘

[𝑡𝑠,𝑡𝑒 ] , namely, there is no subinterval

of [𝑡𝑠′, 𝑡𝑒′] that can induce an identical temporal 𝑘-core to T𝑘
[𝑡𝑠,𝑡𝑒 ] .

We formalize the definition of TTI as follows.

Definition 3 (Tightest Time Interval). Given a temporal 𝑘-
core T𝑘

[𝑡𝑠,𝑡𝑒 ] , its tightest time interval T𝑘
[𝑡𝑠,𝑡𝑒 ] .TTI is [𝑡𝑠

′, 𝑡𝑒′], if and
only if
1) T𝑘
[𝑡𝑠′,𝑡𝑒′ ] is an identical temporal 𝑘-core to T𝑘

[𝑡𝑠,𝑡𝑒 ] ;

2) there does not exist [𝑡𝑠′′, 𝑡𝑒′′] ⊂ [𝑡𝑠′, 𝑡𝑒′], such that T𝑘
[𝑡𝑠′′,𝑡𝑒′′ ] is

an identical temporal 𝑘-core to T𝑘
[𝑡𝑠,𝑡𝑒 ] .

It is easy to prove the TTI of a temporal 𝑘-core of [𝑡𝑠, 𝑡𝑒] is surely
a subinterval of [𝑡𝑠, 𝑡𝑒]. To evaluate the TTI of a given T𝑘

[𝑡𝑠,𝑡𝑒 ] , we
have the following theorem.

Theorem 2. Given a temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] , T

𝑘
[𝑡𝑠,𝑡𝑒 ] .TTI = [𝑡𝑚𝑖𝑛,

𝑡𝑚𝑎𝑥 ], where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are the minimum and maximum times-
tamps in T𝑘

[𝑡𝑠,𝑡𝑒 ] respectively.

With Theorem 2, we can evaluate the TTI of a given temporal
𝑘-core instantly (by𝑂 (1) time, see Section 5), which guarantees the
following optimization based on TTI will not incur extra overheads.

Moreover, there are the following important properties of TTI
that support our pruning strategies.

Property 1 (Uniqeness). Given a temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] , there

exists no other time interval than T𝑘
[𝑡𝑠,𝑡𝑒 ] .TTI evaluated by Theorem 2

that is also a TTI of T𝑘
[𝑡𝑠,𝑡𝑒 ] .

Property 2 (Eqivalence). Given two temporal 𝑘-cores T𝑘
[𝑡𝑠,𝑡𝑒 ]

and T𝑘
[𝑡𝑠′,𝑡𝑒′ ] , they are identical temporal graphs iff T𝑘

[𝑡𝑠,𝑡𝑒 ] .TTI =

T𝑘
[𝑡𝑠′,𝑡𝑒′ ] .TTI.

Property 3 (Inclusion). Given two temporal 𝑘-cores T𝑘
[𝑡𝑠,𝑡𝑒 ] and

T𝑘
[𝑡𝑠′,𝑡𝑒′ ] , we have T

𝑘
[𝑡𝑠,𝑡𝑒 ] .TTI ⊆ T

𝑘
[𝑡𝑠′,𝑡𝑒′ ] .TTI, if [𝑡𝑠, 𝑡𝑒] ⊆ [𝑡𝑠

′, 𝑡𝑒′].
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Figure 4: Examples of subinterval pruning based on tightest time interval.

Figure 4a abstracts Figure 3 as a schedule table of subinterval
enumeration, and TCD algorithm will traverse the cells row by
row and from left to right. For example, the cell in row 1 and
column 6 represents a subinterval [1, 6], in which [2, 6] is the TTI
of T 2

[1,6] . In particular, the grey cells indicate that the temporal
𝑘-cores of the corresponding subintervals do not exist. Figure 4a
clearly reveals that TCD algorithm suffers from inducing a number
of identical temporal 𝑘-cores (with the same TTIs). For example,
the TTI [5, 6] repeats six times, which means six cells will induce
identical temporal 𝑘-cores.

4.2 Pruning Rules
The main idea of optimizing TCD algorithm is to predict the in-
duction of identical temporal 𝑘-cores by leveraging TTI, thereby
skipping the corresponding subintervals during the enumeration.
Specifically, whenever a temporal 𝑘-core of [𝑡𝑠, 𝑡𝑒] is induced, we
evaluate its TTI as [𝑡𝑠′, 𝑡𝑒′]. If 𝑡𝑠′ > 𝑡𝑠 or/and 𝑡𝑒′ < 𝑡𝑒 , it is trig-
gered that a number of subintervals on the schedule can be pruned
in advance. According to different relations between [𝑡𝑠, 𝑡𝑒] and
[𝑡𝑠′, 𝑡𝑒′], our pruning technique can be categorized into three rules
which are not mutually exclusive. In other words, the three rules
may be triggered at the same time, and prune different subintervals
respectively.

4.2.1 Rule 1: Pruning-on-the-Right. Consider the schedule illus-
trated in Figure 4a. For each row, TCD algorithm traverses the cells
(namely, subintervals) from left to right. If the TTI [𝑡𝑠′, 𝑡𝑒′] in the
current cell [𝑡𝑠, 𝑡𝑒] meets such a condition, namely, 𝑡𝑒′ < 𝑡𝑒 , a
pruning operation will be triggered, and the following cells in this
row from [𝑡𝑠, 𝑡𝑒 − 1] until [𝑡𝑠, 𝑡𝑒′] will be skipped because these
subintervals will induce identical temporal 𝑘-cores to T𝑘

[𝑡𝑠,𝑡𝑒 ] . Since
the pruned cells are on the right of trigger cell, we call this rule
Pruning-on-the-Right (PoR). The pseudo code of PoR is given in
lines 2-4 of Algorithm 3. The correctness of PoR is guaranteed by
the following lemma.

Lemma 2. Given a temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] whose TTI is [𝑡𝑠

′, 𝑡𝑒′],
for any time interval [𝑡𝑠, 𝑡𝑒′′] with 𝑡𝑒′′ ∈ [𝑡𝑒′, 𝑡𝑒], T𝑘

[𝑡𝑠,𝑡𝑒′′ ] .TTI =
[𝑡𝑠′, 𝑡𝑒′].

With Lemma 2, we can predict that the TTIs in the cells [𝑡𝑠, 𝑡𝑒−1],
· · · , [𝑡𝑠, 𝑡𝑒′] are the same as the trigger cell [𝑡𝑠, 𝑡𝑒], when the PoR
rule is satisfied. Thus, the temporal 𝑘-cores induced by these subin-
tervals are all identical to T𝑘

[𝑡𝑠,𝑡𝑒 ] due to Property 2 (Equivalence).
For example, Figure 4b illustrates two instances of PoR (the cells

in orange and blue colors with left arrow). When T 2
[3,8] has been

induced, we evaluate its TTI as [3, 6], and thus PoR is triggered.
PoR immediately excludes the following two cells [3, 7] and [3, 6]
from the schedule. As a proof, we can see the TTIs in these two
cells are both [3, 6] in Figure 4a.

4.2.2 Rule 2: Pruning-on-the-Underside. We now consider 𝑡𝑠′ > 𝑡𝑠 ,
which causes pruning in the following rows but not the current row.
So we call this rule Pruning-On-the-Underside (PoU). Specifically,
if 𝑡𝑠′ > 𝑡𝑠 , for each row 𝑟 ∈ [𝑡𝑠 + 1, 𝑡𝑠′], the cells [𝑟, 𝑡𝑒], [𝑟, 𝑡𝑒 − 1],
· · · , [𝑟, 𝑟 ] will be skipped. The pseudo code of PoU is given in lines
5-8 of Algorithm 3. The correctness of PoU is guaranteed by the
following lemmas.

Lemma 3. Given a temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] whose TTI is [𝑡𝑠

′, 𝑡𝑒′],
for any time interval [𝑡𝑠′′, 𝑡𝑒] with 𝑡𝑠′′ ∈ [𝑡𝑠, 𝑡𝑠′], we have the TTI
of T𝑘
[𝑡𝑠′′,𝑡𝑒 ] is [𝑡𝑠

′, 𝑡𝑒′].

Lemma 4. Given a temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] whose TTI is [𝑡𝑠

′, 𝑡𝑒′],
for any time interval [𝑟, 𝑐] with 𝑟 ∈ [𝑡𝑠 + 1, 𝑡𝑠′] and 𝑐 ∈ [𝑡𝑠, 𝑡𝑒], we
have T𝑘

[𝑟,𝑐 ] is identical to T
𝑘
[𝑡𝑠,𝑐 ] .

Lemma 4 indicates that, PoU safely prunes some cells in the
following rows, since these cells contain the same TTIs as their
upper cells, which even have not been enumerated yet except the
trigger cell. For example, Figure 4b illustrates two PoU instances
(the cells in yellow and blue colors with up arrow). On enumerating
the cell [1, 6], since the contained TTI is [2, 6], the cells [2, 6], · · · ,
[2, 2] are pruned by PoU, because the TTIs in these cells are the
same as the cells [1, 6], · · · , [1, 2] respectively, though the TTIs of
cells [1, 5], · · · , [1, 2] have not been evaluated.

4.2.3 Rule 3: Pruning-on-the-Left. Lastly, if both 𝑡𝑠′ > 𝑡𝑠 and 𝑡𝑒′ <
𝑡𝑒 , for each row 𝑟 ∈ [𝑡𝑠′ + 1, 𝑡𝑒′], the cells [𝑟, 𝑡𝑒], [𝑟, 𝑡𝑒 − 1], · · · ,
[𝑟, 𝑡𝑒′ + 1] will also be skipped, besides the cells pruned by PoR and
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Algorithm 3: Pruning operation.

Input: [𝑡𝑠, 𝑡𝑒] and T𝑘
[𝑡𝑠,𝑡𝑒 ]

1 [𝑡𝑠′, 𝑡𝑒′] ← T𝑘
[𝑡𝑠,𝑡𝑒 ] .TTI // Theorem 2

2 if 𝑡𝑒′ < 𝑡𝑒 then // Rule 1: PoR
3 for 𝑐 ← 𝑡𝑒 - 1 to 𝑡𝑒′ do
4 prune the subinterval [𝑡𝑠, 𝑐]

5 if 𝑡𝑠′ > 𝑡𝑠 then // Rule 2: PoU
6 for 𝑟 ← 𝑡𝑠 + 1 to 𝑡𝑠′ do
7 for 𝑐 ← te to r do
8 prune the subinterval [𝑟, 𝑐]

9 if 𝑡𝑠′ > 𝑡𝑠 and 𝑡𝑒′ < 𝑡𝑒 then // Rule 3: PoL
10 for r← ts’+1 to te’ do
11 for c← te to te’+1 do
12 prune the subinterval [𝑟, 𝑐]

PoU. Although these cells are in the rows under the current row
𝑡𝑠 , the temporal 𝑘-core of each of them is identical to the temporal
𝑘-core of a cell (namely, [𝑟, 𝑡𝑒′]) on the right in the same row but
not its upper cell like PoU. So we call this rule Pruning-On-the-Left
(PoL). The pseudo code of PoL is given in lines 9-12 of Algorithm 3.
The correctness of PoL is guaranteed by the following lemma.

Lemma 5. Given a temporal 𝑘-core T𝑘
[𝑡𝑠,𝑡𝑒 ] whose TTI is [𝑡𝑠

′, 𝑡𝑒′],
for any time interval [𝑟, 𝑐] with 𝑟 ∈ [𝑡𝑠′ + 1, 𝑡𝑒′] and 𝑐 ∈ [𝑡𝑒′ + 1, 𝑡𝑒],
we have T𝑘

[𝑟,𝑐 ] is identical to T
𝑘
[𝑟,𝑡𝑒′ ] .

For example, Figure 4b illustrates a PoL instance (the cells in
blue color with right arrow). On enumerating the cell [4, 8], PoL
is triggered since the contained TTI is [5, 6]. Then, the cells [6, 8]
and [6, 7] are pruned by PoL because the TTIs contained in them
are the same as the cell [6, 6] on the right of them. PoL is more
tricky than PoU because the cells are pruned for containing the
same TTIs as other cells that are scheduled to traverse after them
by TCD algorithm. Note that, the cell [4, 8] triggers all three kinds
of pruning. In fact, a cell may trigger PoL only, PoU only, or all
three rules.

4.3 Optimized TCD Algorithm
Compared with TCD algorithm, the improvement of Optimized
TCD (OTCD) algorithm is simply to conduct a pruning operation
whenever a temporal 𝑘-core has been induced. Specifically, we
evaluate the TTI of this temporal 𝑘-core, check each pruning rule
to determine if it is triggered, and prune the specific subintervals
on the schedule in advance. The pseudo code of pruning operation
is given in Algorithm 3. Note that, the “prune” in Algorithm 3 is a
logical concept, and can have different physical implementations.

As illustrated in Figure 4b, OTCD algorithm completely elimi-
nates repeated inducing of identical temporal 𝑘-cores, namely, each
distinct temporal 𝑘-core is induced exactly once during the whole
procedure. It means, the real computational complexity of OTCD
algorithm is the summation of complexity for inducing each distinct
temporal 𝑘-core but not the temporal 𝑘-core of each subinterval
of [𝑇𝑠,𝑇𝑒]. Therefore, we say OTCD algorithm is scalable with

respect to the query time interval [𝑇𝑠,𝑇𝑒]. For many real-world
datasets, the span of [𝑇𝑠,𝑇𝑒] could be very large, while there exist
only a limited number of distinct temporal 𝑘-cores over this period,
so that OTCD algorithm can still process the query efficiently.

5 IMPLEMENTATION
In this section, we address the physical implementation of proposed
algorithm.

5.1 Temporal Edge List (TEL)
We propose a novel data structure called Temporal Edge List (TEL)
for representing an arbitrary temporal graph (including temporal
𝑘-cores that are also temporal graphs), which is both the input and
output of TCD operation. Conceptually, TEL(G) preserves a tem-
poral graph G = (V, E) by organizing its edges in a 3-dimension
space, each dimension of which is a set of bidirectional linked lists,
as illustrated in Figure 5. The first dimension is time, namely, all
edges in E are grouped by their timestamps. Each group is stored
as a bidirectional linked list called Time List (TL), and TL(𝑡 ) denotes
the list of edges with a timestamp 𝑡 . Then, TEL(G) uses a bidirec-
tional linked list, in which each node represents a timestamp in
G, as a timeline in ascending order to link all TLs, so that some
temporal operations can be facilitated. Moreover, the other two
dimensions are source vertex and destination vertex respectively.
We use a container to store the Source Lists (SL) or Destination Lists
(DL) for each vertex 𝑣 ∈ V , where SL(𝑣) or DL(𝑣) is a bidirectional
linked list that links all edges whose source or destination vertex is
𝑣 . Actually, an SL or DL is an adjacency list of the graph, by which
we can retrieve the neighbor vertices and edges of a given vertex
efficiently. Given a temporal graph G, TEL(G) is built in memory
by adding its edges iteratively. For each edge (𝑢, 𝑣, 𝑡) ∈ E, it is only
stored once, and TL(𝑡 ), SL(𝑢) and DL(𝑣) will append its pointer at
the tail respectively.

Figure 5 illustrates a partial TEL of our example graph. The SLs
and DLs other than SL(𝑣5) and DL(𝑣3) are omitted for conciseness.
Basically, TL, SL and DL offer the functionality of retrieving edges
by timestamp and linked vertex respectively. For example, for re-
moving all neighbor edges of a vertex 𝑣 with degree less than 𝑘

in TCD operation, we can locate SL(𝑣) and DL(𝑣) to retrieve these
edges. Moreover, the linked list of TL can offer efficient temporal
operations. For example, for truncating G to G[𝑡𝑠,𝑡𝑒 ] in TCD opera-
tion, we can remove TL(𝑡 ) with 𝑡 < 𝑡𝑠 or 𝑡 > 𝑡𝑒 from the linked list
of TL conveniently. To get the TTI of a temporal 𝑘-core, we only
need to check the head and tail nodes of the linked list of TL in its
TEL to get the minimum and maximum timestamps respectively.

The superiority of TEL is summarized as follows.
• By TCD operation, a TEL will be trimmed to a smaller TEL,

and there is none intermediate TEL produced. Thus, the
memory requirement of (O)TCD algorithm only depends
on the size of initial TEL(G[𝑇𝑠,𝑇𝑒 ] ).

• TEL consumes 𝑂 ( |E |) space for storing a temporal graph,
which is optimal because at least 𝑂 ( |E |) space is required
for storing a graph (e.g., adjacency lists). Although there
are 6|E | + 2|V| + 3𝑛 pointers of TLs, SLs and DLs stored
additionally, TEL is still compact comparedwith PHC-Index,
where 𝑛 is the number of timestamps in the graph.
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• TEL supports the basic manipulations listed in Table 1 in
constant time, which are cornerstones of implementing our
algorithms and optimization techniques.

• For dynamical graphs, when a new edge is coming, TEL
simply appends a new node representing the current time
at the end of linked list of TL, and then adds this edge as
normal. Thus, TEL can also deal with dynamical graphs.

5.2 Implement TCD Operation on TEL
Given a TCQ instance, our algorithm starts to work on a copy of
TEL(G[𝑇𝑠,𝑇𝑒 ] ) in memory, which is obtained by truncating TEL(G).
Then, our algorithm only needs tomaintain an instance of TEL(T𝑘

[𝑡𝑠,𝑇𝑒 ] )

and another instance of TEL(T𝑘
[𝑡𝑠,𝑡𝑒 ] ) with [𝑡𝑠, 𝑡𝑒] ⊆ [𝑇𝑠,𝑇𝑒] in

memory. The first instance is used to induce the first temporal
𝑘-core T𝑘

[𝑡𝑠+1,𝑇𝑒 ] by TCD for each row in Figure 3. The second in-

stance is used to induce the following temporal 𝑘-cores T𝑘
[𝑡𝑠,𝑡𝑒−1]

by TCD in each row. Each TCD operation is decomposed to a series
of TEL manipulations, and trims the input TEL without producing
any intermediate data.

To assist the implementation of TCD operation, our algorithm
uses a global data structure H𝑣 that organizes all vertices in the
maintained TEL into a minimum heap ordered by their degree, so
that the vertices with less than 𝑘 neighbors can be retrieved directly.
Note that, whenever an edge is deleted from themaintained TEL,H𝑣
will also be updated due to the possible decrease of vertex degrees.
The trivial details of updating H𝑣 is omitted.

Algorithm 4 gives the implementation of TCD operation on TEL.
The algorithm takes as input the TEL of a given graph G, along with
the parameters 𝑘 , 𝑡𝑠 and 𝑡𝑒 specifying the target temporal 𝑘-core
T𝑘
[𝑡𝑠,𝑡𝑒 ] . In truncation phase, TEL(G) is projected to TEL(G[𝑡𝑠,𝑡𝑒 ] )

(lines 1-14). Specifically, the linked list of TL is traversed from the
head and tail bidirectionally until meeting 𝑡𝑠 and 𝑡𝑒 respectively.
For each node representing the timestamp 𝑡 traversed, the edges
in TL(𝑡 ) are removed from TEL, and H𝑣 is updated for each edge
removed. In decomposition phase, TEL(G[𝑡𝑠,𝑡𝑒 ] ) is further trans-
formed to TEL(T𝑘

[𝑡𝑠,𝑡𝑒 ] ) (lines 15-24). Specifically, the algorithm
pops the vertex with the least neighbors from H𝑣 iteratively until
the remaining vertices all have at least 𝑘 neighbors or the heap is
empty. For each popped vertex 𝑣 , it removes the linked edges of 𝑣
preserved in SL(𝑣) and DL(𝑣) from TEL respectively and updates
H𝑣 accordingly. In particular, a TL will be removed from the linked
list of TL after the last edge in it has been removed (lines 19 and
23).

To clarify the procedure of Algorithm 4, Figure 6 illustrates an
example of inducing T 2

[4,5] from T
2
[3,6] . The edges are going to be

deleted are marked in red color. We can see that, the procedure is
actually a stream of edge deletion, while TEL maintains the entries
to retrieve the remaining edges.

Lastly, the complexity analysis of TCD and OTCD algorithms
can be found in our full technical report [35].

6 EXTENSION
To demonstrate the wide applicability of our approach in practice,
we present several typical scenarios that extends the data model

Algorithm 4: TCD operation in Algorithm 2
Input: TEL(G), [𝑡𝑠, 𝑡𝑒], 𝑘
Output: TEL(T𝑘

[𝑡𝑠,𝑡𝑒 ] )
1 𝑇𝐿← the head of linked list of TL in TEL(G)
2 while 𝑇𝐿.timestamp ≠ 𝑡𝑠 do
3 for edge 𝑒 in 𝑇𝐿 do
4 del_edge(𝑒)
5 udpate H𝑣
6 del_TL(𝑇𝐿)
7 𝑇𝐿← next_TL(𝑇𝐿)
8 𝑇𝐿← the tail of linked list of TL in TEL(G)
9 while 𝑇𝐿.timestamp ≠ 𝑡𝑒 do
10 for edge 𝑒 in 𝑇𝐿 do
11 del_edge(𝑒)
12 udpate H𝑣
13 del_TL(𝑇𝐿)
14 𝑇𝐿← prev_TL(𝑇𝐿)
15 while H𝑣 is not empty and H𝑣 .peek < 𝑘 do
16 vertex 𝑣 ← H𝑣 .pop()
17 for edge 𝑒 in SL(𝑣) do
18 del_edge(𝑒)
19 del_TL(TL(𝑒 .timestamp)) if the TL is empty
20 update H𝑣
21 for edge 𝑒 in DL(𝑣) do
22 del_edge(𝑒)
23 del_TL(TL(𝑒 .timestamp)) if the TL is empty
24 update H𝑣

or query model of TCQ, and sketch how to address them based on
our data structure and algorithm in this section.

6.1 Data Model Extension
Dynamical Graph. Since most real-world graphs are evolving
over time, it is significant to fulfill TCQ on dynamical graphs. Ben-
efitted from its design in “timeline” style, our data structure TEL
can deal with new edges naturally in memory through two new
manipulations add_TL(𝑡 ) and add_edge(𝑢, 𝑣 , 𝑡 ). When a new edge
(𝑢, 𝑣, 𝑡) arrived, we firstly create an empty TL(𝑡 ), and append it at
the end of the linked list of TL since 𝑡 is obviously greater than the
existing timestamps. Then, we create a new edge node for (𝑢, 𝑣, 𝑡)
and append it to TL(𝑡 ), SL(𝑢) and DL(𝑣) respectively. Both manipula-
tions are finished in constant time. The maintenance of a dynamical
TEL is actually consistent with the construction of a static TEL.
Therefore, our (O)TCD algorithm can run on the dynamical TEL
anytime.

In contrast, updating PHC-Index is a non-trivial process. Al-
though there are previous work [20, 29] on coreness updating for
dynamical graphs, the update is only valid for the whole life time
of graph. While, for an arbitrary start time, it is uncertain whether
the coreness of a vertex will be changed by a new edge.
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Figure 5: The conceptual illustration of a partial TEL of our running example graph.

Table 1: The basic manipulations of TEL.

Name Functionality Complexity
next_TL(𝑇𝐿) / prev_TL(𝑇𝐿) get the next or previous TL in the linked list of TL 𝑂 (1)

get_SL(𝑣) / get_DL(𝑣) get the SL or DL of a given vertex 𝑣 from a hash map 𝑂 (1)
del_TL(𝑇𝐿) remove the given TL node from the linked list of TL 𝑂 (1)
del_edge(𝑒) delete a given edge 𝑒 = (𝑢, 𝑣, 𝑡 ) and update TL(𝑡 ), SL(𝑢) and DL(𝑣) respectively 𝑂 (1)
get_TTI() return the timestamps of head and tail nodes of linked list of TL 𝑂 (1)
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Figure 6: An example of TCD operation on TEL.

6.2 Query Model Extension
The existing graph mining tasks regarding 𝑘-core introduce various
constraints. For temporal graphs, we only focus on the temporal
constraints. In the followings, we present two of them that can
be integrated into TCQ model and also be addressed by our algo-
rithm directly, which demonstrate the generality of our model and
algorithm.

Link Strength Constraint. In the context of temporal graph,
link strength usually refers to the number of parallel edges between
a pair of linked vertices. Obviously, the minimum link strength in a

temporal 𝑘-core represents some important properties like validity,
since noise interaction may appear over time and a pair of vertices
with low link strength may only have occasional interaction during
the time interval. Actually, the previous work [34] has studied
this problem without the time interval constraint. Therefore, it is
reasonable to extend TCQ to retrieve 𝑘-cores with a lower bound
of link strength during a given time interval. It can be achieved by
trivially modifying the TCD Operation. Specifically, the modified
TCD Operation will remove the edges between two vertices once
the number of parallel edges between them is decreased to be lower
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Table 2: Datasets.

Name |V | |E| Span(days)
Youtube 3.2M 9.4M 226
DBLP 1.8M 29.5M 17532
Flickr 2.3M 33M 198
CollegeMsg 1.8K 20K 193
email-Eu-core-temporal 0.9K 332K 803
sx-mathoverflow 24.8K 506K 2350
sx-stackoverflow 2.6M 63.5M 2774

Table 3: Pruning effect.

id Triggered Times Pruned Cell Percentage (%)
PoR PoU PoL PoR PoU PoL Total

1 54 72 2 0.02 72 23.6 95.62
6 2 4 1 0.01 51.8 32.1 83.91
11 8 10 1 0.04 57.1 24.5 81.64
16 5 9 1 0.04 56.9 33.5 90.44

than the given lower bound of link strength, while the original TCD
operation will do this when the number becomes zero. Thus, the
modification brings almost none extra time and space consumption.

Time Span Constraint. In many cases, we prefer to retrieve
temporal 𝑘-cores with a short time span (between their earliest and
latest timestamps), which is similar to the previous work on density-
bursting subgraphs [5]. Because such a kind of short-term cohesive
subgraphs tend to represent the occurrence of some special events.
TCQ can be conveniently extended for resolving the problem by
specifying a constraint of time span. Since the time span of a tem-
poral 𝑘-core is preserved in its TEL, which is actually the length
of its TTI, we can abandon the temporal 𝑘-cores returned by TCD
operation that cannot satisfy the time span constraint on the fly. It
brings almost no extra time and space consumption. Moreover, we
can also extend TCQ to find the temporal 𝑘-core with the shortest
or top-𝑛 shortest time span.

7 EXPERIMENT
In this section, we conduct experiments to verify both efficiency
and effectiveness of the proposed algorithm on aWindows machine
with Intel Core i7 2.20GHz CPU and 64GB RAM. The algorithms
are implemented through C++ Standard Template Library.

7.1 Dataset
We choose seven temporal graphs with different sizes and do-
mains for our experiments. The first three graphs are obtained
from KONECT Project [16], and the other four graphs are obtained
from the SNAP [17]. The basic statistics of these graphs are given
in Table 2. All timestamps are unified to integers in seconds.

7.2 Efficiency
To evaluate the efficiency of our algorithm, we firstly manually
select twenty temporal 𝑘-core queries from tested random queries
with a time span (namely, 𝑇𝑒 −𝑇𝑠) of 1-3 days, which have been
verified to be valid, namely, there is at least one temporal 𝑘-core
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Figure 7: The comparison of response time for selected
queries on SNAP graphs.

returned for each query. The time span is moderate, otherwise other
algorithms than OTCD can hardly stop successfully. The details of
queries can be found in our full technical report [35].

Figure 7 compares the response time of Baseline (iPHC-Query),
TCD and OTCD algorithms for each selected query respectively,
which clearly demonstrates the efficiency of our algorithm. Firstly,
TCD performs better than baseline for all twenty queries due to
the physical efficiency of TEL, though they both decrementally or
incrementally induce temporal 𝑘-cores. Specifically, TCD spends
around 100 sec for each query. In contrast, baseline spends more
than 1000 sec on CollegeMsg and even cannot finish within an
hour on two other graphs, though it uses a precomputed index.
Furthermore, OTCD runs two or three orders of magnitude faster
than TCD, and only spends about 0.1-1 sec for each query, which
verifies the effectiveness of our pruning method based on TTI.

To compare the effect of three pruning rules in OTCD algorithm,
Table 3 lists their triggered times and the percentage of subintervals
pruned by them for several queries respectively. PoR and PoU are
triggered frequently because their conditions are more easily to be
satisfied. However, PoR actually contributes pruned subintervals
much less than the other two. Because it only prunes subintervals in
the same row, and in contrast, PoU and PoL can prune an “area” of
subintervals. Overall, the three pruning rules can achieve significant
optimization effect together by enabling OTCD algorithm to skip
more than 80 percents of subintervals.

To evaluate the stability of our approach, we conduct statis-
tical analysis of one hundred valid random queries on two new
graphs, namely, Youtube and Flickr. We visualize the distribution
of response time of TCD and OTCD algorithms for these random
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Figure 8: The statistical distribution of response time for
random queries on KONECT graphs.

queries as boxplots, which are shown by Figure 8. The boxplots
demonstrate that the response time of OTCD varies in a very lim-
ited range, which indicates that the OTCD indeed performs stable
in practice. The outliers represent some queries that have excep-
tionally more results, which can be seen as a normal phenomenon
in reality. They may reveal that many communities of the social
networks are more active during the period.

To verify the scalability of our method with respect to the query
parameters, we test the three algorithms with varying minimum
degree 𝑘 and time span (namely, 𝑇𝑒 −𝑇𝑠) respectively.

Impact of 𝑘 . We select a typical query with span fixed and
𝑘 ranging from 2 to 6 for different graphs. The response time of
tested algorithms are presented in Figure 9, from which we have
an important observation against common sense. That is, different
from core decomposition on non-temporal graphs, when the value
of 𝑘 increases, the response time of TCD and OTCD algorithms
decreases gradually. For OTCD, the behind rationale is clear, namely,
its time cost is only bounded by the scale of results, which decreases
sharply with the increase of 𝑘 . To support the claim, Figure 10
shows the trend of the amount of result cores changing with 𝑘 .
Intuitively, a greater value of k means a stricter constraint and
thereby filters out some less cohesive cores. We can see the trend
of runtime decrease for OTCD in Figure 9 is almost the same as the
trend of core amount decrease in Figure 10, which also confirms
the scalability of OTCD algorithm. For TCD, the behind rationale
is complicated, since it enumerates all subintervals and each single
decomposition is more costly with a greater value of 𝑘 . It is just
like peeling an onion layer by layer, which has less layers with a
greater value of 𝑘 , so that the maintenance between layers become
less.

Impact of span. Similarly to the test of 𝑘 , we also evaluate
the scalability of different algorithms when the query time span
increases. The results are presented in Figure 11. Although the
number of subintervals increases quadratically, the response time
of OTCD still increases moderately following the scale of query
results. In contrast, TCD runs dramatically slower when the query
time span becomes longer.

The above results demonstrate that the efficiency of OTCD is not
sensitive to the change of query parameters. We also give a simple
and rational criteria for selecting the proper 𝑘 value on different
graphs in our full technical report [35].
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Figure 9: Trend of response time under a range of 𝑘 .
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Figure 10: Trend of amount of distinct temporal𝑘-cores under
a range of 𝑘 .
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Figure 11: Trend of response time under a range of span.

Lastly, for a large graph with a long time span like Youtube, we
test OTCD algorithm by querying temporal 10-cores over the whole
time span. The result is, to find all 19,146 temporal 10-cores within
226 days, the OTCD algorithm spent about 55 minutes, which is
acceptable for such a “full graph scan” task.

7.3 Effectiveness
The effectiveness of TCQ is two-fold. Firstly, by given a flexible time
interval, we can find many temporal 𝑘-cores of different subinter-
vals, each of which represents a community emerged in a specific
period. Consider the above test on Youtube. Although it is not fea-
sible to exhibit all 19,146 cores, Figure 12 shows their distribution
by time span. The number of cores generally decreases with the
increase of time span, which makes sense because there are al-
ways a lot of small communities emerged during short periods and
then they will interact with each other and be merged to larger
communities within a longer time span.

Secondly, we can continue to filter and analyse the result cores
to gain insights. For example, we record the date in GMT time
for nine of the result cores with a time span less than one day in
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Figure 12: Distribution of all temporal 10-cores in Youtube
by time span.

Table 4: The date and size of nine temporal 10-cores emerged
within one day in Youtube.

Date |V| |E|
Dec 10 2006 46499 885128
Feb 08 2007 1268 12054
Mar 25 2007 21 139
Jun 15 2007 98 713
Jun 18 2007 20 100
Jun 20 2007 124 1012
Jun 30 2007 21 110
Jul 02 2007 21 110
Jul 06 2007 12 66

Youtube, and try to figure out if they emerged for some special
reasons. Table 4 lists the date and size of the nine cores. We can see
that there is a large core emerged on Dec 10, 2006, which means
more than 40,000 accounts had nearly one million interactions with
each other in just a day. That is definitely caused by a special event.
While, most of the rest cores emerged during summer vacation,
which may mean people have more interactions on Youtube in the
period. Two more interesting case studies that reveal the evolution
of communities and quickly expanding communities respectively
can be found in our full technical report [35].

8 RELATED WORK
Recently, a variety of 𝑘-core query problems have been studied on
temporal graphs, which involve different temporal objectives or
constraints in addition to cohesiveness. The most relevant work
to ours is historical 𝑘-core query [37], which gives a fixed time
interval as query condition. In contrast, our temporal 𝑘-core query
flexibly find cores of all subintervals. Moreover, Galimberti et al [12]
proposed the span-core query, which also gives a time interval
as query condition. However, the span-core requires all edges to
appear in every moment within the query interval, which is too
strict in practice. Actually, historical 𝑘-core relaxes span-core, and
temporal 𝑘-core further relaxes historical 𝑘-core.

Besides, there are the following related work. Wu et al [34] pro-
posed (𝑘, ℎ)-core and studied its decomposition algorithm, which
gives an additional constraint on the number of parallel edges be-
tween each pair of linked vertices in the 𝑘-core, namely, they should

have at least ℎ parallel edges. Li et al [19] proposed the persistent
community search problem and gives a complicated instance called
(𝜃, 𝜏)-persistent 𝑘-core, which is a 𝑘-core persists over a time inter-
val whose span is decided by the parameters. Similarly, Li et al [21]
proposed the continual cohesive subgraph search problem. Chu et
al [5] studied the problem of finding the subgraphs whose density
accumulates at the fastest speed, namely, the subgraphs with burst-
ing density. Qin et al [27, 28] proposed the periodic community
problem to reveal frequently happening patterns of social interac-
tions, such as periodic 𝑘-core. Wen et al [1] relaxed the constraints
of (𝑘, ℎ)-core and proposed quasi-(𝑘, ℎ)-core for better support of
maintenance. Lastly, Ma et al [25] studied the problem of finding
dense subgraph on weighted temporal graph. These works all focus
on some specific patterns of cohesive substructure on temporal
graphs, and propose sophisticated models and methods. Compared
with them, our work addresses a fundamental querying problem,
which finds the most general 𝑘-cores on temporal graphs with
respect to two basic conditions, namely, 𝑘 and time interval. As
discussed in Section 6.2, we can extend TCQ to find the more spe-
cific 𝑘-cores by importing the constraints defined by them, because
most of the definitions are special cases of temporal 𝑘-core, but not
vice versa.

Lastly, many research work on cohesive subgraph query for non-
temporal graphs also inspire our work. We categorize them by the
types of graphs as follows: undirected graph [3, 9, 13, 23, 36, 38],
directed graph [4, 24, 30], labeled graph [6, 18, 31], attributed
graph [7, 14, 15, 26], spatial graph [8, 10, 40], heterogeneous in-
formation network [11]. Besides, many work specific to bipartite
graph [22, 32, 33, 39] also contain valuable insights.

9 CONCLUSION
For querying communities like 𝑘-cores on temporal graphs, speci-
fying a time interval in which the communities emerge is the most
fundamental query condition. To the best knowledge we have, we
are the first to study a temporal 𝑘-core query that allows the users
to give a flexible interval and returns all distinct 𝑘-cores emerging
in any subintervals. Dealing with such a query in brute force is
obviously costly due to the possibly large number of subintervals.
Thus, we propose a novel decremental 𝑘-core inducing algorithm
and the auxiliary optimization and implementation methods. Our
algorithm only enumerates the necessary subintervals that can
induce a final result and reduces redundant computation between
subintervals significantly. Moreover, the algorithm is physically de-
composed to a series of efficient data structure manipulations. As a
result, although our algorithm does not use any precomputed index,
it still outperforms an incremental version of the latest index-based
approach by a remarkable margin. In conclusion, our algorithm is
scalable with respect to the span of given time interval.
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