
10    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

SECURITYKernel Isolation
From an Academic Idea to an Efficient Patch for Every Computer

D A N I E L G R U S S , D A V E H A N S E N , A N D B R E N D A N G R E G G

Daniel Gruss (@lavados)
is a postdoc fellow at Graz
University of Technology. He
has been involved with teaching
at the university since 2010.

In 2015, he demonstrated Rowhammer.js, the
first remote fault attack running in a website.
He was part of the research team that found
the Meltdown and Spectre bugs published in
early 2018. daniel.gruss@iaik.tugraz.at

Dave Hansen works in Intel’s
Open Source Technology
Center in Hillsboro, Oregon. He
has been involved in Linux for
over 15 years and has worked

on side-channel hardening, scalability, NUMA,
memory management, and many other areas.
dave.hansen@intel.com

Brendan Gregg is an
industry expert in computing
performance and cloud
computing. He is a Senior
Performance Architect at

Netflix, where he does performance design,
evaluation, analysis, and tuning. He is the
author of Systems Performance published by
Prentice Hall, and he received the USENIX
LISA Award for Outstanding Achievement in
System Administration. Brendan has created
performance analysis tools included in multiple
operating systems, and visualizations and
methodologies for performance analysis,
including flame graphs. bgregg@netflix.com

The disclosure of the Meltdown vulnerability [9] in early 2018 was an
earthquake for the security community. Meltdown allows tempo-
rarily bypassing the most fundamental access permissions before a

deferred permission check is finished: that is, the userspace-accessible bit
is not reliable, allowing unrestricted access to kernel pages. More specifi-
cally, during out-of-order execution, the processor fetches or stores memory
locations that are protected via access permissions and continues the out-
of-order execution of subsequent instructions with the retrieved or modified
data, even if the access permission check failed. Most Intel, IBM, and Apple
processors from recent years are affected as are several other processors.
While AMD also defers the permission check, it does not continue the out-
of-order execution of subsequent instructions with data that is supposed to
be inaccessible.

KAISER [4, 5] was designed as a software-workaround to the userspace-accessible bit. Hence,
KAISER eliminates any side-channel timing differences for inaccessible pages, making the
hardware bit mostly superfluous. In this article, we discuss the basic design and the different
patches for Linux, Windows, and XNU (the kernel in modern Apple operating systems).

Basic Design
Historically, the kernel was mapped into the address space of every user program, but kernel
addresses were not accessible in userspace because of the userspace-accessible bit. Concep-
tually, this is a very compact way to define two address spaces, one for user mode and one for
kernel mode. The basic design of the KAISER mechanism and its derivates is based on the
idea that the userspace-accessible bit is not reliable during transient out-of-order execution.
Consequently, it becomes necessary to work around this permission bit and not rely on it.

As shown in Figure 1, we try to emulate what the userspace-accessible bit was supposed to
provide, namely two address spaces for the user program: a kernel address space with all
addresses mapped, protected with proper use of SMAP, SMEP, and NX; and a user address
space that only includes a very small fraction of the kernel. This small fraction is required
due to the way context switches are defined on the x86 architecture. However, immediately
after switching into kernel mode, we switch from the user address space to the kernel
address space. Thus, we only have to make sure that read-only access to the small fraction
of the kernel does not pose a security problem.

As we discuss in more detail in the performance section, emulating the userspace-accessible
bit through this hard split of the address spaces comes with a performance cost.

The global bit. As page table lookups can take much time, a multi-level cache hierarchy
(the translation lookaside buffer, TLB) is used to improve the performance. When switching
between processes, the TLB has to be cleared at least partially. Most operating systems opti-
mize the performance of context switches by using the global bit for TLB entries that are also
valid in the next address space. Consequently, we have to use it with care when implementing

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  11

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

the design outlined above. In particular, marking kernel pages as
global (as operating systems previously did) completely under-
mines the security provided by the KAISER mechanism. Setting
the bit to 0 eliminates this problem but leads to another perfor-
mance reduction.

 Patches. The name KAISER is supposed to be
an acronym for Kernel Address Isolation to have Side channels
Efficiently Removed. It is also a reference to the emperor penguin
(German: “Kaiserpinguin”), the largest penguin on earth, with
the penguin being the Linux mascot and KAISER being a patch
to make Linux stronger. Still under the name KAISER, a signifi-
cant amount of work was put into the patches that we outline
later in this article. Both the authors of the KAISER patch and
the Linux kernel maintainers also discussed other names that
were deemed less appropriate. Shortly before merging KAISER
into the mainline kernel, it was renamed to KPTI, which fits in
the typical Linux naming scheme.

Naturally, Microsoft and Apple could not just copy either of the
names of the Linux patch. Consequently, they came up with their
own names (i.e., KVA Shadow and Double Map) for their own
variants of the same idea.

Actual Implementations
The KAISER implementation, developed mainly on virtual
machines and a specific off-the-shelf Skylake system, focused on
proving that the basic approach was sound. Consequently, reli-
ability and stability that would allow deployment in a real-world
environment were out of scope for KAISER. Bringing KAISER
up to industry and community standards required ensuring sup-
port for all existing hardware and software features and improv-
ing its performance and security properties. Furthermore, for
Windows and XNU, the patches had to be redeveloped from
scratch since their design and implementation is substantially
different from Linux.

While the focus on specific machine environments limited the
scope of the effort and enabled the implementation of a rapid
proof of concept, the environment did not have to cope with
certain hardware features like non-maskable interrupts (NMIs),
or corner cases when entering or exiting the kernel. These corner

cases are rarely encountered in the real world but must still be
handled because they might be exploited to cause crashes or
escalate privileges (e.g., CVE-2014-4699). NMIs are a particular
challenge because they can occur in almost any context, includ-
ing while the kernel is attempting to transition to or from user-
space. For example, before the kernel attempts to return from
an interrupt to userspace, it first switches to the user address
space. At least one instruction later, it actually transitions to
userspace. This means there is always a window where the ker-
nel appears to be running with the “wrong” address space. This
can confuse the address-space-switching code, which must use
a different method to determine which address space to restore
when returning from the NMI.

Linux’s KPTI
Much of the process of building on the KAISER proof of concept
(PoC) was iterative: find a test that fails or crashes the kernel,
debug, fix, check for regressions, then move to the next test.
Fortunately, the “x86 selftests” test many infrequently used
features, such as the modify ldt system call, which is rarely
used outside of DOS emulators. Virtually all of these tests
existed before KAISER. The key part of the development was
finding the tests that exercised the KAISER-impacted code
paths and ensuring the tests got executed in a wide variety of
environments.

KAISER focused on identifying all of the memory areas that
needed to be shared by the kernel and user address spaces and
mapping those areas into both. Once it neared being feature-
complete and fully functional, the focus shifted to code simplifi-
cation and improving security.

The shared memory areas were scattered in the kernel portion
of the address space. This led to a complicated kernel memory
map that made it challenging to determine whether a given
mapping was correct, or might have exposed valuable secrets to
an application. The solution to this complexity is a data struc-
ture called cpu_entry_area. This structure maps all of the data
and code needed for a given CPU to enter or exit the kernel. It is
located at a consistent virtual address, making it simple to use
in the restricted environment near kernel entry and exit points.
The cpu_entry_area is strictly an alias for memory mapped
elsewhere by the kernel. This allows it to have hardened permis-
sions for structures such as the “task state segment,” mapping
them read-only into the cpu_entry_area while still permitting
the other alias to be used for modifications.

While the kernel does have special “interrupt stacks,” inter-
rupts and system call instructions still use a process’s kernel
stack for a short time after entering the kernel. For this reason,
KAISER mapped all process kernel stacks into the user address
space. This potentially exposes the stack contents to Meltdown,

Figure 1: The basic KAISER mechanism

12    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

and it also creates performance overhead in the fork() and exit()
paths. To mitigate both the performance and attack exposure,
KPTI added special “entry stacks” to the cpu_entry_area. These
stacks are only used for a short time during kernel entry/exit
and contain much more limited data than the full process stack,
limiting the likelihood that they might contain secrets.

Historically, any write to the CR3 register invalidates the contents
of the TLB, which has hundreds of entries on modern processors.
It takes a significant amount of processor resources to replace
these contents when frequent kernel entry/exits necessitate
frequent CR3 writes. However, a feature on some x86 processors,
Process Context Identifiers (PCIDs), provides a mechanism
to allow TLB entries to persist over CR3 updates. This allows
TLB contents to be preserved over system calls and interrupts,
greatly reducing the TLB impact from CR3 updates [6]. However,
allowing multiple address spaces to live within the TLB simul-
taneously requires additional work to track and invalidate these
entries. But the advantages of PCIDs outweigh the disadvan-
tages, and it continues to be used in Linux both to accelerate
KPTI and to preserve TLB contents across normal process
context-switching.

Microsoft Windows’ KVA Shadow
Windows introduced Kernel Virtual Address (KVA) Shadow
mapping [7], which follows the same basic idea as KAISER,
with necessary adaptations to the Windows operating system.
However, KVA Shadow does not have the goal of ensuring the
robustness of KASLR in general, but only seeks to mitigate
Meltdown-style attacks. This is a deliberate design choice made
to avoid unnecessary design complexity of KVA Shadow.

Similar to Linux, KVA Shadow tries to minimize the number
of kernel pages that remain mapped in the user address space.
This includes hardware-required per-processor data and special
per-processor transition stacks. To not leak any kernel infor-
mation through these transition stacks, the context switching
code keeps interrupts disabled and makes sure not to trigger any
kernel traps.

The significant deviations from the basic KAISER approach are
in the performance optimizations implemented to make KVA
Shadow practical for the huge Windows user base. Similar to
Linux, this included the use of PCIDs to minimize the number of
implicit TLB flushes. Another interesting optimization is “user/
global acceleration” [7]. As stated in the Basic Design section,
above, the global bit tells the hardware whether or not to keep
TLB entries across the next context switch. While the global bit
can no longer be used for kernel pages, Windows now uses it for
user pages. Consequently, switching from user to kernel mode
does not flush the user TLB entries, although the CR3 register is
switched. This yields a measurable performance advantage. The
user pages are not marked global in the kernel address space,

and, hence, the corresponding TLB entries are correctly invali-
dated during the context switch to the next process.

Windows further optimizes the execution of highly privileged
tasks by letting them run with a conventional shared address
space, which is identical to what the “kernel” address space is now.

With a large number of third-party drivers and software deeply
rooted in the system (e.g., anti-viruses), it is not unexpected that
some contained code assumes a shared address space. While
this first caused compatibility problems, subsequent updates
resolved these issues.

Apple XNU’s Double Map
Apple introduced the Double Map feature in macOS 10.13.2 (i.e.,
XNU kernel 4570.31.3, Darwin 17.3.0). Apple used PCIDs on x86
already in earlier macOS versions. However, because mobile
Apple devices are also affected by Meltdown, mitigations in the
ARMv8-64 XNU kernel were required. Here Apple introduced
an interesting technique to leverage the two Translation Table
Base Registers (TTBRs) present on ARMv8-64 cores and the
Translation Control Register (TCR), which controls how the
TTBRs are used in the address translation.

The virtual memory is split into two halves, a userspace half
mapped via TTBR0 and a kernel space half mapped via TTBR1.
The TCR allows splitting the address space and assigning differ-
ent TTBRs to disjoint address space ranges. Apple’s XNU kernel
uses the TCR to unmap the protected part of the kernel in user
mode. That is, the kernel space generally remains mapped in
every user process, but it’s unmapped via the TCRs when leaving
the kernel. Kernel parts required for the context switch, inter-
rupt entry code, and data structures are below a certain virtual
address and remain mapped. When entering the kernel again,
the kernel reconfigures the address space range of TTBR1 via
the TCR and, by that, remaps the protected part of the kernel.

The most important advantage of this approach is that the
translation tables are not duplicated or modified while running
in user mode. Hence, any integrity mechanisms checking the
translation tables continue to work.

Performance
When publishing the first unstable PoC of KAISER, the ques-
tion of performance impact was raised. While the performance
impact was initially estimated to be below 5% [5], KAISER
showed once more how difficult it is to measure performance
in a way that allows comparison of performance numbers. With
PCIDs or ASIDs, as now used by all major operating systems,
the performance overheads of the different real-world KAISER
implementations were reduced, but there are still overheads that
may be significant, depending on the workload and the specific
hardware. Still, the performance loss for different use cases,

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  13

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

macrobenchmarks, and microbenchmarks varies between −5%
and 800%. One reason is the increase in TLB flushes, especially
on systems without PCID support, as well as extra cycles for CR3
manipulation. More indirect is the increase in TLB pressure,
caused by the additional TLB entries due to the large number of
duplicated page table entries. CPU- or GPU-intense workloads
that trigger a negligible number of context switches, and thus a
negligible number of TLB flushes and CR3 manipulations, are
mostly unaffected.

The different implementations of KAISER have different optimi
zations. In this performance analysis, we focus on Linux (i.e.,
KPTI). However, the reported numbers are well aligned with
reports of performance overheads on other operating systems [1, 7].

We explore the overheads for different system call rates [2] by
timing a simultaneous working-set walk, as shown in Figure 2.

Without PCID, at low system call rates, the overheads were neg-
ligible, as expected: near 0%. At the other end of the spectrum,
at over 10 million system calls per second per CPU, the overhead
was extreme: the benchmark ran over 800% slower. While it
is unlikely that a real-world application will come anywhere
close tonthis, it still points out a relevant bottleneck that has
not existed without the KAISER patches. For perspective, the

system call rates for different cloud services at Netflix were
studied, and it was found that database services were the high-
est, with around 50,000 system calls per second per CPU. The
overhead at this rate was about 2.6% slower.

While PCID support greatly reduced the overhead, from 2.6% to
1.1%, there is another technique to reduce TLB pressure: large
pages. Using large pages reduces the overhead for our specific
benchmark so much that for any real-world system call rate
there is a performance gain.

Another interesting observation while running the microben-
chmarks was an abrupt drop in performance overhead, depend-
ing on the hardware and benchmark, at a syscall rate of 5000.
While this was correlated with the last-level cache hit ratio, it is
unclear what the exact reason is. One suspected cause is a sweet
spot in either the amount of memory touched or the access pat-
tern between two system calls, where, for example, the processor
switches the cache eviction policy [3].

With PCID support and using large pages when possible, one can
conclude that the overheads of Linux’s KPTI and other KAISER
implementations are acceptable. Furthermore, rudimentary
performance tuning (i.e., analyzing and reducing system call and
context switch rates) may yield additional performance gains.

Outlook and Conclusion
With KAISER and related real-world patches, we accepted a
performance overhead to cope with the insufficient hardware-
based isolation. While more strict isolation can be a more resil-
ient design in general, it currently functions as a workaround for
a specific hardware bug. However, there are more Meltdown-
type hardware bugs [8, 10], causing unreliable permission checks
during transient out-of-order execution, for other page table bits.
Mitigating them requires additional countermeasures beyond
KAISER. For now, KAISER will still be necessary for commod-
ity processors.

Acknowledgments
We would like to thank Matt Miller, Jon Masters, and Jacques
Fortier for helpful comments on early drafts of this article.

Figure 2: The runtime overhead for different workloads with different
KPTI configurations [2]. The overhead increases with the system call rate
due to the additional TLB flushes and CR3 manipulations during context
switches.

14    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

References
[1] fG!, “Measuring OS X Meltdown Patches Performance,”
January 2018: https://reverse.put.as/2018/01/07/measuring​
-osx-meltdown-patches-performance/.

[2] B. Gregg, “KPTI/KAISER Meltdown Initial Performance
Regressions,” 2018: http://www.brendangregg.com/blog/2018​
-02-09/kpti-kaiser-meltdown-performance.html.

[3] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript,” in
Proceedings of the 13th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA
’16), pp. 300–321: https://gruss.cc/files/rowhammerjs.pdf.

[4] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR,” in 23rd ACM Conference on Computer and Communi-
cations Security (CCS, 2016): https://gruss.cc/files/prefetch.pdf.

[5] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “KASLR Is Dead: Long Live KASLR,” in Proceed-
ings of the 9th International Symposium on Engineering Secure
Software and Systems (ESSoS ’17), pp.161–176: https://gruss.cc​
/files/kaiser.pdf.

[6] D. Hansen, “KAISER: Unmap Most of the Kernel from User-
space Page Table,” Linux Kernel Mailing List, October 2017:
https://lkml.org/lkml/2017/10/31/884.

[7] K. Johnson, “KVA Shadow: Mitigating Meltdown on Win-
dows,” March 2018: https://blogs.technet.microsoft.com/srd​
/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/.

[8] V. Kiriansky and C. Waldspurger, “Speculative Buffer Over-
flows: Attacks and Defenses,” arXiv:1807.03757, 2018.

[9] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A.
Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading Kernel Memory from User
Space,” in Proceedings of the 27th USENIX Security Symposium
(USENIX Security ’18), pp. 973–990: https://www.usenix.org​
/system/files/conference/usenixsecurity18/sec18-lipp.pdf.

[10] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R.
Strackx, “Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution,” in Proceed-
ings of the 27th USENIX Security Symposium (USENIX Secu-
rity ’18), pp. 991–1008: https://www.usenix.org/system/files​
/conference/usenixsecurity18/sec18-van_bulck.pdf.

XKCD xkcd.com

https://reverse.put.as/2018/01/07/measuring-osx-meltdown-patches-performance/
https://reverse.put.as/2018/01/07/measuring-osx-meltdown-patches-performance/
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://gruss.cc/files/rowhammerjs.pdf
https://gruss.cc/files/prefetch.pdf
file:///Users/linda/Clients/USENIX/2018%20USENIX/2019%20Winter_login/usenix%2010-11-18/mybox-selected(6)/3-Gruss/Engineering Secure Software and Systems (ESSoS '17),
file:///Users/linda/Clients/USENIX/2018%20USENIX/2019%20Winter_login/usenix%2010-11-18/mybox-selected(6)/3-Gruss/Engineering Secure Software and Systems (ESSoS '17),
https://gruss.cc/files/kaiser.pdf
https://gruss.cc/files/kaiser.pdf
https://lkml.org/lkml/2017/10/31/884
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
arXiv:1807.03757
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf

