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The disclosure of the Meltdown vulnerability [9] in early 2018 was an 
earthquake for the security community. Meltdown allows tempo-
rarily bypassing the most fundamental access permissions before a 

deferred permission check is finished: that is, the userspace-accessible bit 
is not reliable, allowing unrestricted access to kernel pages. More specifi-
cally, during out-of-order execution, the processor fetches or stores memory 
locations that are protected via access permissions and continues the out-
of-order execution of subsequent instructions with the retrieved or modified 
data, even if the access permission check failed. Most Intel, IBM, and Apple 
processors from recent years are affected as are several other processors. 
While AMD also defers the permission check, it does not continue the out- 
of-order execution of subsequent instructions with data that is supposed to 
be inaccessible.

KAISER [4, 5] was designed as a software-workaround to the userspace-accessible bit. Hence, 
KAISER eliminates any side-channel timing differences for inaccessible pages, making the 
hardware bit mostly superfluous. In this article, we discuss the basic design and the different 
patches for Linux, Windows, and XNU (the kernel in modern Apple operating systems).

Basic Design
Historically, the kernel was mapped into the address space of every user program, but kernel 
addresses were not accessible in userspace because of the userspace-accessible bit. Concep-
tually, this is a very compact way to define two address spaces, one for user mode and one for 
kernel mode. The basic design of the KAISER mechanism and its derivates is based on the 
idea that the userspace-accessible bit is not reliable during transient out-of-order execution. 
Consequently, it becomes necessary to work around this permission bit and not rely on it.

As shown in Figure 1, we try to emulate what the userspace-accessible bit was supposed to 
provide, namely two address spaces for the user program: a kernel address space with all 
addresses mapped, protected with proper use of SMAP, SMEP, and NX; and a user address 
space that only includes a very small fraction of the kernel. This small fraction is required 
due to the way context switches are defined on the x86 architecture. However, immediately 
after switching into kernel mode, we switch from the user address space to the kernel 
address space. Thus, we only have to make sure that read-only access to the small fraction  
of the kernel does not pose a security problem.

As we discuss in more detail in the performance section, emulating the userspace-accessible 
bit through this hard split of the address spaces comes with a performance cost.

The global bit. As page table lookups can take much time, a multi-level cache hierarchy 
(the translation lookaside buffer, TLB) is used to improve the performance. When switching 
between processes, the TLB has to be cleared at least partially. Most operating systems opti-
mize the performance of context switches by using the global bit for TLB entries that are also 
valid in the next address space. Consequently, we have to use it with care when implementing 
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the design outlined above. In particular, marking kernel pages as 
global (as operating systems previously did) completely under-
mines the security provided by the KAISER mechanism. Setting 
the bit to 0 eliminates this problem but leads to another perfor-
mance reduction.

 Patches. The name KAISER is supposed to be 
an acronym for Kernel Address Isolation to have Side channels 
Efficiently Removed. It is also a reference to the emperor penguin 
(German: “Kaiserpinguin”), the largest penguin on earth, with 
the penguin being the Linux mascot and KAISER being a patch 
to make Linux stronger. Still under the name KAISER, a signifi-
cant amount of work was put into the patches that we outline 
later in this article. Both the authors of the KAISER patch and 
the Linux kernel maintainers also discussed other names that 
were deemed less appropriate. Shortly before merging KAISER 
into the mainline kernel, it was renamed to KPTI, which fits in 
the typical Linux naming scheme. 

Naturally, Microsoft and Apple could not just copy either of the 
names of the Linux patch. Consequently, they came up with their 
own names (i.e., KVA Shadow and Double Map) for their own 
variants of the same idea.

Actual Implementations
The KAISER implementation, developed mainly on virtual 
machines and a specific off-the-shelf Skylake system, focused on 
proving that the basic approach was sound. Consequently, reli-
ability and stability that would allow deployment in a real-world 
environment were out of scope for KAISER. Bringing KAISER 
up to industry and community standards required ensuring sup-
port for all existing hardware and software features and improv-
ing its performance and security properties. Furthermore, for 
Windows and XNU, the patches had to be redeveloped from 
scratch since their design and implementation is substantially 
different from Linux.

While the focus on specific machine environments limited the 
scope of the effort and enabled the implementation of a rapid 
proof of concept, the environment did not have to cope with 
certain hardware features like non-maskable interrupts (NMIs), 
or corner cases when entering or exiting the kernel. These corner 

cases are rarely encountered in the real world but must still be 
handled because they might be exploited to cause crashes or 
escalate privileges (e.g., CVE-2014-4699). NMIs are a particular 
challenge because they can occur in almost any context, includ-
ing while the kernel is attempting to transition to or from user-
space. For example, before the kernel attempts to return from 
an interrupt to userspace, it first switches to the user address 
space. At least one instruction later, it actually transitions to 
userspace. This means there is always a window where the ker-
nel appears to be running with the “wrong” address space. This 
can confuse the address-space-switching code, which must use 
a different method to determine which address space to restore 
when returning from the NMI.

Linux’s KPTI
Much of the process of building on the KAISER proof of concept 
(PoC) was iterative: find a test that fails or crashes the kernel, 
debug, fix, check for regressions, then move to the next test. 
Fortunately, the “x86 selftests” test many infrequently used 
features, such as the modify ldt system call, which is rarely 
used outside of DOS emulators. Virtually all of these tests 
existed before KAISER. The key part of the development was 
finding the tests that exercised the KAISER-impacted code 
paths and ensuring the tests got executed in a wide variety of 
environments.

KAISER focused on identifying all of the memory areas that 
needed to be shared by the kernel and user address spaces and 
mapping those areas into both. Once it neared being feature-
complete and fully functional, the focus shifted to code simplifi-
cation and improving security.

The shared memory areas were scattered in the kernel portion 
of the address space. This led to a complicated kernel memory 
map that made it challenging to determine whether a given 
mapping was correct, or might have exposed valuable secrets to 
an application. The solution to this complexity is a data struc-
ture called cpu_entry_area. This structure maps all of the data 
and code needed for a given CPU to enter or exit the kernel. It is 
located at a consistent virtual address, making it simple to use 
in the restricted environment near kernel entry and exit points. 
The cpu_entry_area is strictly an alias for memory mapped 
elsewhere by the kernel. This allows it to have hardened permis-
sions for structures such as the “task state segment,” mapping 
them read-only into the cpu_entry_area while still permitting 
the other alias to be used for modifications.

While the kernel does have special “interrupt stacks,” inter-
rupts and system call instructions still use a process’s kernel 
stack for a short time after entering the kernel. For this reason, 
KAISER mapped all process kernel stacks into the user address 
space. This potentially exposes the stack contents to Meltdown, 

Figure 1: The basic KAISER mechanism
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and it also creates performance overhead in the fork() and exit() 
paths. To mitigate both the performance and attack exposure, 
KPTI added special “entry stacks” to the cpu_entry_area. These 
stacks are only used for a short time during kernel entry/exit 
and contain much more limited data than the full process stack, 
limiting the likelihood that they might contain secrets.

Historically, any write to the CR3 register invalidates the contents 
of the TLB, which has hundreds of entries on modern processors. 
It takes a significant amount of processor resources to replace 
these contents when frequent kernel entry/exits necessitate 
frequent CR3 writes. However, a feature on some x86 processors, 
Process Context Identifiers (PCIDs), provides a mechanism 
to allow TLB entries to persist over CR3 updates. This allows 
TLB contents to be preserved over system calls and interrupts, 
greatly reducing the TLB impact from CR3 updates [6]. However, 
allowing multiple address spaces to live within the TLB simul-
taneously requires additional work to track and invalidate these 
entries. But the advantages of PCIDs outweigh the disadvan-
tages, and it continues to be used in Linux both to accelerate 
KPTI and to preserve TLB contents across normal process 
context-switching.

Microsoft Windows’ KVA Shadow
Windows introduced Kernel Virtual Address (KVA) Shadow 
mapping [7], which follows the same basic idea as KAISER, 
with necessary adaptations to the Windows operating system. 
However, KVA Shadow does not have the goal of ensuring the 
robustness of KASLR in general, but only seeks to mitigate 
Meltdown-style attacks. This is a deliberate design choice made 
to avoid unnecessary design complexity of KVA Shadow. 

Similar to Linux, KVA Shadow tries to minimize the number 
of kernel pages that remain mapped in the user address space. 
This includes hardware-required per-processor data and special 
per-processor transition stacks. To not leak any kernel infor-
mation through these transition stacks, the context switching 
code keeps interrupts disabled and makes sure not to trigger any 
kernel traps.

The significant deviations from the basic KAISER approach are 
in the performance optimizations implemented to make KVA 
Shadow practical for the huge Windows user base. Similar to 
Linux, this included the use of PCIDs to minimize the number of 
implicit TLB flushes. Another interesting optimization is “user/
global acceleration” [7]. As stated in the Basic Design section, 
above, the global bit tells the hardware whether or not to keep 
TLB entries across the next context switch. While the global bit 
can no longer be used for kernel pages, Windows now uses it for 
user pages. Consequently, switching from user to kernel mode 
does not flush the user TLB entries, although the CR3 register is 
switched. This yields a measurable performance advantage. The 
user pages are not marked global in the kernel address space, 

and, hence, the corresponding TLB entries are correctly invali-
dated during the context switch to the next process.

Windows further optimizes the execution of highly privileged 
tasks by letting them run with a conventional shared address 
space, which is identical to what the “kernel” address space is now.

With a large number of third-party drivers and software deeply 
rooted in the system (e.g., anti-viruses), it is not unexpected that 
some contained code assumes a shared address space. While 
this first caused compatibility problems, subsequent updates 
resolved these issues.

Apple XNU’s Double Map
Apple introduced the Double Map feature in macOS 10.13.2 (i.e., 
XNU kernel 4570.31.3, Darwin 17.3.0). Apple used PCIDs on x86 
already in earlier macOS versions. However, because mobile 
Apple devices are also affected by Meltdown, mitigations in the 
ARMv8-64 XNU kernel were required. Here Apple introduced 
an interesting technique to leverage the two Translation Table 
Base Registers (TTBRs) present on ARMv8-64 cores and the 
Translation Control Register (TCR), which controls how the 
TTBRs are used in the address translation.

The virtual memory is split into two halves, a userspace half 
mapped via TTBR0 and a kernel space half mapped via TTBR1. 
The TCR allows splitting the address space and assigning differ-
ent TTBRs to disjoint address space ranges. Apple’s XNU kernel 
uses the TCR to unmap the protected part of the kernel in user 
mode. That is, the kernel space generally remains mapped in 
every user process, but it’s unmapped via the TCRs when leaving 
the kernel. Kernel parts required for the context switch, inter-
rupt entry code, and data structures are below a certain virtual 
address and remain mapped. When entering the kernel again, 
the kernel reconfigures the address space range of TTBR1 via 
the TCR and, by that, remaps the protected part of the kernel.

The most important advantage of this approach is that the 
translation tables are not duplicated or modified while running 
in user mode. Hence, any integrity mechanisms checking the 
translation tables continue to work.

Performance
When publishing the first unstable PoC of KAISER, the ques-
tion of performance impact was raised. While the performance 
impact was initially estimated to be below 5% [5], KAISER 
showed once more how difficult it is to measure performance 
in a way that allows comparison of performance numbers. With 
PCIDs or ASIDs, as now used by all major operating systems, 
the performance overheads of the different real-world KAISER 
implementations were reduced, but there are still overheads that 
may be significant, depending on the workload and the specific 
hardware. Still, the performance loss for different use cases, 
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macrobenchmarks, and microbenchmarks varies between −5% 
and 800%. One reason is the increase in TLB flushes, especially 
on systems without PCID support, as well as extra cycles for CR3 
manipulation. More indirect is the increase in TLB pressure, 
caused by the additional TLB entries due to the large number of 
duplicated page table entries. CPU- or GPU-intense workloads 
that trigger a negligible number of context switches, and thus a 
negligible number of TLB flushes and CR3 manipulations, are 
mostly unaffected.

The different implementations of KAISER have different optimi
zations. In this performance analysis, we focus on Linux (i.e., 
KPTI). However, the reported numbers are well aligned with 
reports of performance overheads on other operating systems [1, 7].

We explore the overheads for different system call rates [2] by 
timing a simultaneous working-set walk, as shown in Figure 2.

Without PCID, at low system call rates, the overheads were neg-
ligible, as expected: near 0%. At the other end of the spectrum, 
at over 10 million system calls per second per CPU, the overhead 
was extreme: the benchmark ran over 800% slower. While it 
is unlikely that a real-world application will come anywhere 
close tonthis, it still points out a relevant bottleneck that has 
not existed without the KAISER patches. For perspective, the 

system call rates for different cloud services at Netflix were 
studied, and it was found that database services were the high-
est, with around 50,000 system calls per second per CPU. The 
overhead at this rate was about 2.6% slower.

While PCID support greatly reduced the overhead, from 2.6% to 
1.1%, there is another technique to reduce TLB pressure: large 
pages. Using large pages reduces the overhead for our specific 
benchmark so much that for any real-world system call rate 
there is a performance gain.

Another interesting observation while running the microben-
chmarks was an abrupt drop in performance overhead, depend-
ing on the hardware and benchmark, at a syscall rate of 5000. 
While this was correlated with the last-level cache hit ratio, it is 
unclear what the exact reason is. One suspected cause is a sweet 
spot in either the amount of memory touched or the access pat-
tern between two system calls, where, for example, the processor 
switches the cache eviction policy [3].

With PCID support and using large pages when possible, one can 
conclude that the overheads of Linux’s KPTI and other KAISER 
implementations are acceptable. Furthermore, rudimentary 
performance tuning (i.e., analyzing and reducing system call and 
context switch rates) may yield additional performance gains.

Outlook and Conclusion
With KAISER and related real-world patches, we accepted a 
performance overhead to cope with the insufficient hardware-
based isolation. While more strict isolation can be a more resil-
ient design in general, it currently functions as a workaround for 
a specific hardware bug. However, there are more Meltdown-
type hardware bugs [8, 10], causing unreliable permission checks 
during transient out-of-order execution, for other page table bits. 
Mitigating them requires additional countermeasures beyond 
KAISER. For now, KAISER will still be necessary for commod-
ity processors.
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Figure 2: The runtime overhead for different workloads with different 
KPTI configurations [2]. The overhead increases with the system call rate 
due to the additional TLB flushes and CR3 manipulations during context 
switches.
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