
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

CacheSack: Admission Optimization for Google
Datacenter Flash Caches

Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant,
and Homer Wolfmeister, Google

https://www.usenix.org/conference/atc22/presentation/yang-tzu-wei

CacheSack: Admission Optimization for Google Datacenter Flash Caches

Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer Wolfmeister

Google Inc.

{twyang, pollen, uysal, aamerchant, wolfmeister}@google.com

Abstract

This paper describes the algorithm, implementation, and de-
ployment experience of CacheSack, the admission algorithm
for Google datacenter flash caches. CacheSack minimizes the
dominant costs of Google’s datacenter flash caches: disk IO
and flash footprint. CacheSack partitions cache traffic into
disjoint categories, analyzes the observed cache benefit of
each subset, and formulates a knapsack problem to assign the
optimal admission policy to each subset. Prior to this work,
Google datacenter flash cache admission policies were opti-
mized manually, with most caches using the Lazy Adaptive
Replacement Cache (LARC) algorithm. Production experi-
ments showed that CacheSack significantly outperforms the
prior static admission policies for a 6.5% improvement of the
total operational cost, as well as significant improvements in
disk reads and flash wearout.

1 Introduction

Colossus Flash Cache (Figure 1) is the general-purpose flash
cache service for Colossus [20], the successor to the Google
File System [19]. Disk reads are expensive and are a major
cost in datacenters: while disks are growing in storage ca-
pacity, the IO capacity (the ability to offer disk accesses per
second, mainly disk reads) is not growing proportionally. As
a result, to provision the IO requirements, we need to deploy
a lot of hard disks that are not for storage but for the target IO
capacity, which is costly.

Colossus Flash Cache provides a cost-effective way to
improve IO capacity while costing a fraction of an equivalent
RAM cache or deploying more hard disks. The primary design
goal of Colossus Flash Cache is to reduce the amount of
hard disk reads, in order to reduce disk IO requirements and
costs. 1 Colossus Flash Cache serves the read traffic of many
widely-used Google services including Colossus and database

1While reducing read latency is also a desirable goal, it is not a design
goal for Colossus Flash Cache, and beyond the scope of this paper.

HDD

Buffer Cache

HDD HDD HDD

Disk Server

SSD SSD SSD SSD

Flash Server

3(a): Cached data

Client

3(b): Uncached data

5: Admitted data (pulled)

Cache
Index Server

2: Cache location or cache miss

1: Cache lookup

4: Admit/Evict

instructions

Figure 1: Colossus Flash Cache system.

systems such as BigQuery [37], BigTable [11], F1 [34], and
Spanner [13].

CacheSack is the cache admission algorithm used by Colos-
sus Flash Cache, intended to minimize the total cost of owner-
ship (TCO). Compared to a RAM cache, a flash cache usually
provides a much larger cache-to-storage capacity, and so a
simple algorithm such as LRU may achieve a good cache
hit-ratio. An idealized LRU is difficult to implement in a flash
cache; we address this issue in Section 4. However, flash
memory has limited write endurance, so may cause prema-
ture flash wearout and increase TCO. Write amplification and
flash wearout, along with caching in Colossus disk servers,
form a special challenge for designing a cache algorithm for
Colossus Flash Cache.

2 Our contributions

CacheSack is the cache admission algorithm for Colossus
Flash Cache, the successor to LARC (Lazy Adaptive Replace-
ment Cache). CacheSack dynamically analyzes the cacheabil-
ity of a workload and the given cache size, making the admis-

USENIX Association 2022 USENIX Annual Technical Conference 1021

sion decision for the workload. CacheSack was deployed in
Colossus Flash Cache in May 2021 and is now Colossus Flash
Cache’s default cache admission algorithm. Our contributions
are summarized as follows:
• CacheSack partitions traffic into multiple categories, es-

timates the disk reads and cost of write of each category,
and formulates a knapsack problem that finds the optimal
admission policy per category to minimize the overall
cost, including disk reads and bytes written to flash.
• CacheSack effectively reduces the total cost of own-

ership (TCO) of Colossus Flash Cache. Compared to
LARC, it results in 6% lower disk reads, reduces bytes
written to flash by 26%, and improves TCO by 6.5%
(one week average).
• CacheSack runs in real time, using a fraction of the re-

sources of a cache index server.
• CacheSack is fully decentralized (as is Colossus Flash

Cache). It requires only the information received by a
single cache index server, and the failure of a single
cache index server does not impact others.
• CacheSack supports major Google database systems and

requires zero configuration if using these systems. For
other applications, users only need to provide category
annotations (Section 5.1).

3 Background

3.1 Write amplification
Non-sequential writes to a flash drive can cause serious write
amplification [29, 42], a phenomenon where one logical write
causes multiple physical writes. A flash byte has to be erased
before it can be rewritten. A flash block is a continuous region
of bytes in a flash drive and is the smallest unit that can be
erased. As a result, a flash drive needs to move the live bytes
in a flash block somewhere else before this flash block can
be erased, which is called write amplification. Extra writes
caused by write amplification reduce the IO performance and
the lifetime of a flash drive; both greatly increase the cost of
operating a flash cache.

Sequential cache evictions (like FIFO) result in large se-
quential areas that can be easily erased and reused later when
admitting new data. By contrast, non-sequential evictions
(such as those caused by LRU) result in a fragmented cache
space and the flash drive has to move the interspersed live
bytes somewhere else before erasing a block.

As a result, most existing eviction algorithms for RAM
caches cannot be directly applied to flash caches, and write
amplification is one of the most important factors to consider
when designing a flash cache algorithm. Both Google [1] and
Facebook [18] use FIFO-based evictions or other special pur-
pose algorithms [36, 44] for production flash caches because
of write amplification. Colossus Flash Cache reduces write
amplification brought by non-sequential evictions by using

0 20 40 60 80 100
Number of accesses

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 b

yt
es

All accessed bytes
Bytes accessed more than once

Figure 2: Fraction of bytes accessed a given number of times
from disk plus flash over a week (right truncated at 100 ac-
cesses).

approximate LRU (Section 4).

3.2 Write endurance
Flash has limited write endurance, and thus admitting all
data into Colossus Flash Cache upon write or even upon
the first read would wear out the flash too soon, significantly
increasing TCO. To mitigate this issue, Colossus Flash Cache
previously used Lazy Adaptive Replacement Cache (LARC)
[21] to exclude data that are accessed only once by inserting
data at the second access. Figure 2 shows that more than 60%
of the traffic of Colossus Flash Cache is accessed only once,
and so LARC can greatly reduce bytes written to flash and
avoid cache pollution.

However, excessive flash writes are still possible with
LARC, and as a workaround, Colossus Flash Cache used
a write rate limiter to avoid an excessively high write rate.
This is, however, a blunt approach, since it does not accu-
rately factor in the impact on overall cost, and treats all work-
loads similarly. It may be preferable to allow some highly
cacheable workloads to burst writes at the expense of other
less cacheable workloads rather than throttling all write rates.
CacheSack uses a more flexible and accurate approach by
optimizing the total costs, including the write costs and the
cost of disk reads.

3.3 Capturing second-access hits
LARC leverages the fact that a large fraction of data is ac-
cessed only once. Inserting data into cache only upon the
second access avoids flash writes for data accessed once, re-
ducing flash wear. However, the cost is that all second ac-
cesses are cache misses. Figure 2 shows that of the data ac-
cessed more than once in our workloads, 39% is accessed
exactly twice, and these second accesses are cache misses
under LARC. This has a significant performance impact, as
was also observed in Facebook’s cache for social network
photos [36]. Our workaround for this when using LARC was
to monitor the performance loss, and to manually turn off
LARC (i.e., admit all data on the first miss) for workloads
that suffered a significant performance penalty. However, the

1022 2022 USENIX Annual Technical Conference USENIX Association

0 1 2 3 4 5 6 7 8 9

Workload index
0.0

0.2

0.4

0.6

0.8

Miss ratios of buffer cache

Figure 3: Miss ratios for 10 workloads at the disk server buffer
cache if there is no Colossus Flash Cache (simulated).

manual maintenance to identify and set up special cases be-
came more and more labor-intensive with the rapid adoption
of Colossus Flash Cache in production. In our redesign, it was
a requirement that the cache admission algorithm should be
automatic and not require manual adjustments.

3.4 Colossus buffer cache
In addition to Colossus Flash Cache, Colossus maintains a
RAM buffer cache in the lower level disk servers that buffers
recent reads and writes as well as data prefetched from the
disk. A cache miss in Colossus Flash Cache does not cause a
disk read if the access hits in the buffer cache. Many Colossus
workloads use the buffer cache extensively to improve IO
performance.

In many cases, the cache hit ratio of Colossus Flash Cache
is only weakly correlated with the actual disk read reduction,
especially for workloads that are highly optimized for the
buffer cache. Figure 3 shows simulated miss ratios of the
disk server buffer caches with no Colossus Flash Cache for
ten selected workloads, and they range from below 20% to
over 80%. These miss ratios represent the upper bound on
how far Colossus Flash Cache can improve the disk read
rates. For workloads with low buffer cache miss ratios, hits in
Colossus Flash Cache may simply replace buffer cache hits
without improving the disk read rates. As a result, flash cache
hit ratios are not a good metric to measure the efficacy of
Colossus Flash Cache. In fact, our production results (Section
7.1) show that an admission policy can sometimes provide a
higher hit ratio in Colossus Flash Cache but cause worse disk
read rates.

3.5 Online and realtime requirements
Colossus Flash Cache is a fully decentralized system, so its
cache algorithm can only use the resources of individual cache
index servers, and heavyweight algorithms, such as machine
learning (ML) models, may not be feasible. The binary of
Colossus Flash Cache is updated on a weekly basis, while
workloads change much more rapidly, so it is difficult for an
offline-trained static model updated with the binary to adapt

to workload changes. Therefore, we decided to use an online-
trained model.

4 Overview of Colossus Flash Cache

Colossus Flash Cache consists of independent cache index
servers. A cache index server does not directly hold cached
data, but keeps an in-memory lookup table, called the index,
that tracks the locations of cached data stored in the flash
drives that reside on independent storage servers.

When a Colossus Flash Cache client requests to access data
stored in Colossus, the client first sends an RPC to a Colossus
Flash Cache cache index server (see Figure 1) to determine
if the requested data are already cached on a flash server (a
flash hit). If so, the cache index server sends back sufficient
information for the client to access the flash copy of the data
directly from the flash server. For a flash cache miss, the client
contacts the disk server to read the data, while the cache index
server independently decides whether to admit the data into
the flash cache. If the cache index server decides to admit the
data into flash, it instructs the flash server to pull the data from
the disk server directly. The extra latency of communicating
with the cache index servers is negligible compared to typical
remote disk read latencies, and the latencies between remote
flash reads and remote disk reads are in different orders of
magnitude, so Colossus Flash Cache typically reduces overall
latency, although this is not an explicit service goal. The goal
is reducing TCO by avoiding expensive disk reads.

The buffer cache of a disk server also caches recently ac-
cessed data and prefetches a small amount of data into mem-
ory for a few seconds, so that reading recently-accessed data
from an disk server does not necessarily cost extra disk reads.
Colossus users are encouraged to design their workloads to
improve IO performance by utilizing this buffer cache.

Colossus Flash Cache uses an approximate LRU eviction
strategy to manage evictions. An idealized LRU cache would
always evict the least recently used block from the cache
when the cache is full. However, idealized LRU evictions
cause non-sequential writes to flash, resulting in write am-
plification [29, 42]. To mitigate the issue of write amplifica-
tion, Colossus Flash Cache uses evictions similar to Second
Chance [30] to approximate LRU evictions: each Colossus
Flash Cache cache index server manages a FIFO queue of
many fixed-sized Colossus files (typically 1 GiB), each of
which contains cache blocks. When evicting the file from the
tail of the queue, we reinsert 28% of the most-recently-used
blocks into the file at the head of queue. The percentage of
the reinserted blocks is a tradeoff between the amount of hot
blocks recycled, which improves the cache hit ratio, and the
rate of reinsertion into flash, which increases write amplifica-
tion. The current value (28%) is selected experimentally to
strike a good balance between cache performance and write
amplification. This way, the write amplification factor is ef-
fectively 1.28. A comparison of the performance of Second

USENIX Association 2022 USENIX Annual Technical Conference 1023

Chance [30] indicates that the performance is quite close to
that of LRU. Therefore, for ease of modeling, we approximate
Colossus Flash Cache as an LRU cache.

Each Colossus Flash Cache server maintains a ghost cache
[21], an in-memory lookup table that maps the key of data
to the data’s last access time, regardless of whether they are
actually cached on flash. This is a key component of Cache-
Sack, which relies on inter-arrival times to quickly build all
the estimates described in Section 5.

Each cache index server represents a fraction of the key
space, and one server’s failure does not impact other cache
index servers. To maintain the same reliability, CacheSack is
also designed in the same decentralized manner: each cache
index server runs its own CacheSack model, using only the
information received by the cache index server, and its admis-
sion decisions do not affect other cache index servers.

5 CacheSack

5.1 Traffic partitioning
CacheSack partitions potential cache blocks into many cate-
gories, and assigns an admission policy to each category.

The majority of Colossus Flash Cache traffic comes from
Google’s database systems like BigTable and Spanner where
categories can be well-defined. For database traffic, Cache-
Sack defines a category as the combination of the table name,
locality group [11, 13], and type for BigTable and Spanner,
and a similar combination for other databases. Since Colossus
Flash Cache is also available for other Colossus users, those
users can define their own categories by annotating their data.
If a user does not provide a category annotation, CacheSack
will use the user name contained in the Colossus file path.

CacheSack then selects the right policy based on the pattern
that category exhibits. Later, we will explain how we formu-
late CacheSack as a knapsack-like problem: given the cache
capacity, how CacheSack chooses the items (categories) to
minimize the overall cost.

5.2 Admission policies
We consider four admission policies that can be assigned to
each category:
• AdmitOnWrite: Inserts a cache block at a write access

or on any read cache miss.
• AdmitOnMiss: Inserts a cache block on any read cache

miss, but does not insert a block at a write access. This
is the conventional admission policy used in most of the
cache literature.
• AdmitOnSecondMiss (LARC): Equivalent to Lazy

Adaptive Replacement Cache (LARC); Inserts a block
only after the second read access (miss), and only if the
last access time is not older than the oldest last access
time of the blocks in the cache, to reduce the insertion

Cache

Block

Cache
Block ...Cache

Block
Cache

Block

Cache

Block

Cache

Block

Head Tail

Cache blocks stay in cache for D seconds

(2) Cache Miss: Interarrival time d > D seconds

Cache (TTL Queue)

Last

access

Next

access

(1) Cache Hit: Interarrival time d <= D seconds

Last

access

Next

access

Block

eviction

Block

eviction

Time

Time

Figure 4: LRU evictions are approximated by TTL evictions
with the modeled retention time D while the TTL counter of
a cache block is reset whenever the cache block is accessed.
If the access interarrival time d is less than or equal to D,
this access is a cache hit and we move the cache block to the
head of the queue (the TTL counter is reset). If the access
interarrival time d is greater than D, this access is a cache
miss and we insert the cache block to the head of the queue
(the TTL counter is also reset).

rate of cold blocks. LARC is scan resistant: any scanned
data (accessed exactly once) will not be admitted.
• NeverAdmit: Never inserts blocks.

We can sort these policies by aggressiveness: NeverAdmit <
AdmitOnSecondMiss < AdmitOnMiss < AdmitOnWrite.

5.3 Fast approximation to an LRU model

To determine the best policy for the cache, the most intu-
itive way is to simulate all possible policy-category combina-
tions, which is a combinatorial knapsack problem (NP-Hard).
Because CacheSack currently allows up to 5000 categories
(Section 6.1) and uses 4 policies, there are up to 45000 com-
binations and the knapsack problem can not be done even
with downsampled traces. Instead, we use a fast approxima-
tion for modeling an LRU cache, by introducing the modeled
cache retention time. The cache retention time is the maxi-
mum duration that a block stays in the LRU cache without
any intervening accesses to it. In practice, the cache retention
time varies slowly over time. Here we assume the modeled
cache retention time is a constant D and this assumption will
make all our estimates just approximations.

We use AdmitOnMiss as an example. For a given block,
when a read access arrives, we can compute d, the time since
last access (which is ∞ if the current access is the first read).
We can classify the inter-arrival times by using D (Figure 4):
• d ≤ D: An access arrives before the block leaves the

cache, and therefore the access generates a cache hit and
moves the block to the head of the queue.

1024 2022 USENIX Annual Technical Conference USENIX Association

• d > D: An access arrives after the block leaves the cache,
and therefore it is a cache miss, which causes a write to
the cache.

In other words, we approximate the LRU cache by a cache
that has the TTL value D and resets the TTL counter of a
block when receiving an access to the block. The theoretical
aspect of the TTL approximation was also studied in literature.
Fagin [17] showed the TTL approximation is asymptotically
exact for independent and identically distributed requests, and
[23] proved that given the assumption that data accesses are
stationary and ergodic, the TTL approximation will converge
to an LRU cache as the cache size goes to infinity. The accu-
racy of the TTL approximation in production is analyzed in
Section 7.1.

A cache miss in Colossus Flash Cache will cause a disk
read if it is also a miss in the Colossus buffer cache. Each
cache index server maintains a buffer cache simulator, and
when d > D, we run the simulator and see whether it is a miss.

This way, when a new access arrives, we are able
to update the disk reads, cache usage, and bytes writ-
ten to flash cache caused by admitting the block using
AdmitOnMiss. We can also compute the same quantities
for other policies: AdmitOnSecondMiss, AdmitOnWrite, and
NeverAdmit. The detailed estimation is described in Ap-
pendix A.2.

A nice property of this approximation is that the estimates
for a block are not affected by other blocks or policies, as long
as the modeled cache retention time is given. Therefore, the
disk reads, cache usage, and written bytes caused by admitting
a category are just the sums of the corresponding block-level
quantities.

5.4 Knapsack problem

Once we have the estimates for disk reads, cache usage, and
bytes written to flash cache for each policy-category pair, we
have a knapsack problem: find the optimal policy per category
to minimize the overall cost (disk reads and written bytes)
while fitting within the cache. We omit the definitions of the
relative cost of disk reads, bytes written to flash, and flash
storage, because they are confidential.

We further allow fractional policies: CacheSack can ap-
ply a policy to a fraction of a category. For example,
CacheSack may decide it is optimal to apply AdmitOnMiss,
AdmitOnSecondMiss, AdmitOnWrite, and NeverAdmit to
30%, 20%, 10%, and 40% of blocks in a category, respectively.
Then the problem becomes a fractional knapsack problem
[14] that finds the optimal policy fractions per category to
minimize the overall cost. The advantage of considering a
fractional knapsack is that it can be solved efficiently by a
greedy algorithm, as opposed to a combinatorial knapsack
that is NP-Hard. Our problem is slightly different from the
original fractional knapsack in [14] because we need to de-
cide four fractions per category instead of two. Appendix A.4

explains the details of how we solve our problem by a greedy
algorithm after applying Andrew’s monotone chain convex
hull algorithm [2]. We note that if an LRU cache is perfectly
modeled by the TTL approximation, the resulting cache re-
tention time of the LRU cache is exactly D after applying the
optimal policy fractions per category.

5.5 Optimization over modeled cache reten-
tion times

The knapsack problem in Section 5.4 is to find the optimal
policy fractions for a given modeled cache retention time D,
which can not be known in advance. Thus, we need to solve
the same knapsack problem for all possible D. To do this in
production, we can have a set of predefined modeled cache
retention times: 0 < D1 < D2 < · · ·< Dm = D where D is a
suitable upper bound, and solve m different knapsack prob-
lems. Thanks to the greedy algorithm, we can still solve many
knapsack problems (currently 127, Section 6.2) quickly.

6 CacheSack in production

CacheSack is now deployed in production as the default cache
admission algorithm for Colossus Flash Cache. This section
explains the engineering efforts needed to do so.

6.1 Category assignment
The number of categories encountered in production can not
be known in advance, so we balance the need for accuracy
and space by hashing a category to one of 5000 buckets. Cat-
egories assigned to the same bucket are treated as combined
in the optimization. The number of hash buckets is a trade-
off between memory usage and hash collisions. The typical
number of categories per server is less than 100 and our ex-
periments showed that with 5000 buckets, 95% of the clients
see a hash collision rate lower than 1% and the worst colli-
sion rate is less than 5%. Further, cache collisions are not
persistent, since each cache index server uses a different hash
key and changes it periodically to break possible spatial and
temporal correlations.

A bucket without sufficient training data might not provide
meaningful metrics. If a bucket contributes to less than 0.1%
of total lookups, it will be aggregated to a single catch-all
bucket before solving the knapsack problem.

6.2 Modeled cache retention times
Currently, CacheSack uses 127 predefined cache retention
times: 15 minutes, 1.06×15 minutes, 1.062×15 minutes, ...,
1.06126×15 minutes≈ 16 days; the 128th value is reserved
for positive infinity.

These retention times are decided in the following way.
We first determine the working range. A retention time less

USENIX Association 2022 USENIX Annual Technical Conference 1025

than 15 minutes means we evict and insert cache blocks in an
extremely aggressive way, which would cause serious flash
wearout. By policy, any cache block is forced to leave the
cache if it stays more than 15 days. Hence we set the modeled
working range of retention times as 15 minutes to 15 days.
We then decide the number of retention times to model. We
tried 127 (6% geometric increase) and 255 (3% geometric
increase) retention times, and our experiments showed that
127 retention times gave similar results while reducing RAM
usage by half.

6.3 Ghost cache

Since LARC was Colossus Flash Cache’s previous admis-
sion control, a ghost cache was implemented in cache index
servers. It is an in-memory lookup table that maps a data’s key
to the data’s last read access time, and LARC uses the infor-
mation to determine whether to admit the data on miss. Cache-
Sack uses the same ghost cache to obtain inter-arrival times.
In addition, to build the metric estimate for AdmitOnWrite,
we expanded the ghost cache so that we know whether the
last access is a write access. To build the metric estimate for
AdmitOnSecondMiss, we use the ghost cache to record the
most two recent access times.

Because the ghost cache is the ground truth for CacheSack,
the ghost cache must contain sufficient history. The optimal
solution of CacheSack will not be affected as long as the ghost
cache TTL, the time since the oldest last access time of the
blocks in the ghost cache, is greater than the optimal modeled
cache retention time. As a rule of thumb, we provision the
size of the ghost cache so that its TTL is at least twice the
solved optimal modeled retention time (typically about four
hours).

6.4 Buffer cache simulators

A cache miss in Colossus Flash Cache causes a disk read
only if it is also a miss in the buffer cache. CacheSack simu-
lates the buffer cache to determine whether the current miss
in Colossus Flash Cache is also likely a miss in the buffer
cache. In fact, we need many simulators: one for each pair of
policy-retention time so there are 382 simulators (3×127+1,
the retention time does not affect NeverAdmit). Running the
simulators is the most computationally intensive component
in the CacheSack model. Fortunately, the buffer cache sim-
ulator is simple enough and only requires the access history
in the past few seconds so it only moderately increases CPU
load on the low-QPS servers (5% CPU usage).

6.5 Model training

We use a simple scheme to train the CacheSack model: the
model is reset every 5 minutes and is trained based on the

lookups in this 5-minute period. We note that a lookup con-
tains the access times of the most recent two accesses and
therefore the lookups in a 5-minute period may contain the
information of many hours.

The selection of the training duration is a trade-off. Using
a larger training duration means the model can be improved
by more training data and longer time horizon, while the
model can react more quickly to changes in the workload
with a shorter duration. We tested several training durations
and found that 5-minute one gave most disk read reduction,
although we did not find significant differences among all
candidates.

6.6 Lessons learned
Automatic cache optimization incentivized user adoption

In deciding whether to use Colossus Flash Cache, users weigh
both the likely TCO improvement and the engineering effort
required to configure and maintain it. In the past, users had to
manually choose the admission policy (using AdmitOnMiss
or AdmitOnSecondMiss) based on knowledge of their work-
load or by running A/B experiments with the assistance of
the Colossus Flash Cache team. For heavy users like Spanner,
Colossus Flash Cache had to provide heuristic, hand-tuned
admission policies to improve cache performance. Such hu-
man tuning and maintenance usually requires effort from
both the users and the Colossus Flash Cache team, which
can discourage the adoption of Colossus Flash Cache if the
expected hardware resource saving does not justify the extra
engineering cost.

We found that CacheSack greatly incentivized users to
adopt Colossus Flash Cache. The automatic cache provision-
ing brought by CacheSack requires almost no configuration
and maintenance so that it can be set and forgotten. We found
that new users were more willing to use Colossus Flash Cache
once they knew it would automatically adjust the cache policy
based on their workloads.

Some of Colossus Flash Cache’s existing users have inde-
pendently verified that CacheSack applied appropriate ad-
mission policies to their workloads, based on the knowl-
edge of their workloads and reporting provided by Colossus
Flash Cache. One user experimentally overrode CacheSack
with manually optimized policies and found that CacheSack
worked as well as manual policy tuning. After CacheSack
became the default admission policy in Colossus Flash Cache,
we were able to retire the hand-tuned optimization for Span-
ner, and our existing users did not need to manually adjust the
policy anymore.

Experiment infrastructure accelerated feature develop-
ment

The development of CacheSack was significantly benefited
by the experiment infrastructure of Colossus Flash Cache.

1026 2022 USENIX Annual Technical Conference USENIX Association

The experiment infrastructure allows developers to test new
features by using 10% of the cache index servers, and be-
cause cache index servers are independent and isolated, any
experiment can only cause minor service degradation in the
worst case. Before the full deployment, we ran CacheSack
as an experiment for a few months and most of the issues
were identified and corrected during the experimental phase.
In fact, there was no binary rollback caused by CacheSack
since the full deployment.

In addition, because each server represents a fraction of the
key space, which is permuted randomly, each server is sta-
tistically indistinguishable. We can have simultaneous com-
parisons between CacheSack and the control group to see
whether CacheSack works as expected and identify any is-
sues. The experiment infrastructure is extensively used by the
developers of Colossus Flash Cache for new features, and the
impact of a new feature can be accurately measured before
the full deployment.

Model introspectability and maintainability played im-
portant roles

We found that the model introspectability played an important
role for the adoption of the new cache algorithm. Because any
cache algorithm of Colossus Flash Cache will be operated
and maintained by developers and site reliability engineers
(SREs) after the initial deployment, one requirement of de-
ploying a new cache algorithm is that the model behavior
can be fully understood and monitored by the developers and
SREs. CacheSack satisfies this requirement as it only assumes
that the TTL approximation (Section 5.3) is sufficiently close
to the eviction of Colossus Flash Cache, and all model behav-
iors can be derived from this assumption. Another advantage
of a highly introspectable model is that the developers (be-
sides the original designers) of Colossus Flash Cache can
easily ensure thorough test coverage, validate software re-
leases, add extend the original functionality of CacheSack
without assistance from the original designers. After the de-
ployment of the original CacheSack, it became the foundation
of further optimizations for Colossus Flash Cache.

It is also worth mentioning that CacheSack is simple
enough to be implemented by limited extensions to the orig-
inal codebase of Colossus Flash Cache. In particular, the
optimization was implemented as a simple greedy algorithm
instead of using a generic linear program solver library. This
did cost extra time for development, but we decided to do so
because it allowed us to minimize the computational overhead
and increase system reliability by reducing external dependen-
cies. More importantly, anyone familiar with the ecosystem of
Colossus Flash Cache can easily maintain CacheSack or de-
velop new features based on it. The implementation of Cache-
Sack can evolve continuously with Colossus Flash Cache,
reducing maintenance burden. Since the completion of the
initial deployment, both maintenance and new feature devel-

0.0 0.2 0.4 0.6 0.8 1.0
Relative error

0.00

0.25

0.50

0.75

1.00
CDF of relative errors of CacheSack predictions

Figure 5: CacheSack disk read rate prediction errors relative
to the actual value in production (CDF).

opments have been completely handled by Colossus Flash
Cache developers and SREs without the need for involvement
from the original designers.

7 Evaluation

7.1 Production evaluation

Model accuracy

There are two LRU approximations in Colossus Flash Cache:
Colossus Flash Cache uses Second-Chance-like approach
to approximate LRU evictions (Section 4), and CacheSack
models an LRU cache as a TTL approximation (Section 5.3).
Therefore, it is important to verify that the CacheSack model
is a good enough approximation to the actual Colossus Flash
Cache. We examined the accuracy of CacheSack in the follow-
ing way. For each client, the solution to the knapsack problem
in Section 5.4 gives the predicted disk reads when using the
optimal admission policies. Then Colossus Flash Cache ap-
plies the optimal policies in production so we compared the
predicted disk reads with the actual disk reads. Figure 5 shows
the prediction errors of CacheSack relative to the actual val-
ues obtained from the disk servers; 51% of the relative errors
are within 10% and 82% of the relative errors are within 20%.

Policy distribution

Figure 6 shows the policy distributions suggested by Cache-
Sack in the selected datacenters of various workloads. We
can see that each datacenter has a different workload pattern
and CacheSack adaptively decides suitable admission policies
based on workloads and cache sizes. Although it would be
possible for manual selection of static policies to match each
datacenter workload, CacheSack is able to reduce the human
toil, response delay, and operational complexity required to
maintain these assignments.

USENIX Association 2022 USENIX Annual Technical Conference 1027

0 1 2 3 4 5 6 7 8 9

Datacenter index
0.0

0.5

1.0

1.5

Policy distribution suggested by CacheSack
NeverAdmit
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 6: Policy distribution suggested by CacheSack in se-
lected datacenters, demonstrating a variety of workload re-
sponses.

01
Aug
2021

02 03 04 05 06 07
0.00

0.25

0.50

0.75

1.00

Scaled disk reads

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 7: Disk reads of different admission policies in produc-
tion, divided by the average value for AdmitOnSecondMiss.

01
Aug
2021

02 03 04 05 06 07
0

1

2

3

Scaled bytes written to flash cache

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 8: Written bytes of different admission poli-
cies in production, divided by the average value for
AdmitOnSecondMiss.

01
Aug
2021

02 03 04 05 06 07
0.0

0.5

1.0

Scaled total cost

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 9: Total cost (a function of disk reads, flash storage and
written bytes) of different admission policies in production,
divided by the average value for AdmitOnSecondMiss.

01
Aug
2021

02 03 04 05 06 07
0.0

0.2

0.4

0.6
Hit ratios

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 10: Hit ratios in Colossus Flash Cache of different
admission policies in production.

Production experiments

By using the experiment infrastructure of Colossus Flash
Cache, we can compare the performance of different cache
algorithms in production. Because each cache index server
represents a fraction of the key space, the pattern of work-
load each cache index server receives is statistically indistin-
guishable. We let 10% of the cache index servers run static
AdmitOnMiss and another 10% of the cache index servers
run AdmitOnSecondMiss so that we can compare CacheSack,
static AdmitOnMiss and static AdmitOnSecondMiss simulta-
neously in production.

From Figure 7 and 8 we see that compared to
AdmitOnSecondMiss, CacheSack results in fewer disk reads
(6% of one week average) and reduces 26% (one week aver-
age) written bytes to flash, and Figure 9 shows that CacheSack
effectively reduces the total operating cost in production: the
cost of disk reads, flash cache writes and flash storage of
CacheSack is 93% of AdmitOnSecondMiss and is 78% of
AdmitOnMiss (one week average).

Figure 10 shows that CacheSack has a higher hit ratio than
AdmitOnSecondMiss but lower than AdmitOnMiss. Never-
theless, AdmitOnMiss is not the best choice. Figure 7 shows
that AdmitOnMiss has the worst disk read reduction even
though it has the highest hit ratio. Because of the lower-level
buffer cache, a higher hit ratio in the flash cache does not
necessarily imply fewer disk reads: many major Colossus
users optimize their workloads by accessing the same data
many times within the first few seconds so that only the first
access causes an actual disk read. In this case, AdmitOnMiss
generates many hits that do not reduce disk reads at all.
AdmitOnSecondMiss resolves this issue by avoiding a cache
insertion if the most recent access time is too recent to expect
that the data has left the buffer cache.

7.2 Evaluation by simulations

In addition to production experiments, we also used the Colos-
sus Flash Cache simulator to test the performance of Cache-
Sack in a variety of configurations and contexts, such as

1028 2022 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Hit ratios

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Hit ratios normalized on AdmitOnSecondMiss
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 11: Hit ratios in Colossus Flash Cache of different
admission policies in simulation. Above: Original hit ratios.
Below: Values relative to AdmitOnSecondMiss.

cache size and optimization iteration period. The Colossus
Flash Cache simulator is used for multiple purposes includ-
ing performance-regression testing by Colossus Flash Cache
developers and for datacenter resource planning by Colossus
Flash Cache clients. The Colossus Flash Cache simulator uses
the same production code as Colossus Flash Cache and we
use production traces as the input of the simulator.

We first compare the performance of Cache-
Sack, to the static admission policies AdmitOnMiss,
AdmitOnSecondMiss and AdmitOnWrite for various cache
sizes. We use here a two-day trace from one large (order of
million QPS) production cache as a representative. This trace
reflects a uniform sample of the data accesses from a large
collection of internal production workloads.

Impact of cache size on performance

When the cache size is small, AdmitOnSecondMiss has a
better performance than AdmitOnMiss or AdmitOnWrite
because single-use keys are excluded. On the other
hand, AdmitOnMiss and AdmitOnWrite will outperform
AdmitOnSecondMiss for a large cache because the cache
benefit of second accesses is gained.

CacheSack learns to use a more conservative policy for a
small cache and a more aggressive policy for a large cache.
Figure 11 and Figure 12 show that CacheSack can provide a
good performance for the entire range of flash cache sizes.

It is also interesting to see the amount of written bytes

0.00

0.25

0.50

0.75

1.00

1.25

Scaled disk reads
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0.0

0.5

1.0

1.5

2.0
Disk reads normalized on AdmitOnSecondMiss

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 12: Disk reads of different admission policies in sim-
ulation. Above: Constant scaling by dividing the values by
the average value for AdmitOnSecondMiss. Below: Values
relative to AdmitOnSecondMiss.

caused by different admission policies in Figure 14. For
AdmitOnMiss, AdmitOnWrite and AdmitOnSecondMiss
with excessively small cache, blocks are frequently evicted
from and reinserted into the cache, resulting in a very large
amount of written bytes, especially for AdmitOnMiss and
AdmitOnWrite. CacheSack, on the other hand, takes into ac-
count the cost of written bytes, and therefore only admits the
most valuable part of the workload into the cache.

We can also view the total cost (a confidential function
of disk reads, flash storage, and written bytes) as a function
of cache size. When the cache size is small, disk reads and
writes to flash are the largest contributions to cost, while flash
storage is the largest cost component for larger cache sizes.
Therefore, the total cost is a U-shape curve and we are able
to find the optimal cache size that minimizes the total cost.
Figure 13 shows that CacheSack gives the lowest total cost for
all cache sizes. CacheSack avoids the trade-off and provides
robust good behavior over the range of cash sizes.

Optimization frequency

We evaluated the system performance on the choice of differ-
ent optimization frequencies. Here we test different lengths
of training duration from one minute to eight hours, which
span a majority of the observed time variation of workloads.
Figure 15 shows that the training duration does not signifi-
cantly impact the performance and all the cost metrics are

USENIX Association 2022 USENIX Annual Technical Conference 1029

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Scaled total cost
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Total cost normalized on AdmitOnSecondMiss

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 13: Total cost (a function of disk reads, flash storage
and written bytes) of different admission policies in simu-
lation. Above: Constant scaling by dividing the values by
the average value for AdmitOnSecondMiss. Below: Values
relative to AdmitOnSecondMiss.

0

1

2

3

4
Scaled bytes written to flash cache

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0

2

4

6

8

10

Bytes written to flash cache normalized on AdmitOnSecondMiss
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 14: Written bytes of different admission policies in
simulation. Above: Constant scaling by dividing the values by
the average value for AdmitOnSecondMiss. Below: Values
relative to AdmitOnSecondMiss.

0.0

0.5

1.0
Hit ratios

1 minute
5 minutes

1 hour
8 hours

0.0

0.5

1.0

1.5
Scaled disk reads

1 minute
5 minutes

1 hour
8 hours

0

2

4
Scaled bytes written to flash cache

1 minute
5 minutes

1 hour
8 hours

0 1 2 3 4 5
Scaled flash cache size

0.0

0.5

1.0

1.5
Scaled total cost

1 minute
5 minutes

1 hour
8 hours

Figure 15: Hit ratios, disk reads, written bytes, and total cost
(a function of disk reads, flash storage and written bytes) of
Colossus Flash Cache with different training durations. Disk
reads, written bytes, and total cost are divided by the average
value for the 5-minute training duration.

similar. Because this method is insensitive to this parameter,
customized or automated tuning was deemed unneeded, and
the entire deployment currently uses a single value.

8 Related work

Production flash cache algorithms
Both Google [1] and Facebook [18] were using FIFO-based
evictions in their production flash caches to trade cache per-
formance for managed write amplification. RIPQ [36] is a
non-FIFO, advanced flash cache algorithm that brings higher
hit ratios while write amplification is well-control. Flashield
[16] further improves RIPQ’s write amplification by using
DRAM as a buffer, and only writes flash-worthy objects into
flash, predicted by a lightweight support vector machine clas-
sifier. CacheLib [7] resolved Flashield’s issue that the TTLs
of objects in the DRAM buffer are too short to be effective.
CacheLib uses Bloom filters to count the number of accesses
per object in the past six hours (similar to TinyLFU [15]), to
predict the number of accesses in the future, and use FIFO
for eviction. Kangaroo [26] further improves CacheLib’s per-
formance for tiny objects. DSS [28] uses predefined rules
to classify I/O requests into different priorities, and applies
heuristic admission and eviction policies to different priori-
ties. DSS has been implemented in Intel’s Cache Acceleration

1030 2022 USENIX Annual Technical Conference USENIX Association

Software. Amazon’s AQUA [3], which is conceptually similar
to CacheSack, analyzes workload patterns to place data into
the appropriate tier.

CacheSack’s high-level idea is similar to Flashield and
CacheLib: keep the eviction simple to control write amplifi-
cation, and use a more sophisticated admission to improve
cache performance and flash write endurance. For evictions,
Flashield uses the CLOCK [12] approach and CacheSack uses
Second Chance [30] to achieve LRU-style evictions. On the
admission side, instead of using DRAM as a buffer, Cache-
Sack has no in-memory buffer and expands the metadata table
(ghost cache) for a more complete history; the median of the
ghost cache TTL is 20 hours, which is several times longer
than the information used by Flashield and CacheLib. With
a more complete history, CacheSack is able to build a more
sophisticated model for admission. CacheSack also considers
the two major costs of operating flash caches, disk reads and
flash wearout, as a whole, and minimizes the overall operation
cost.

CacheSack also utilizes the advantage that the categories
are well-defined in the database systems served by Colossus
Flash Cache. Classifying unstructured data is usually a dif-
ficult problem in machine learning. For Google’s database
systems, the classification is naturally given, and the cate-
gories often hint their cacheability.

Admission algorithms

LARC [21] was previously used by Colossus Flash Cache
as the default admission policy. LARC is designed for flash
caches, and reduces write rate by inserting an object into the
cache only when it is read a second time, based on the obser-
vation that most objects are read only once. Thus, inserting
only the objects that are read a second time into the cache
significantly reduces the write rate and the cache pollution.
This strategy is particularly useful when a significant portion
of the traffic is accessed only once, for example, Tencent’s
photo traffic [41], and AliCloud [24]. However, LARC loses
all the first cache hits and becomes undesirable for long-tail
accesses like Facebook’s cache for social network photos. In
the past, Colossus Flash Cache disabled LARC for workloads
in which LARC underperformed. Selective admissions like
TinyLFU [15] (non-window version) and HEC [42] that sac-
rifice the first few hits to determine the cacheability of data
likely have the same issue.

TinyLFU [15] works by comparing the expected hit ratio of
a newly accessed object against that of the object that would
be evicted next from the cache, inserting the new object if its
likely hit ratio is higher. Any eviction policy can be used to
select the eviction victim (LRU is typical). TinyLFU predicts
hit ratios for the objects using approximate counting (Bloom
filters) of access frequency. TinyLFU also needs some extra
structures to work properly: Doorkeeper is used to filter one-
accessed blocks (the same use of LARC’s ghost cache), and a

DRAM buffer cache in front of TinyLFU (W-TinyLFU). All
these structures require extra parameter tuning, which does
not best fit the needs of Colossus Flash Cache as a general-
purpose cache. mARC [32] uses ARC [27] as the eviction
policy and dynamically determines whether to admit data on
the first miss (naive ARC) or second miss (LARC). UBC
[31] proposes a low-overhead mechanism to partition shared
on-chip cache.

Eviction algorithms

There are also extensive studies on advanced eviction algo-
rithms. Beckmann and Sanchez’s method [5] evicts a block
based on the block’s economic value added. Instead of LRU or
LFU that require specific data structures, Hyperbolic Caching
[9] evicts a block based on a time-decay (hyperbolic) value
function and uses a sampling technique to resolve the issue
of the data structure requirement. Similarly, LHD [4] evicts
the block of the lowest hit density, the number of hits per
cache byte-second, and also applies a sampling technique to
overcome the data structure issue. Hawkeye [22] assumes that
the recent history can predict the near future and hence one
can train a predictor learned from Belady’s OPT [6] running
on the recent traces. [40] considers an ensemble of candi-
dates, which can be a set of existing algorithms, or the same
algorithm with different parameters, runs scaled-down sim-
ulations on each candidate and periodically adopts the most
performant one.

Machine learning algorithms

With the recent rapid development of machine learning (ML),
there are also a few papers that adopt ML techniques to en-
hance cache performance. LFO [8] and LRB [35] use ML
models to learn Belady’s OPT [6], and apply the ML models
to CDN (Content Delivery Networks) caches. Parrot [25] also
use ML to learn Belady’s OPT from history, but uses modern
deep learning architectures like Transformer [38] and BiDAF
[33]. [41] utilizes a concept similar to LARC [21] that the
majority of traffic is accessed just once, and uses ML mod-
els to predict whether data is worth inserting into the flash
cache. The algorithm showed a large flash write reduction in
Tencent’s photo cache system as well as the improvement of
hit ratios and latency. LeCaR [39] uses an ML approach to
adaptively decide the better policy between LRU and LFU
at eviction time. Zhou and Maas [43] model the inter-arrival
times of a block as a log-normal distribution and learn the
parameters from traces; then the evictions are executed in the
manner of Belady’s OPT: the block with lowest probability
to get the next access in the near future will be evicted.

USENIX Association 2022 USENIX Annual Technical Conference 1031

9 Conclusions

In this paper, we introduce CacheSack, an admission policy
optimization for Google’s datacenter flash caches. CacheSack
provides an efficient estimation for the performance metrics
of an LRU-style cache under various configuration options.
We use a knapsack approach to identify the optimal admis-
sion polices to minimize the total cache-operating cost. We
share the experience of deploying CacheSack in Colossus
Flash Cache, the general-purpose flash cache serving Colos-
sus, which has since become the default admission policy.
CacheSack requires less manual configuration than the previ-
ously used cache admission algorithm (LARC), significantly
reduces disk reads and bytes written to flash, and improves
TCO by 6.5% compared to LARC.

Acknowledgements

The authors would like to thank Cory Casper, Junaid Khalid,
Martin Maas, and Richard McDougall for their assistance in
various stages of the design and implementation of this algo-
rithm. We would also like to thank Dan Gibson, Larry Green-
field, Aaron Laursen, Milo Martin, Damodharan Rajalingam,
and John Wilkes, as well as the anonymous reviewers and our
conference shepherd, for their reviews and suggestions that
improved this manuscript.

A Mathematical model of CacheSack

A.1 Model assumption

CacheSack models the cache as using LRU evictions. Colos-
sus Flash Cache considers data for caching to be immutable
after being written, i.e. the first access is a write, and subse-
quent ones are reads; mutability is handled by higher layers
in the system. The CacheSack model does not need the im-
mutability assumption, but we keep it to align with the actual
system; the model can be easily modified for the mutable
case.

A.2 Metric estimation of an LRU cache

We begin with AdmitOnMiss. For a given block b, let t1, t2, t3,
..., tn be the read access times, and t0 =−∞ for convenience.
Therefore, the inter-arrival times are di = ti− ti−1 and d1 =
t1− t0 = ∞. Assume that D is the modeled cache retention
time; that is, D is the maximum duration that a block stays
in the LRU cache without any intervening accesses. We can
classify the inter-arrival times as follows:
• di ≤D: A cache hit because the access arrives before the

block leaves the cache. The block is moved to the head
of the queue because of the LRU eviction.

• di > D: A cache miss because the access arrives after the
block leaves the cache. AdmitOnMiss inserts the block
into the cache on miss, causing a write to the cache.
• For a flash cache miss, we update the buffer cache simu-

lator to see whether it is also a cache miss in the buffer
cache. If so, the access is a disk read.

We can then write disk reads SAOMb (D), cache byte-time
usage2 UAOM

b (D) and bytes written to cache W AOM
b (D) as func-

tions of D:

BAOM
b (D, i) =

{
1, Buffer Cache Hit at ti, using AOM.
0, Buffer Cache Miss at ti, using AOM.

SAOMb (D) = |{i : di > D, BAOM
b (D, i) = 0}|,

UAOM
b (D) = Size(b)×∑

i
min(di,D),

W AOM
b (D) = Size(b)×|{i : di > D}|.

Similarly, the metrics for a category C is the sum of the
metrics for all blocks in C :

SAOMC (D) = ∑
b∈C

SAOMb (D),

UAOM
C (D) = ∑

b∈C
UAOM

b (D),

W AOM
C (D) = ∑

b∈C
W AOM

b (D).

The only difference between AdmitOnWrite and
AdmitOnMiss is that AdmitOnWrite also takes into account
write accesses. Therefore, for AdmitOnWrite, we let t1 be
the write access time, t2 be the first read access time, t3 be the
second read access time and so on. Then we can similarly
define SAOWC (D), UAOW

C (D) and W AOW
C (D).

For AdmitOnSecondMiss, a block is admitted at the second
miss (read access). In addition, to prevent the cache from
inserting a cold block, we require that when inserting a block,
its last read access time must be not older than the oldest
last access time of the blocks in the cache. Mathematically,
a block is inserted at ti−1 (if not already in the cache) only if
di−1 = ti−1− ti−2 ≤ D. Therefore, the condition that a block
is in the cache at ti−1, either because it is already in the cache
or it is inserted, is di−1 ≤ D, and so an access at ti is a cache
hit if and only if di−1 ≤ D and di ≤ D:

BAOSM
b (D, i) =

{
1, Buffer Cache Hit at ti, using AOSM.
0, Buffer Cache Miss at ti, using AOSM.

SAOSMb (D) = |{i : max(di−1,di)> D, BAOSM
b (D, i) = 0}|.

For UAOSM
b (D), the access at ti contributes cache usage if either

it is a cache hit, max(di,di−1)≤ D, with residence time di, or

2Bytes of occupied cache multiplied by seconds of residence time in
cache. The same concept is also used in LHD [4].

1032 2022 USENIX Annual Technical Conference USENIX Association

a block insertion, di ≤ D < di−1, with residence time D:

UAOSM
b (D) = Size(b)×∑

i

(
di×1{max(di,di−1)≤D}

+D×1{di≤D<di−1}

)
.

W AOSM
b (D) is the block size times the number of insertions:

W AOSM
b (D) = Size(b)×|{i : di ≤ D < di−1}|.

Of course, SAOSMC (D), UAOSM
C (D) and W AOSM

C (D) can be defined
similarly.

Because NeverAdmit does not insert any blocks at all,
UNA

C (D) = 0, W NA
C (D) = 0 and SNAC (D) is the number of buffer

cache misses because of the accesses to the blocks in C :

BNA
b (D, i) =

{
1, Buffer Cache Hit at ti, using NA.
0, Buffer Cache Miss at ti, using NA.

SNAb (D) = |{i : BNA
b (D, i) = 0}|,

SNAC (D) = ∑
b∈C

SNAb (D).

A.3 Linear program
We minimize the total cost by formulating a linear program.
The cost function is the sum of the cost of disk reads and the
cost of written bytes:

V p
C (D) = Cost of Sp

C (D)+Cost of W p
C (D),

for p ∈ {AOM,AOW,AOSM,NA} and a given category C .
A category can receive fractional admission policies.

For example, CacheSack may decide that it is optimal to
apply AdmitOnMiss, AdmitOnSecondMiss, AdmitOnWrite
and NeverAdmit are applied to 30%, 20%, 10% and 40% of
blocks in C , respectively. Then we can formulate a linear pro-
gram that finds optimal policy fractions {αAOM

C , αAOW
C , αAOSM

C ,
αNA

C } to minimize the overall cost:

min
α
AOM
C ,αAOW

C ,αAOSM
C ,αNA

C
∑
C

(
α
AOM
C V AOM

C (D)+α
AOSM
C V AOSM

C (D)

+α
AOW
C V A)W

C (D)+α
NA
C V NA

C (D)
)
,

(1)

subject to the capacity constraint that the cache usage should
not exceed the given cache capacity Utotal:

0≤ α
AOM
C ,αAOW

C ,αAOSM
C ,αNA

C ≤ 1,

α
AOM
C +α

AOW
C +α

AOSM
C +α

NA
C = 1,

∑
C

(
α
AOM
C UAOM

C (D)+α
AOSM
C UAOSM

C (D)

+α
AOW
C UAOW

C (D)+α
NA
C UNA

C (D)
)
≤Utotal.

We note that if the LRU cache is perfectly modeled by the
approach in Section A.2, the resulting cache retention time of
the LRU cache is exactly D after applying the optimal policy
fractions.

Cost

Cache Usage

NeverAdmit

AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 16: Example of Andrew’s monotone chain convex hull
algorithm applied to the admission policies.

A.4 Greedy algorithm

Although the linear program (1) can be solved by a standard
solver, we are able to solve it by a greedy algorithm with a
simple transformation. It is especially beneficial for the pro-
duction deployment because of the low-overhead and stability
of the greedy algorithm, compared to a generic solver. We first
note that the difference between the above linear program and
a fractional knapsack problem [14] is that for each category,
we need to decide coupled four fractions (three degrees of
freedom), instead of two fractions (one degree of freedom)
in a fractional knapsack problem. Thus, the greedy algorithm
in [14] can not be directly applied. However, we can use
Andrew’s lower convex hull algorithm [2] to decouple the
dependency.

For a given category C , the lower convex hull formed by
the points {(Up

C ,V
p
C), p∈ {AOM,AOW,AOSM,NA}}, is the lowest

cost of C that can be generated among all convex combina-
tions of the policies. For example, Figure 16 is the lower
convex hull constructed by the given admission policies by
using Andrew’s algorithm. Let FC (u) denote the lower convex
hull formed above, as a mapping from cache usage u to the
corresponding cost, for each category C . By dropping any
line segments with non-negative slopes, all FC are strictly de-
creasing, piecewise linear functions. Then we can transform
the linear program to a convex optimization problem:

min
uC≥0

∑
C

FC (uC), ∑
C

uC ≤Utotal.

We can then solve the above convex optimization problem
by the steepest descent method (a greedy algorithm). We
initialize uC = 0 for all C and iteratively decide each uC in
the following way. We first choose the line segment with the
most negative slope among all line segments of FC and change
the value of the corresponding uC . In the same fashion, we

USENIX Association 2022 USENIX Annual Technical Conference 1033

then choose the line segment with second most negative slope
and change the value of the corresponding uC , then the third
most negative slope, and so on, until the sum of uC reaches
Utotal.

Because we allow fractional policies, the category cor-
responding to the last chosen line segment generally has
the optimal policy as a convex combination of two of
{AOM,AOW,AOSM,NA}, and the optimal policy of any other cat-
egory must be exactly one of {AOM,AOW,AOSM,NA}.

A.5 Optimization over modeled cache reten-
tion times

The linear program (1) is to find the optimal policy fractions
for a given modeled cache retention time D, which can not be
known a priori. Thus, we need to solve the same optimization
problem for all possible D:

min
D>0

min
α
AOM
C ,αAOW

C ,αAOSM
C ,αNA

C
∑
C

(
α
AOM
C V AOM

C (D)+α
AOSM
C V AOSM

C (D)

+α
AOW
C V AOW

C (D)+α
NA
C V NA

C (D)
)
,

subject to the same capacity constraint.
To do this, we can use a standard scalar-variable optimiza-

tion approach like Brent’s method [10] for 0 < D≤ D, where
D is a suitable upper bound. A brute-force approach may be
even more practical for implementation: we simply solve the
optimization problem for a set of reasonable retention times:
0 < D1 < D2 < · · ·< Dm = D.

References

[1] Christoph Albrecht, Arif Merchant, Murray Stokely,
Muhammad Waliji, François Labelle, Nate Coehlo,
Xudong Shi, and C. Eric Schrock. Janus: Optimal Flash
Provisioning for Cloud Storage Workloads. In 2013
USENIX Annual Technical Conference (USENIX ATC
13), pages 91–102. USENIX Association, June 2013.

[2] A.M. Andrew. Another efficient algorithm for convex
hulls in two dimensions. Information Processing Letters,
9(5):216–219, 1979.

[3] Jeff Barr. AQUA (Advanced Query Accelerator) –
A Speed Boost for Your Amazon Redshift Queries.
https://aws.amazon.com/blogs/aws/new-aqua-
advanced-query-accelerator-for-amazon-
redshift/, April 2021.

[4] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving Cache Hit Rate by Maximizing Hit
Density. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
389–403. USENIX Association, April 2018.

[5] Nathan Beckmann and Daniel Sanchez. Maximizing
Cache Performance Under Uncertainty. In 2017 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA), pages 109–120, 2017.

[6] L. A. Belady. A Study of Replacement Algorithms for
a Virtual-Storage Computer. IBM Syst. J., 5(2):78–101,
June 1966.

[7] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and
Gregory R. Ganger. The CacheLib Caching Engine:
Design and Experiences at Scale. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 753–768. USENIX Association,
November 2020.

[8] Daniel S. Berger. Towards Lightweight and Robust
Machine Learning for CDN Caching. In Proceedings
of the 17th ACM Workshop on Hot Topics in Networks,
HotNets ’18, page 134–140. Association for Computing
Machinery, 2018.

[9] Aaron Blankstein, Siddhartha Sen, and Michael J. Freed-
man. Hyperbolic Caching: Flexible Caching for Web
Applications. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 499–511. USENIX
Association, July 2017.

[10] R.P. Brent. Algorithms for minimization without deriva-
tives. Prentice-Hall, 1973.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM
Trans. Comput. Syst., 26(2), June 2008.

[12] F.J. Corbató. A Paging Experiment with the Multics
System. Massachusetts Institute of Technology, 1968.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally-Distributed Database. In
10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 261–264.
USENIX Association, October 2012.

[14] George B. Dantzig. Discrete-Variable Extremum Prob-
lems. Operations Research, 5(2):266–288, 1957.

1034 2022 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/

[15] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU:
A Highly Efficient Cache Admission Policy. ACM Trans.
Storage, 13(4), November 2017.

[16] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a Hybrid Key-value Cache
that Controls Flash Write Amplification. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 65–78. USENIX As-
sociation, February 2019.

[17] Ronald Fagin. Asymptotic miss ratios over independent
references. Journal of Computer and System Sciences,
14(2):222–250, 1977.

[18] Alex Gartrell. McDipper: A key-value cache for
Flash storage. https://engineering.fb.com/2013/
03/05/web/mcdipper-a-key-value-cache-for-
flash-storage/, March 2013.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 20–43, 2003.

[20] Dean Hildebrand and Denis Serenyi. Colossus
under the hood: a peek into Google’s scalable
storage system. https://cloud.google.com/
blog/products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system, April
2021.

[21] Sai Huang, Qingsong Wei, Dan Feng, Jianxi Chen, and
Cheng Chen. Improving Flash-Based Disk Cache with
Lazy Adaptive Replacement. ACM Trans. Storage,
12(2), February 2016.

[22] Akanksha Jain and Calvin Lin. Back to the Future:
Leveraging Belady’s Algorithm for Improved Cache
Replacement. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, page
78–89. IEEE Press, 2016.

[23] Bo Jiang, Philippe Nain, and Don Towsley. On the
Convergence of the TTL Approximation for an LRU
Cache under Independent Stationary Request Processes.
ACM Trans. Model. Perform. Eval. Comput. Syst., 3(4),
September 2018.

[24] Jinhong Li, Qiuping Wang, Patrick P. C. Lee, and Chao
Shi. An In-Depth Analysis of Cloud Block Storage
Workloads in Large-Scale Production. In 2020 IEEE
International Symposium on Workload Characterization
(IISWC), pages 37–47, 2020.

[25] Evan Zheran Liu, Milad Hashemi, Kevin Swersky,
Parthasarathy Ranganathan, and Junwhan Ahn. An Imi-
tation Learning Approach for Cache Replacement. In
Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pages 6237–6247. PMLR, 2020.

[26] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.
Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Caching Billions of Tiny Objects on Flash. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 243–262.
Association for Computing Machinery, 2021.

[27] Nimrod Megiddo and Dharmendra S. Modha. ARC: A
Self-Tuning, Low Overhead Replacement Cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST 03). USENIX Association, March 2003.

[28] Michael Mesnier, Feng Chen, Tian Luo, and Jason B.
Akers. Differentiated storage services. In Proceedings
of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, page 57–70. Association for
Computing Machinery, 2011.

[29] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random Write Con-
sidered Harmful in Solid State Drives. In Proceedings
of the 10th USENIX Conference on File and Storage
Technologies, FAST’12, page 12. USENIX Association,
2012.

[30] Pancham Pancham, Deepak Chaudhary, and Ruchin
Gupta. Comparison of Cache Page Replacement Tech-
niques to Enhance Cache Memory Performance. Inter-
national Journal of Computer Applications, 98:27–33,
07 2014.

[31] Moinuddin K. Qureshi and Yale N. Patt. Utility-based
cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In 2006
39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06), pages 423–432, 2006.

[32] Ricardo Santana, Steven Lyons, Ricardo Koller, Raju
Rangaswami, and Jason Liu. To ARC or Not to ARC.
In 7th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 15). USENIX Association,
July 2015.

[33] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. Bidirectional Attention Flow for
Machine Comprehension. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings. OpenReview.net, 2017.

USENIX Association 2022 USENIX Annual Technical Conference 1035

https://engineering.fb.com/2013/03/05/web/mcdipper-a-key-value-cache-for-flash-storage/
https://engineering.fb.com/2013/03/05/web/mcdipper-a-key-value-cache-for-flash-storage/
https://engineering.fb.com/2013/03/05/web/mcdipper-a-key-value-cache-for-flash-storage/
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

[34] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle
Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte.
F1: A Distributed SQL Database That Scales. In VLDB,
2013.

[35] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
529–544. USENIX Association, February 2020.

[36] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced Photo Caching on Flash
for Facebook. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 373–386.
USENIX Association, February 2015.

[37] Rajesh Thallam. BigQuery explained: An overview
of BigQuery’s architecture. https://cloud.google.
com/blog/products/data-analytics/new-blog-
series-bigquery-explained-overview, Septem-
ber 2020.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[39] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming
Zhao, and Giri Narasimhan. Driving Cache Replace-
ment with ML-Based LeCaR. In Proceedings of the 10th
USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’18, page 3. USENIX Association,
2018.

[40] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache Modeling and Optimization
using Miniature Simulations. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 487–
498. USENIX Association, July 2017.

[41] Hua Wang, Xinbo Yi, Ping Huang, Bin Cheng, and
Ke Zhou. Efficient SSD Caching by Avoiding Unneces-
sary Writes Using Machine Learning. In Proceedings of
the 47th International Conference on Parallel Process-
ing, ICPP 2018. Association for Computing Machinery,
2018.

[42] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
Swaminathan Sundararaman, and Robert Wood. HEC:
Improving Endurance of High Performance Flash-Based

Cache Devices. In Proceedings of the 6th International
Systems and Storage Conference, SYSTOR ’13. Associ-
ation for Computing Machinery, 2013.

[43] Giulio Zhou and Martin Maas. Learning on distributed
traces for data center storage systems. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Ma-
chine Learning and Systems, volume 3, pages 350–364,
2021.

[44] Huapeng Zhou, Linpeng Tang, Qi Huang, and Wyatt
Lloyd. The Evolution of Advanced Caching in the
Facebook CDN. https://research.fb.com/blog/
2016/04/the-evolution-of-advanced-caching-
in-the-facebook-cdn/, April 2016.

1036 2022 USENIX Annual Technical Conference USENIX Association

https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview
https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview
https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/

	Introduction
	Our contributions
	Background
	Write amplification
	Write endurance
	Capturing second-access hits
	Colossus buffer cache
	Online and realtime requirements

	Overview of Colossus Flash Cache
	CacheSack
	Traffic partitioning
	Admission policies
	Fast approximation to an LRU model
	Knapsack problem
	Optimization over modeled cache retention times

	CacheSack in production
	Category assignment
	Modeled cache retention times
	Ghost cache
	Buffer cache simulators
	Model training
	Lessons learned

	Evaluation
	Production evaluation
	Evaluation by simulations

	Related work
	Conclusions
	Mathematical model of CacheSack
	Model assumption
	Metric estimation of an LRU cache
	Linear program
	Greedy algorithm
	Optimization over modeled cache retention times

