Mining Your Ps and Qs:
Detection of Widespread
Weak Keys in Network Devices

Nadia Heninger Zakir Durumeric, Eric Wustrow, Alex Halderman

=UCSD | School of

: . m COMPUTER SCIENCE AND ENGINEERING
Jacobs | Engineering

III

Public Keys and Randomness

Public keys secure Internet communications;
e.g. SSL, SSH

Security requires good randomness

int get RandomNumber ()

{ return Y. // chosen by fair dice roll.

// quaranteed to be random.

Research Agenda

Collect keys
Look for specific vulnerabilities
Investigate causes

Collecting Public Keys

Finding Hosts
Nmap from EC2
25 hosts, <24 hours

Retrieving Keys
Event Driven Process
3 hosts, <48 hours

Parsing Certs
OpenSSL, database

Port 443 (HTTPS) Port 22 (SSH)
29 million hosts 23 million hosts
Port 443 (HTTPS) Port 22 (SSH)
13 million hosts 10 million hosts
Certificates

6 million certificates
(2 million browser-trusted)

What could go wrong?

1. Repeated keys

Repeated Keys

Port 443 (HTTPS)

Live Hosts 12.8 million
Distinct RSA public keys 5.6 million
Distinct DSA public keys 6,241

Why are so many keys shared?

Port 22 (SSH)
10.2 million

3.8 million

2.8 million

Investigating Shared Keys
Manually investigated hosts sharing keys
Non-vulnerable reasons for shared keys \

Corporations share keys across certificates

Shared hosting providers

Investigating Shared Keys

Manually investigated hosts sharing keys
@
Vulnerable reasons for shared keys \J\

Default certificates and keys

Apparent entropy problems
714,000 (5.6%) of TLS hosts
981,000 (9.6%) of SSH hosts

Snake-oil Keys

Apache ships default certificates with installation

Found 22 CA-signed certificates with keys copied from
snake-oil certificate!

Lesson: Users are only going to follow your
instructions approximately...

What could go wrong?

1. Repeated keys

2. Repeated factors in RSA keys

RSA Keys

Public key modulus N =pg
Factoring N reveals the private key

Factoring 1024-bit RSA not known to be feasible
However...

For N; = pg, and N,=pq,
we can efficiently compute p = GCD(N,, N,)

Looking for Shared RSA Factors

6 x 1013 distin us = 30 years

Looking for Shared RSA Factors

All Pairs GCD Moo s N N
(algorithm due to Bernstein) \x/ \X/ product
\ / tree
N1NyN3N4 J)
| 7N g

Our Implementation mod NN} mod N3N premamnder

1.3 hours on EC2 / \ / \

$5.00 modN? modN7 modN; modN;

' l | | l
/N1 /N> /N3 /N4

2,134 prime factors ng(i,Nl) gcd(i,Nz)gcd(i,Ns) gcd(l,M)

Computed private keys for 64,081 TLS hosts (0.50%)

What could go wrong?

1. Repeated keys
2. Repeated factors in RSA keys

3. Repeated DSA signature randomness

DSA Signatures

Standard Digital Signature Algorithm

Each signature contains a random ephemeral key

If predictable
= can easily compute private key

Two different signatures with same ephemeral and
long-term keys

= can easily compute randomness
= can easily compute private key

Looking for shared randomness

We collected DSA signatures during SSH key exchange

4,365 signatures used shared ephemeral keys

Computed private long-term keys for
105,728 (1.03%) of SSH hosts

Vulnerable Devices

Vast majority of compromised keys generated by
headless or embedded network devices

Routers, Firewalls, Switches, Server Management
Cards, Cable Modems, Voice-Over-IP devices

Automatically generate keys

|dentified devices from 41 manufacturers

Sy
- s

Research Agenda

Investigate causes

Linux /dev/urandom

Nearly everything uses /dev/urandom

..
. i Only happens if Input Pool
contains more than 192 bits...

~Frre-ofboot Nonblocking Pool /dev/urandom

Problem 1: Embedded devices Problem 2: /dev/urandom can
may lack all these sources take a long time to “warm up”

Input pool entropy (bits)

Ubuntu Server 10.04 Test System
(Typical boot)

First Input entropy
mixed into /dev/

urandom

250] l
_________ I.
200 |-]
150 |-
)
100} i
: FIH
! e
50 + '_' P
')
Vi

3
|
ek
W
o
o
o

—— Input threshold to update entropy pool

- - - Bytes read from nonblocking pool 45,000

—— SSH process seeds from /dev/urandom

| | | | 1 | |] | 0

OpenSSH seeds
from /dev/urandom

25 30 35 40 45 50 55 60 65 70
Time since boot (s)

Dev /dev/urandom may be predictable
for a period after boot.

peseeessneennnened Inpu pOO]. ¢ nu.opy esﬁmate 10 000

Bytes read from nonblocking pool

Why are keys factorable?

prng.seed(seed)

p = prng.generate_random_prime()
g = prng.generate _random_prime()
N = p*q

Why are keys factorable?

prng.seed(seed)

p = prng.generate_random_prime()
prng.add randomness(bits)

g = prng.generate random prime()

N = p*q

One unusual case...

N

p—
(=)
W

Modulus frequency
2,
|
I
Modulus frequency

—_

-

-
|

W
)

10! =t +

10°

Typical factor distribution Factor distribution for
for one device model a particular IBM Device

9 possible primes
36 total possible moduli!

Disclosure

Wrote disclosures to about 60 companies
About 10 had security contact information
Approximately 20 responded
3 have informed us of security advisories
US-CERT is helping us coordinate

Linux Kernel has been patched

Disclosure to end-users

Found a number of Citrix remote-access devices
using CA-signed certs with keys copied from default

certs

Certs belonged to Fortune 500 companies, insurance
providers, law firms, a major public transit authority,
and the US Navy.

| tried to contact these companies...

Mitigations

Lessons for OS developers, crypto library developers,
app developers, device makers, certificate authorities, end
users, security and crypto researchers
More entropy sources
Add hardware sources
Kernel collects more aggressively

Better communication between applications and OS
/dev/urandom isn’t providing the service people need

Created public key check service for end users

[s this the tip of the iceberg?

Probably mainly see devices without real-time clocks
RTC may mask serious entropy problems

Possible targeted attack
Guess time of first boot and compute key

On traditional PCs, margin of safety for keys
generated on first boot is slim

Not observed to be exploitable (so far)

Future Work

Further cryptographic vulnerabilities
Diffie-Hellman, ECDSA
IMAPS, DNSSEC

Further impacts of boot-time entropy hole
TCP sequence numbers

ASLR

Further applications of top-down methodology

Conclusion

Studied entropy via global perspective on public keys

Found widespread vulnerabilities in embedded devices
Shared keys (5.6% of TLS hosts; 9.6% of SSH)
Factorable RSA keys (0.5% of TLS hosts; 0.03% of SSH)
Repeated DSA randomness (1.0% of SSH hosts)

Secure random number generation still difficult

Mining Your Ps and Qs:
Detection of Widespread
Weak Keys in Network Devices

Our website: https://factorable.net

Nadia Heninger Zakir Durumeric, Eric Wustrow, Alex Halderman

==UCSD | School of

: . m COMPUTER SCIENCE AND ENGINEERING
Jacobs | Engineering

III

