
Electronic Edition
This file is part of the electronic edition of The Unicode Standard, Version 5.0, provided for online
access, content searching, and accessibility. It may not be printed. Bookmarks linking to specific
chapters or sections of the whole Unicode Standard are available at

http://www.unicode.org/versions/Unicode5.0.0/bookmarks.html

Purchasing the Book
For convenient access to the full text of the standard as a useful reference book, we recommend pur-
chasing the printed version. The book is available from the Unicode Consortium, the publisher, and
booksellers. Purchase of the standard in book format contributes to the ongoing work of the Uni-
code Consortium. Details about the book publication and ordering information may be found at

http://www.unicode.org/book/aboutbook.html

Joining Unicode
You or your organization may benefit by joining the Unicode Consortium: for more information, see
Joining the Unicode Consortium at

http://www.unicode.org/consortium/join.html

This PDF file is an excerpt from The Unicode Standard, Version 5.0, issued by the Unicode Consortiu-
mand published by Addison-Wesley. The material has been modified slightly for this electronic edi-
ton, however, the PDF files have not been modified to reflect the corrections found on the Updates
and Errata page (http://www.unicode.org/errata/). For information on more recent versions of the
standard, see http://www.unicode.org/versions/enumeratedversions.html.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The Unicode® Consortium is a registered trademark, and Unicode™ is a trademark of Unicode, Inc.
The Unicode logo is a trademark of Unicode, Inc., and may be registered in some jurisdictions.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode®, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided. Dai Kan-Wa Jiten, used as the
source of reference Kanji codes, was written by Tetsuji Morohashi and published by Taishukan Shoten.

Cover and CD-ROM label design: Steve Mehallo, www.mehallo.com

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact U.S. Corporate and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com.
For sales outside the United States please contact International Sales, international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

The Unicode Standard / the Unicode Consortium ; edited by Julie D. Allen ... [et al.]. — Version 5.0.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-48091-0 (hardcover : alk. paper)
 1. Unicode (Computer character set) I. Allen, Julie D.
 II. Unicode Consortium.
 QA268.U545 2007
 005.7'22—dc22

 2006023526

Copyright © 1991–2007 Unicode, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to Pearson Edu-
cation, Inc., Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston, MA 02116.
Fax: (617) 848-7047

ISBN 0-321-48091-0
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, October 2006

Chapter 5

Implementation Guidelines 5

It is possible to implement a substantial subset of the Unicode Standard as “wide ASCII”
with little change to existing programming practice. However, the Unicode Standard also
provides for languages and writing systems that have more complex behavior than English
does. Whether one is implementing a new operating system from the ground up or
enhancing existing programming environments or applications, it is necessary to examine
many aspects of current programming practice and conventions to deal with this more
complex behavior.

This chapter covers a series of short, self-contained topics that are useful for implementers.
The information and examples presented here are meant to help implementers understand
and apply the design and features of the Unicode Standard. That is, they are meant to pro-
mote good practice in implementations conforming to the Unicode Standard.

These recommended guidelines are not normative and are not binding on the imple-
menter, but are intended to represent best practice. When implementing the Unicode Stan-
dard, it is important to look not only at the letter of the conformance rules, but also at their
spirit. Many of the following guidelines have been created specifically to assist people who
run into issues with conformant implementations, while reflecting the requirements of
actual usage.

5.1 Transcoding to Other Standards
The Unicode Standard exists in a world of other text and character encoding standards—
some private, some national, some international. A major strength of the Unicode Stan-
dard is the number of other important standards that it incorporates. In many cases, the
Unicode Standard included duplicate characters to guarantee round-trip transcoding to
established and widely used standards.
Issues

Conversion of characters between standards is not always a straightforward proposition.
Many characters have mixed semantics in one standard and may correspond to more than
one character in another. Sometimes standards give duplicate encodings for the same char-
acter; at other times the interpretation of a whole set of characters may depend on the appli-
cation. Finally, there are subtle differences in what a standard may consider a character.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

152 Implementation Guidelines

For these reasons, mapping tables are usually required to map between the Unicode Stan-
dard and another standard. Mapping tables need to be used consistently for text data
exchange to avoid modification and loss of text data. For details, see Unicode Technical
Standard #22, “Character Mapping Markup Language (CharMapML).” By contrast, con-
versions between different Unicode encoding forms are fast, lossless permutations.

The Unicode Standard can be used as a pivot to transcode among n different standards.
This process, which is sometimes called triangulation, reduces the number of mapping
tables that an implementation needs from O(n2) to O(n).

Multistage Tables

Tables require space. Even small character sets often map to characters from several differ-
ent blocks in the Unicode Standard and thus may contain up to 64K entries (for the BMP)
or 1,088K entries (for the entire codespace) in at least one direction. Several techniques
exist to reduce the memory space requirements for mapping tables. These techniques apply
not only to transcoding tables, but also to many other tables needed to implement the Uni-
code Standard, including character property data, case mapping, collation tables, and
glyph selection tables.

Flat Tables. If diskspace is not at issue, virtual memory architectures yield acceptable
working set sizes even for flat tables because the frequency of usage among characters dif-
fers widely. Even small character sets contain many infrequently used characters. In addi-
tion, data intended to be mapped into a given character set generally does not contain
characters from all blocks of the Unicode Standard (usually, only a few blocks at a time
need to be transcoded to a given character set). This situation leaves certain sections of the
mapping tables unused—and therefore paged to disk. The effect is most pronounced for
large tables mapping from the Unicode Standard to other character sets, which have large
sections simply containing mappings to the default character, or the “unmappable charac-
ter” entry.

Ranges. It may be tempting to “optimize” these tables for space by providing elaborate pro-
visions for nested ranges or similar devices. This practice leads to unnecessary performance
costs on modern, highly pipelined processor architectures because of branch penalties. A
faster solution is to use an optimized two-stage table, which can be coded without any test or
branch instructions. Hash tables can also be used for space optimization, although they are
not as fast as multistage tables.

Two-Stage Tables. Two-stage tables are a commonly employed mechanism to reduce table

size (see Figure 5-1). They use an array of pointers and a default value. If a pointer is NULL,
the value returned by a lookup operation in the table is the default value. Otherwise, the
pointer references a block of values used for the second stage of the lookup. For BMP char-
acters, it is quite efficient to organize such two-stage tables in terms of high byte and low
byte values. The first stage is an array of 256 pointers, and each of the secondary blocks
contains 256 values indexed by the low byte in the code point. For supplementary charac-
ters, it is often advisable to structure the pointers and second-stage arrays somewhat differ-

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.2 Programming Languages and Data Types 153

ently, so as to take best advantage of the very sparse distribution of supplementary
characters in the remaining codespace.

Figure 5-1. Two-Stage Tables

Optimized Two-Stage Table. Wherever any blocks are identical, the pointers just point to
the same block. For transcoding tables, this case occurs generally for a block containing
only mappings to the default or “unmappable” character. Instead of using NULL pointers
and a default value, one “shared” block of default entries is created. This block is pointed to
by all first-stage table entries, for which no character value can be mapped. By avoiding
tests and branches, this strategy provides access time that approaches the simple array
access, but at a great savings in storage.

Multistage Table Tuning. Given a table of arbitrary size and content, it is a relatively simple
matter to write a small utility that can calculate the optimal number of stages and their
width for a multistage table. Tuning the number of stages and the width of their arrays of
index pointers can result in various trade-offs of table size versus average access time.
5.2 Programming Languages and Data Types
Programming languages provide for the representation and handling of characters and
strings via data types, data constants (literals), and methods. Explicit support for Unicode
helps with the development of multilingual applications. In some programming languages,
strings are expressed as sequences (arrays) of primitive types, exactly corresponding to
sequences of code units of one of the Unicode encoding forms. In other languages, strings

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

154 Implementation Guidelines

are objects, but indexing into strings follows the semantics of addressing code units of a
particular encoding form.

Data types for “characters” generally hold just a single Unicode code point value for low-
level processing and lookup of character property values. When a primitive data type is
used for single-code point values, a signed integer type can be useful; negative values can
hold “sentinel” values like end-of-string or end-of-file, which can be easily distinguished
from Unicode code point values. However, in most APIs, string types should be used to
accommodate user-perceived characters, which may require sequences of code points.

Unicode Data Types for C

ISO/IEC Technical Report 19769, Extensions for the programming language C to support new
character types, defines data types for the three Unicode encoding forms (UTF-8, UTF-16,
and UTF-32), syntax for Unicode string and character literals, and methods for the conver-
sion between the Unicode encoding forms. No other methods are specified.

Unicode strings are encoded as arrays of primitive types as usual. For UTF-8, UTF-16, and
UTF-32, the basic types are char, char16_t, and char32_t, respectively. The ISO Tech-
nical Report assumes that char is at least 8 bits wide for use with UTF-8. While char and
wchar_t may be signed or unsigned types, the new char16_t and char32_t types are
defined to be unsigned integer types.

Unlike the specification in the wchar_t programming model, the Unicode data types do
not require that a single string base unit alone (especially char or char16_t) must be able
to store any one character (code point).

UTF-16 string and character literals are written with a lowercase u as a prefix, similar to the
L prefix for wchar_t literals. UTF-32 literals are written with an uppercase U as a prefix.
Characters outside the basic character set are available for use in string literals through the
\uhhhh and \Uhhhhhhhh escape sequences.

These types and semantics are available in a compiler if the <uchar.h> header is present
and defines the __STDC_UTF_16__ (for char16_t) and __STDC_UTF_32__ (for
char32_t) macros.

Because Technical Report 19769 was not available when UTF-16 was first introduced,
many implementations have been supporting a 16-bit wchar_t to contain UTF-16 code
units. Such usage is not conformant to the C standard, because supplementary characters
require use of pairs of wchar_t units in this case.
ANSI/ISO C wchar_t. With the wchar_t wide character type, ANSI/ISO C provides for
inclusion of fixed-width, wide characters. ANSI/ISO C leaves the semantics of the wide char-
acter set to the specific implementation but requires that the characters from the portable C
execution set correspond to their wide character equivalents by zero extension. The Unicode
characters in the ASCII range U+0020 to U+007E satisfy these conditions. Thus, if an imple-
mentation uses ASCII to code the portable C execution set, the use of the Unicode character
set for the wchar_t type, in either UTF-16 or UTF-32 form, fulfills the requirement.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.3 Unknown and Missing Characters 155

The width of wchar_t is compiler-specific and can be as small as 8 bits. Consequently,
programs that need to be portable across any C or C++ compiler should not use wchar_t
for storing Unicode text. The wchar_t type is intended for storing compiler-defined wide
characters, which may be Unicode characters in some compilers. However, programmers
who want a UTF-16 implementation can use a macro or typedef (for example, UNICHAR)
that can be compiled as unsigned short or wchar_t depending on the target compiler
and platform. Other programmers who want a UTF-32 implementation can use a macro or
typedef that might be compiled as unsigned int or wchar_t, depending on the target
compiler and platform. This choice enables correct compilation on different platforms and
compilers. Where a 16-bit implementation of wchar_t is guaranteed, such macros or
typedefs may be predefined (for example, TCHAR on the Win32 API).

On systems where the native character type or wchar_t is implemented as a 32-bit quan-
tity, an implementation may use the UTF-32 form to represent Unicode characters.

A limitation of the ISO/ANSI C model is its assumption that characters can always be pro-
cessed in isolation. Implementations that choose to go beyond the ISO/ANSI C model may
find it useful to mix widths within their APIs. For example, an implementation may have a
32-bit wchar_t and process strings in any of the UTF-8, UTF-16, or UTF-32 forms.
Another implementation may have a 16-bit wchar_t and process strings as UTF-8 or
UTF-16, but have additional APIs that process individual characters as UTF-32 or deal with
pairs of UTF-16 code units.

5.3 Unknown and Missing Characters
This section briefly discusses how users or implementers might deal with characters that
are not supported or that, although supported, are unavailable for legible rendering.

Reserved and Private-Use Character Codes

There are two classes of code points that even a “complete” implementation of the Unicode
Standard cannot necessarily interpret correctly:

• Code points that are reserved

• Code points in the Private Use Area for which no private agreement exists

An implementation should not attempt to interpret such code points. However, in practice,

applications must deal with unassigned code points or private-use characters. This may
occur, for example, when the application is handling text that originated on a system
implementing a later release of the Unicode Standard, with additional assigned characters.

Options for rendering such unknown code points include printing the code point as four
to six hexadecimal digits, printing a black or white box, using appropriate glyphs such as ê
for reserved and | for private use, or simply displaying nothing. An implementation
should not blindly delete such characters, nor should it unintentionally transform them
into something else.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

156 Implementation Guidelines

Interpretable but Unrenderable Characters

An implementation may receive a code point that is assigned to a character in the Unicode
character encoding, but be unable to render it because it lacks a font for the code point or
is otherwise incapable of rendering it appropriately.

In this case, an implementation might be able to provide limited feedback to the user’s que-
ries, such as being able to sort the data properly, show its script, or otherwise display the
code point in a default manner. An implementation can distinguish between unrenderable
(but assigned) code points and unassigned code points by printing the former with distinc-
tive glyphs that give some general indication of their type, such as A, B, C, D, E, F, G,
H, J, R, S, and so on.

Default Property Values

To work properly in implementations, unassigned code points must be given default prop-
erty values as if they were characters, because various algorithms require property values to
be assigned to every code point before they can function at all. These default values are not
uniform across all unassigned code points, because certain ranges of code points need dif-
ferent values to maximize compatibility with expected future assignments. For information
on the default values for each property, see its description in the Unicode Character Data-
base.

Except where indicated, the default values are not normative—conformant implementa-
tions can use other values.

Default Ignorable Code Points

Normally, code points outside the repertoire of supported characters would be displayed
with a fallback glyph, such as a black box. However, format and control characters must not
have visible glyphs (although they may have an effect on other characters in display). These
characters are also ignored except with respect to specific, defined processes; for example,
zero width non-joiner is ignored by default in collation. To allow a greater degree of
compatibility across versions of the standard, the ranges U+2060..U+206F,
U+FFF0..U+FFFB, and U+E0000..U+E0FFF are reserved for format and control characters
(General Category = Cf). Unassigned code points in these ranges should be ignored in pro-
cessing and display. For more information, see Section 5.20, Default Ignorable Code Points.
Interacting with Downlevel Systems

Versions of the Unicode Standard after Unicode 2.0 are strict supersets of Unicode 2.0 and
all intervening versions. The Derived Age property tracks the version of the standard at
which a particular character was added to the standard. This information can be particu-
larly helpful in some interactions with downlevel systems. If the protocol used for commu-
nication between the systems provides for an announcement of the Unicode version on
each one, an uplevel system can predict which recently added characters will appear as
unassigned characters to the downlevel system.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.4 Handling Surrogate Pairs in UTF-16 157

5.4 Handling Surrogate Pairs in UTF-16
The method used by UTF-16 to address the 1,048,576 supplementary code points that can-
not be represented by a single 16-bit value is called surrogate pairs. A surrogate pair consists
of a high-surrogate code unit (leading surrogate) followed by a low-surrogate code unit
(trailing surrogate), as described in the specifications in Section 3.8, Surrogates, and the
UTF-16 portion of Section 3.9, Unicode Encoding Forms.

In well-formed UTF-16, a trailing surrogate can be preceded only by a leading surrogate
and not by another trailing surrogate, a non-surrogate, or the start of text. A leading surro-
gate can be followed only by a trailing surrogate and not by another leading surrogate, a
non-surrogate, or the end of text. Maintaining the well-formedness of a UTF-16 code
sequence or accessing characters within a UTF-16 code sequence therefore puts additional
requirements on some text processes. Surrogate pairs are designed to minimize this impact.

Leading surrogates and trailing surrogates are assigned to disjoint ranges of code units. In
UTF-16, non-surrogate code points can never be represented with code unit values in those
ranges. Because the ranges are disjoint, each code unit in well-formed UTF-16 must meet
one of only three possible conditions:

• A single non-surrogate code unit, representing a code point between 0 and
D7FF16 or between E00016 and FFFF16

• A leading surrogate, representing the first part of a surrogate pair

• A trailing surrogate, representing the second part of a surrogate pair

By accessing at most two code units, a process using the UTF-16 encoding form can there-
fore interpret any Unicode character. Determining character boundaries requires at most
scanning one preceding or one following code unit without regard to any other context.

As long as an implementation does not remove either of a pair of surrogate code units or
incorrectly insert another character between them, the integrity of the data is maintained.
Moreover, even if the data becomes corrupted, the corruption remains localized, unlike
with some other multibyte encodings such as Shift-JIS or EUC. Corrupting a single UTF-
16 code unit affects only a single character. Because of non-overlap (see Section 2.5, Encod-
ing Forms), this kind of error does not propagate throughout the rest of the text.

UTF-16 enjoys a beneficial frequency distribution in that, for the majority of all text data,
surrogate pairs will be very rare; non-surrogate code points, by contrast, will be very com-

mon. Not only does this help to limit the performance penalty incurred when handling a
variable-width encoding, but it also allows many processes either to take no specific action
for surrogates or to handle surrogate pairs with existing mechanisms that are already
needed to handle character sequences.

Implementations should fully support surrogate pairs in processing UTF-16 text. Without
surrogate support, an implementation would not interpret any supplementary characters
or guarantee the integrity of surrogate pairs. This might apply, for example, to an older

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

158 Implementation Guidelines

implementation, conformant to Unicode Version 1.1 or earlier, before UTF-16 was defined.
Support for supplementary characters is important because a significant number of them
are relevant for modern use, despite their low frequency.

The individual components of implementations may have different levels of support for
surrogates, as long as those components are assembled and communicate correctly. Low-
level string processing, where a Unicode string is not interpreted but is handled simply as
an array of code units, may ignore surrogate pairs. With such strings, for example, a trun-
cation operation with an arbitrary offset might break a surrogate pair. (For further discus-
sion, see Section 2.7, Unicode Strings.) For performance in string operations, such behavior
is reasonable at a low level, but it requires higher-level processes to ensure that offsets are
on character boundaries so as to guarantee the integrity of surrogate pairs.

Strategies for Surrogate Pair Support. Many implementations that handle advanced fea-
tures of the Unicode Standard can easily be modified to support surrogate pairs in UTF-16.
For example:

• Text collation can be handled by treating those surrogate pairs as “grouped
characters,” such as is done for “ij” in Dutch or “ch” in Slovak.

• Text entry can be handled by having a keyboard generate two Unicode code
points with a single keypress, much as an ENTER key can generate CRLF or an
Arabic keyboard can have a “lam-alef ” key that generates a sequence of two
characters, lam and alef.

• Truncation can be handled with the same mechanism as used to keep combin-
ing marks with base characters. For more information, see Unicode Standard
Annex #29, “Text Boundaries.”

Users are prevented from damaging the text if a text editor keeps insertion points (also
known as carets) on character boundaries.

Implementations using UTF-8 and Unicode 8-bit strings necessitate similar consider-
ations. The main difference from handling UTF-16 is that in the UTF-8 case the only char-
acters that are represented with single code units (single bytes) in UTF-8 are the ASCII
characters, U+0000..U+007F. Characters represented with multibyte sequences are very
common in UTF-8, unlike surrogate pairs in UTF-16, which are rather uncommon. This
difference in frequency may result in different strategies for handling the multibyte
sequences in UTF-8.
5.5 Handling Numbers
There are many sets of characters that represent decimal digits in different scripts. Systems
that interpret those characters numerically should provide the correct numerical values.
For example, the sequence <U+0968 devanagari digit two, U+0966 devanagari digit

zero> when numerically interpreted has the value twenty.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.5 Handling Numbers 159

When converting binary numerical values to a visual form, digits can be chosen from dif-
ferent scripts. For example, the value twenty can be represented either by <U+0032 digit

two, U+0030 digit zero> or by <U+0968 devanagari digit two, U+0966 devanagari

digit zero> or by <U+0662 arabic-indic digit two, U+0660 arabic-indic digit

zero>. It is recommended that systems allow users to choose the format of the resulting
digits by replacing the appropriate occurrence of U+0030 digit zero with U+0660 ara-

bic-indic digit zero, and so on. (See Chapter 4, Character Properties, for the information
needed to implement formatting and scanning numerical values.)

Fullwidth variants of the ASCII digits are simply compatibility variants of regular digits
and should be treated as regular Western digits.

The Roman numerals, Greek acrophonic numerals, and East Asian ideographic numerals
are decimal numeral writing systems, but they are not formally decimal radix digit systems.
That is, it is not possible to do a one-to-one transcoding to forms such as 123456.789. Such
systems are appropriate only for positive integer writing.

Sumero-Akkadian numerals were used for sexagesimal systems. There was no symbol for
zero, but by Babylonian times, a place value system was in use. Thus the exact value of a
digit depended on its position in a number. There was also ambiguity in numerical repre-
sentation, because a symbol such as U+12079 cuneiform sign dish could represent either
1 or 1 × 60 or 1 × (60 × 60), depending on the context. A numerical expression might also
be interpreted as a sexigesimal fraction. So the sequence <1, 10, 5> might be evaluated as 1
× 60 + 10 + 5 = 75 or 1 × 60 × 60 + 10 + 5 = 3615 or 1 + (10 + 5)/60 = 1.25. Many other
complications arise in Cuneiform numeral systems, and they clearly require special pro-
cessing distinct from that used for modern decimal radix systems.

It is also possible to write numbers in two ways with CJK ideographic digits. For example,
Figure 5-2 shows how the number 1,234 can be written.

Figure 5-2. CJK Ideographic Numbers

or

Supporting these ideographic digits for numerical parsing means that implementations
must be smart about distinguishing between these two cases.
Digits often occur in situations where they need to be parsed, but are not part of numbers.
One such example is alphanumeric identifiers (see Unicode Standard Annex #31, “Identi-
fier and Pattern Syntax”).

Only in higher-level protocols, such as when implementing a full mathematical formula
parser, do considerations such as superscripting and subscripting of digits become crucial
for numerical interpretation.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

160 Implementation Guidelines

5.6 Normalization
Alternative Spellings. The Unicode Standard contains explicit codes for the most fre-
quently used accented characters. These characters can also be composed; in the case of
accented letters, characters can be composed from a base character and nonspacing
mark(s).

The Unicode Standard provides decompositions for characters that can be composed using
a base character plus one or more nonspacing marks. Implementations that are “liberal” in
what they accept but “conservative” in what they issue will have the fewest compatibility
problems.

The decomposition mappings are specific to a particular version of the Unicode Standard.
Further decomposition mappings may be added to the standard for new characters
encoded in the future; however, no existing decomposition mapping for a currently
encoded character will ever be removed, nor will a decomposition mapping be added for a
currently encoded character. This follows from the stability guarantees for normalization.
See Appendix F, Unicode Encoding Stability Policies, for more information.

Normalization. Systems may normalize Unicode-encoded text to one particular sequence,
such as normalizing composite character sequences into precomposed characters, or vice
versa (see Figure 5-3).

Figure 5-3. Normalization

DecomposedPrecomposed

Unnormalized

òa · ë ˜¨

ä· ë̃ ò a · e ˜ o¨ ¨ @̀

@ @

@ @ @

@

@

Compared to the number of possible combinations, only a relatively small number of pre-
composed base character plus nonspacing marks have independent Unicode character val-

ues. Most existed in dominant standards.

Systems that cannot handle nonspacing marks can normalize to precomposed characters;
this option can accommodate most modern Latin-based languages. Such systems can use
fallback rendering techniques to at least visually indicate combinations that they cannot
handle (see the “Fallback Rendering” subsection of Section 5.13, Rendering Nonspacing
Marks).

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.7 Compression 161

In systems that can handle nonspacing marks, it may be useful to normalize so as to elimi-
nate precomposed characters. This approach allows such systems to have a homogeneous
representation of composed characters and maintain a consistent treatment of such char-
acters. However, in most cases, it does not require too much extra work to support mixed
forms, which is the simpler route.

The standard forms for normalization are defined in Unicode Standard Annex #15, “Uni-
code Normalization Forms.” For further information, see Chapter 3, Conformance; “Equiv-
alent Sequences” in Section 2.2, Unicode Design Principles; and Section 2.11, Combining
Characters.

5.7 Compression
Using the Unicode character encoding may increase the amount of storage or memory
space dedicated to the text portion of files. Compressing Unicode-encoded files or strings
can therefore be an attractive option if the text portion is a large part of the volume of data
compared to binary and numeric data, and if the processing overhead of the compression
and decompression is acceptable.

Compression always constitutes a higher-level protocol and makes interchange dependent
on knowledge of the compression method employed. For a detailed discussion of compres-
sion and a standard compression scheme for Unicode, see Unicode Technical Standard #6,
“A Standard Compression Scheme for Unicode.”

Encoding forms defined in Section 2.5, Encoding Forms, have different storage characteris-
tics. For example, as long as text contains only characters from the Basic Latin (ASCII)
block, it occupies the same amount of space whether it is encoded with the UTF-8 or ASCII
codes. Conversely, text consisting of CJK ideographs encoded with UTF-8 will require
more space than equivalent text encoded with UTF-16.

For processing rather than storage, the Unicode encoding form is usually selected for easy
interoperability with existing APIs. Where there is a choice, the trade-off between decoding
complexity (high for UTF-8, low for UTF-16, trivial for UTF-32) and memory and cache
bandwidth (high for UTF-32, low for UTF-8 or UTF-16) should be considered.

5.8 Newline Guidelines

Newlines are represented on different platforms by carriage return (CR), line feed (LF),
CRLF, or next line (NEL). Not only are newlines represented by different characters on dif-
ferent platforms, but they also have ambiguous behavior even on the same platform. These
characters are often transcoded directly into the corresponding Unicode code points when
a character set is transcoded; this means that even programs handling pure Unicode have to
deal with the problems. Especially with the advent of the Web, where text on a single
machine can arise from many sources, this causes a significant problem.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

162 Implementation Guidelines

Newline characters are used to explicitly indicate line boundaries. For more information,
see Unicode Standard Annex #14, “Line Breaking Properties.” Newlines are also handled
specially in the context of regular expressions. For information, see Unicode Technical
Standard #18, “Unicode Regular Expression Guidelines.” For the use of these characters in
markup languages, see Unicode Technical Report #20, “Unicode in XML and Other
Markup Languages.”

Definitions

Table 5-1 provides hexadecimal values for the acronyms used in these guidelines.

Table 5-1. Hex Values for Acronyms

Acronym Name Unicode ASCII EBCDIC

CR carriage return 000D 0D 0D 0D

LF line feed 000A 0A 25 15

CRLF carriage return and
line feed

<000D 000A> <0D 0A> <0D 25> <0D 15>

NEL next line 0085 85 15 25

VT vertical tab 000B 0B 0B 0B

FF form feed 000C 0C 0C 0C

LS line separator 2028 n/a n/a n/a

PS paragraph separator 2029 n/a n/a n/a

The acronyms shown in Table 5-1 correspond to characters or sequences of characters. The
name column shows the usual names used to refer to the characters in question, whereas
the other columns show the Unicode, ASCII, and EBCDIC encoded values for the charac-
ters.

Encoding. Except for LS and PS, the newline characters discussed here are encoded as con-
trol codes. Many control codes were originally designed for device control but, together
with TAB, the newline characters are commonly used as part of plain text. For more infor-
mation on how Unicode encodes control codes, see Section 16.1, Control Codes.

Notation. This discussion of newline guidelines uses lowercase when referring to functions

having to do with line determination, but uses the acronyms when referring to the actual
characters involved. Keys on keyboards are indicated in all caps. For example:

The line separator may be expressed by LS in Unicode text or CR on
some platforms. It may be entered into text with the SHIFT-RETURN
key.

EBCDIC. Table 5-1 shows the two mappings of LF and NEL used by EBCDIC systems. The
first EBCDIC column shows the default control code mapping of these characters, which is

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.8 Newline Guidelines 163

used in most EBCDIC environments. The second column shows the z/OS Unix System Ser-
vices (Open Edition) mapping of LF and NEL. That mapping arises from the use of the LF
character for the newline function in C programs and in Unix environments, while text
files on z/OS traditionally use NEL for the newline function.

NEL (next line) is not actually defined in 7-bit ASCII. It is defined in the ISO control func-
tion standard, ISO 6429, as a C1 control function. However, the 0x85 mapping shown in
the ASCII column in Table 5-1 is the usual way that this C1 control function is mapped in
ASCII-based character encodings.

Newline Function. The acronym NLF (newline function) stands for the generic control
function for indication of a new line break. It may be represented by different characters,
depending on the platform, as shown in Table 5-2

Table 5-2. NLF Platform Correlations

Platform NLF Value
MacOS 9.x and earlier CR
MacOS X LF
Unix LF
Windows CRLF
EBCDIC-based OS NEL

.

Line Separator and Paragraph Separator

A paragraph separator—independent of how it is encoded—is used to indicate a separa-
tion between paragraphs. A line separator indicates where a line break alone should occur,
typically within a paragraph. For example:

This is a paragraph with a line separator at this point,
causing the word “causing” to appear on a different line, but not causing
the typical paragraph indentation, sentence breaking, line spacing, or
change in flush (right, center, or left paragraphs).

For comparison, line separators basically correspond to HTML
, and paragraph sep-
arators to older usage of HTML <P> (modern HTML delimits paragraphs by enclosing
them in <P>...</P>). In word processors, paragraph separators are usually entered using a
keyboard RETURN or ENTER; line separators are usually entered using a modified
RETURN or ENTER, such as SHIFT-ENTER.
A record separator is used to separate records. For example, when exchanging tabular data,
a common format is to tab-separate the cells and to use a CRLF at the end of a line of cells.
This function is not precisely the same as line separation, but the same characters are often
used.

Traditionally, NLF started out as a line separator (and sometimes record separator). It is
still used as a line separator in simple text editors such as program editors. As platforms
and programs started to handle word processing with automatic line-wrap, these charac-
ters were reinterpreted to stand for paragraph separators. For example, even such simple

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

164 Implementation Guidelines

programs as the Windows Notepad program and the Mac SimpleText program interpret
their platform’s NLF as a paragraph separator, not a line separator.

Once NLF was reinterpreted to stand for a paragraph separator, in some cases another con-
trol character was pressed into service as a line separator. For example, vertical tabulation
VT is used in Microsoft Word. However, the choice of character for line separator is even
less standardized than the choice of character for NLF.

Many Internet protocols and a lot of existing text treat NLF as a line separator, so an imple-
menter cannot simply treat NLF as a paragraph separator in all circumstances.

Recommendations

The Unicode Standard defines two unambiguous separator characters: U+2029 para-

graph separator (PS) and U+2028 line separator (LS). In Unicode text, the PS and LS
characters should be used wherever the desired function is unambiguous. Otherwise, the
following recommendations specify how to cope with an NLF when converting from other
character sets to Unicode, when interpreting characters in text, and when converting from
Unicode to other character sets.

Note that even if an implementer knows which characters represent NLF on a particular
platform, CR, LF, CRLF, and NEL should be treated the same on input and in interpreta-
tion. Only on output is it necessary to distinguish between them.

Converting from Other Character Code Sets

R1 If the exact usage of any NLF is known, convert it to LS or PS.

R1a If the exact usage of any NLF is unknown, remap it to the platform NLF.

Recommendation R1a does not really help in interpreting Unicode text unless the imple-
menter is the only source of that text, because another implementer may have left in LF, CR,
CRLF, or NEL.

Interpreting Characters in Text

R2 Always interpret PS as paragraph separator and LS as line separator.

R2a In word processing, interpret any NLF the same as PS.

R2b In simple text editors, interpret any NLF the same as LS.

In line breaking, both PS and LS terminate a line; therefore, the Unicode Line Breaking

Algorithm in Unicode Standard Annex #14, “Line Breaking Properties,” is defined such
that any NLF causes a line break.

R2c In parsing, choose the safest interpretation.

For example, in recommendation R2c an implementer dealing with sentence break heuris-
tics would reason in the following way that it is safer to interpret any NLF as LS:

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.8 Newline Guidelines 165

• Suppose an NLF were interpreted as LS, when it was meant to be PS. Because
most paragraphs are terminated with punctuation anyway, this would cause
misidentification of sentence boundaries in only a few cases.

• Suppose an NLF were interpreted as PS, when it was meant to be LS. In this
case, line breaks would cause sentence breaks, which would result in significant
problems with the sentence break heuristics.

Converting to Other Character Code Sets

R3 If the intended target is known, map NLF, LS, and PS depending on the target con-
ventions.

For example, when mapping to Microsoft Word’s internal conventions for documents, LS
would be mapped to VT, and PS and any NLF would be mapped to CRLF.

R3a If the intended target is unknown, map NLF, LS, and PS to the platform newline
convention (CR, LF, CRLF, or NEL).

In Java, for example, this is done by mapping to a string nlf, defined as follows:

String nlf = System.getProperties("line.separator");

Input and Output

R4 A readline function should stop at NLF, LS, FF, or PS. In the typical implemen-
tation, it does not include the NLF, LS, PS, or FF that caused it to stop.

Because the separator is lost, the use of such a readline function is limited to text pro-
cessing, where there is no difference among the types of separators.

R4a A writeline (or newline) function should convert NLF, LS, and PS according
to the recommendations R3 and R3a.

In C, gets is defined to terminate at a newline and replaces the newline with '\0', while
fgets is defined to terminate at a newline and includes the newline in the array into which
it copies the data. C implementations interpret '\n' either as LF or as the underlying plat-
form newline NLF, depending on where it occurs. EBCDIC C compilers substitute the rel-
evant codes, based on the EBCDIC execution set.

Page Separator

FF is commonly used as a page separator, and it should be interpreted that way in text.
When displaying on the screen, it causes the text after the separator to be forced to the next

page. It is interpreted in the same way as the LS for line breaking, in parsing, or in input
segmentation such as readline. FF does not interrupt a paragraph, as paragraphs can and
do span page boundaries.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

166 Implementation Guidelines

5.9 Regular Expressions
Byte-oriented regular expression engines require extensions to handle Unicode success-
fully. The following issues are involved in such extensions:

• Unicode is a large character set—regular expression engines that are adapted to
handle only small character sets may not scale well.

• Unicode encompasses a wide variety of languages that can have very different
characteristics than English or other Western European text.

For detailed information on the requirements of Unicode regular expressions, see Unicode
Technical Standard #18, “Unicode Regular Expression Guidelines.”

5.10 Language Information in Plain Text

Requirements for Language Tagging

The requirement for language information embedded in plain text data is often overstated.
Many commonplace operations such as collation seldom require this extra information. In
collation, for example, foreign language text is generally collated as if it were not in a foreign
language. (See Unicode Technical Standard #10, “Unicode Collation Algorithm,” for more
information.) For example, an index in an English book would not sort the Slovak word
“chlieb” after “czar,” where it would be collated in Slovak, nor would an English atlas put
the Swedish city of Örebro after Zanzibar, where it would appear in Swedish.

Text to speech is also an area where the case for embedded language information is over-
stated. Although language information may be useful in performing text-to-speech opera-
tions, modern software for doing acceptable text-to-speech must be so sophisticated in
performing grammatical analysis of text that the extra work in determining the language is
not significant in practice.

Language information can be useful in certain operations, such as spell-checking or
hyphenating a mixed-language document. It is also useful in choosing the default font for a
run of unstyled text; for example, the ellipsis character may have a very different appear-
ance in Japanese fonts than in European fonts. Modern font and layout technologies pro-
duce different results based on language information. For example, the angle of the acute

accent may be different for French and Polish.

Language Tags and Han Unification

A common misunderstanding about Unicode Han unification is the mistaken belief that
Han characters cannot be rendered properly without language information. This idea
might lead an implementer to conclude that language information must always be added to
plain text using the tags. However, this implication is incorrect. The goal and methods of

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.11 Editing and Selection 167

Han unification were to ensure that the text remained legible. Although font, size, width,
and other format specifications need to be added to produce precisely the same appearance
on the source and target machines, plain text remains legible in the absence of these speci-
fications.

There should never be any confusion in Unicode, because the distinctions between the uni-
fied characters are all within the range of stylistic variations that exist in each country. No
unification in Unicode should make it impossible for a reader to identify a character if it
appears in a different font. Where precise font information is important, it is best conveyed
in a rich text format.

Typical Scenarios. The following e-mail scenarios illustrate that the need for language
information with Han characters is often overstated:

• Scenario 1. A Japanese user sends out untagged Japanese text. Readers are Japa-
nese (with Japanese fonts). Readers see no differences from what they expect.

• Scenario 2. A Japanese user sends out an untagged mixture of Japanese and
Chinese text. Readers are Japanese (with Japanese fonts) and Chinese (with
Chinese fonts). Readers see the mixed text with only one font, but the text is
still legible. Readers recognize the difference between the languages by the con-
tent.

• Scenario 3. A Japanese user sends out a mixture of Japanese and Chinese text.
Text is marked with font, size, width, and so on, because the exact format is
important. Readers have the fonts and other display support. Readers see the
mixed text with different fonts for different languages. They recognize the dif-
ference between the languages by the content, and see the text with glyphs that
are more typical for the particular language.

It is common even in printed matter to render passages of foreign language text in native-
language fonts, just for familiarity. For example, Chinese text in a Japanese document is
commonly rendered in a Japanese font.

5.11 Editing and Selection

Consistent Text Elements
As far as a user is concerned, the underlying representation of text is not a material con-
cern, but it is important that an editing interface present a uniform implementation of
what the user thinks of as characters. (See “‘Characters’ and Grapheme Clusters” in
Section 2.11, Combining Characters.) The user expects them to behave as units in terms of
mouse selection, arrow key movement, backspacing, and so on. For example, when such
behavior is implemented, and an accented letter is represented by a sequence of base char-
acter plus a nonspacing combining mark, using the right arrow key would logically skip
from the start of the base character to the end of the last nonspacing character.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

168 Implementation Guidelines

In some cases, editing a user-perceived “character” or visual cluster element by element
may be the preferred way. For example, a system might have the backspace key delete by
using the underlying code point, while the delete key could delete an entire cluster. More-
over, because of the way keyboards and input method editors are implemented, there often
may not be a one-to-one relationship between what the user thinks of as a character and
the key or key sequence used to input it.

Three types of boundaries are generally useful in editing and selecting within words: cluster
boundaries, stacked boundaries and atomic character boundaries.

Cluster Boundaries. Arbitrarily defined cluster boundaries may occur in scripts such as
Devanagari, for which selection may be defined as applying to syllables or parts of syllables.
In such cases, combining character sequences such as ka + vowel sign a or conjunct clusters
such as ka + halant + ta are selected as a single unit. (See Figure 5-4.)

Figure 5-4. Consistent Character Boundaries

RôleStack

Atomic Rôle

Cluster Rôle

∑Ê’¸–

∑Ê’¸–
∑Ê’¸–

Stacked Boundaries. Stacked boundaries are generally somewhat finer than cluster bound-
aries. Free-standing elements (such as vowel sign a in Devanagari) can be independently
selected, but any elements that “stack” (including vertical ligatures such as Arabic lam +
meem in Figure 5-4) can be selected only as a single unit. Stacked boundaries treat default
grapheme clusters as single entities, much like composite characters. (See Unicode Stan-
dard Annex #29, “Text Boundaries,” for the definition of default grapheme clusters and for
a discussion of how grapheme clusters can be tailored to meet the needs of defining arbi-
trary cluster boundaries.)

Atomic Character Boundaries. The use of atomic character boundaries is closest to selec-
tion of individual Unicode characters. However, most modern systems indicate selection

with some sort of rectangular highlighting. This approach places restrictions on the consis-
tency of editing because some sequences of characters do not linearly progress from the
start of the line. When characters stack, two mechanisms are used to visually indicate par-
tial selection: linear and nonlinear boundaries.

Linear Boundaries. Use of linear boundaries treats the entire width of the resultant glyph
as belonging to the first character of the sequence, and the remaining characters in the
backing-store representation as having no width and being visually afterward.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.12 Strategies for Handling Nonspacing Marks 169

This option is the simplest mechanism. The advantage of this system is that it requires very
little additional implementation work. The disadvantage is that it is never easy to select
narrow characters, let alone a zero-width character. Mechanically, it requires the user to
select just to the right of the nonspacing mark and drag just to the left. It also does not
allow the selection of individual nonspacing marks if more than one is present.

Nonlinear Boundaries. Use of nonlinear boundaries divides any stacked element into
parts. For example, picking a point halfway across a lam + meem ligature can represent the
division between the characters. One can either allow highlighting with multiple rectangles
or use another method such as coloring the individual characters.

With more work, a precomposed character can behave in deletion as if it were a composed
character sequence with atomic character boundaries. This procedure involves deriving the
character’s decomposition on the fly to get the components to be used in simulation. For
example, deletion occurs by decomposing, removing the last character, then recomposing
(if more than one character remains). However, this technique does not work in general
editing and selection.

In most editing systems, the code point is the smallest addressable item, so the selection
and assignment of properties (such as font, color, letterspacing, and so on) cannot be done
on any finer basis than the code point. Thus the accent on an “e” could not be colored dif-
ferently than the base in a precomposed character, although it could be colored differently
if the text were stored internally in a decomposed form.

Just as there is no single notion of text element, so there is no single notion of editing char-
acter boundaries. At different times, users may want different degrees of granularity in the
editing process. Two methods suggest themselves. First, the user may set a global preference
for the character boundaries. Second, the user may have alternative command mecha-
nisms, such as Shift-Delete, which give more (or less) fine control than the default mode.

5.12 Strategies for Handling Nonspacing Marks
By following these guidelines, a programmer should be able to implement systems and
routines that provide for the effective and efficient use of nonspacing marks in a wide
variety of applications and systems. The programmer also has the choice between minimal
techniques that apply to the vast majority of existing systems and more sophisticated tech-
niques that apply to more demanding situations, such as higher-end desktop publishing.
In this section and the following section, the terms nonspacing mark and combining charac-
ter are used interchangeably. The terms diacritic, accent, stress mark, Hebrew point, Arabic
vowel, and others are sometimes used instead of nonspacing mark. (They refer to particular
types of nonspacing marks.) Properly speaking, a nonspacing mark is any combining char-
acter that does not add space along the writing direction. For a formal definition of non-
spacing mark, see Section 3.6, Combination.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

170 Implementation Guidelines

A relatively small number of implementation features are needed to support nonspacing
marks. Different levels of implementation are also possible. A minimal system yields good
results and is relatively simple to implement. Most of the features required by such a system
are simply modifications of existing software.

As nonspacing marks are required for a number of writing systems, such as Arabic,
Hebrew, and those of South Asia, many vendors already have systems capable of dealing
with these characters and can use their experience to produce general-purpose software for
handling these characters in the Unicode Standard.

Rendering. Composite character sequences can be rendered effectively by means of a fairly
simple mechanism. In simple character rendering, a nonspacing combining mark has a
zero advance width, and a composite character sequence will have the same width as the
base character.

Wherever a sequence of base character plus one or more nonspacing marks occurs, the
glyphs for the nonspacing marks can be positioned relative to the base. The ligature mech-
anisms in the fonts can also substitute a glyph representing the combined form. In some
cases the width of the base should change because of an applied accent, such as with “î”.
The ligature or contextual form mechanisms in the font can be used to change the width of
the base in cases where this is required.

Other Processes. Correct multilingual comparison routines must already be able to com-
pare a sequence of characters as one character, or one character as if it were a sequence.
Such routines can also handle combining character sequences when supplied with the
appropriate data. When searching strings, remember to check for additional nonspacing
marks in the target string that may affect the interpretation of the last matching character.

Line breaking algorithms generally use state machines for determining word breaks. Such
algorithms can be easily adapted to prevent separation of nonspacing marks from base
characters. (See also the discussion in Section 5.6, Normalization. For details in particular
contexts, see Unicode Technical Standard #10, “Unicode Collation Algorithm”; Unicode
Standard Annex #14, “Line Breaking Properties”; and Unicode Standard Annex #29, “Text
Boundaries.”)

Keyboard Input

A common implementation for the input of combining character sequences is the use of
dead keys. These keys match the mechanics used by typewriters to generate such sequences

through overtyping the base character after the nonspacing mark. In computer implemen-
tations, keyboards enter a special state when a dead key is pressed for the accent and emit a
precomposed character only when one of a limited number of “legal” base characters is
entered. It is straightforward to adapt such a system to emit combining character sequences
or precomposed characters as needed.

Typists, especially in the Latin script, are trained on systems that work using dead keys.
However, many scripts in the Unicode Standard (including the Latin script) may be imple-

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.12 Strategies for Handling Nonspacing Marks 171

mented according to the handwriting sequence, in which users type the base character first,
followed by the accents or other nonspacing marks (see Figure 5-5).

Figure 5-5. Dead Keys Versus Handwriting Sequence

Dead Key Handwriting

Zrich

Zrich

Zürich
u

¨
Zurich

Zürich

Zrich
u

¨

In the case of handwriting sequence, each keystroke produces a distinct, natural change on
the screen; there are no hidden states. To add an accent to any existing character, the user
positions the insertion point (caret) after the character and types the accent.

Truncation

There are two types of truncation: truncation by character count and truncation by dis-
played width. Truncation by character count can entail loss (be lossy) or be lossless.

Truncation by character count is used where, due to storage restrictions, a limited number
of characters can be entered into a field; it is also used where text is broken into buffers for
transmission and other purposes. The latter case can be lossless if buffers are recombined
seamlessly before processing or if lookahead is performed for possible combining character
sequences straddling buffers.

When fitting data into a field of limited storage length, some information will be lost. The
preferred position for truncating text in that situation is on a grapheme cluster boundary.
As Figure 5-6 shows, such truncation can mean truncating at an earlier point than the last
character that would have fit within the physical storage limitation. (See Unicode Standard
Annex #29, “Text Boundaries.”)

Truncation by displayed width is used for visual display in a narrow field. In this case, trun-

cation occurs on the basis of the width of the resulting string rather than on the basis of a
character count. In simple systems, it is easiest to truncate by width, starting from the end
and working backward by subtracting character widths as one goes. Because a trailing
nonspacing mark does not contribute to the measurement of the string, the result will not
separate nonspacing marks from their base characters.

If the textual environment is more sophisticated, the widths of characters may depend on
their context, due to effects such as kerning, ligatures, or contextual formation. For such

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

Figure 5-6. Truncating Grapheme Clusters

Clipping

Ellipsis

On Grapheme Cluster
Boundaries J o s e ´

José

Jo...

@

172 Implementation Guidelines

systems, the width of a precomposed character, such as an “ï”, may be different than the
width of a narrow base character alone. To handle these cases, a final check should be made
on any truncation result derived from successive subtractions.

A different option is simply to clip the characters graphically. Unfortunately, this may result
in clipping off part of a character, which can be visually confusing. Also, if the clipping
occurs between characters, it may not give any visual feedback that characters are being
omitted. A graphic or ellipsis can be used to give this visual feedback.

5.13 Rendering Nonspacing Marks
This discussion assumes the use of proportional fonts, where the widths of individual char-
acters can vary. Various techniques can be used with monospaced fonts. In general, how-
ever, it is possible to get only a semblance of a correct rendering for most scripts in such
fonts.

When rendering a sequence consisting of more than one nonspacing mark, the nonspacing
marks should, by default, be stacked outward from the base character. That is, if two non-
spacing marks appear over a base character, then the first nonspacing mark should appear
on top of the base character, and the second nonspacing mark should appear on top of the
first. If two nonspacing marks appear under a base character, then the first nonspacing
mark should appear beneath the base character, and the second nonspacing mark should
appear below the first (see Section 2.11, Combining Characters). This default treatment of

multiple, potentially interacting nonspacing marks is known as the inside-out rule (see
Figure 5-7).

This default behavior may be altered based on typographic preferences or on knowledge of
the specific orthographic treatment to be given to multiple nonspacing marks in the con-
text of a particular writing system. For example, in the modern Vietnamese writing system,
an acute or grave accent (serving as a tone mark) may be positioned slightly to one side of
a circumflex accent rather than directly above it. If the text to be displayed is known to

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

Figure 5-7. Inside-Out Rule

Characters Glyphs

a
˙

@ @ @ @¨ ˜
ˆ
ä̃

ˆ˙0061 0308 0303 0323 032D

@ @
0E02 0E36 0E49

+

+ + + +

+

5.13 Rendering Nonspacing Marks 173

employ a different typographic convention (either implicitly through knowledge of the
language of the text or explicitly through rich text-style bindings), then an alternative posi-
tioning may be given to multiple nonspacing marks instead of that specified by the default
inside-out rule.

Fallback Rendering. Several methods are available to deal with an unknown composed
character sequence that is outside of a fixed, renderable set (see Figure 5-8). One method
(Show Hidden) indicates the inability to draw the sequence by drawing the base character
first and then rendering the nonspacing mark as an individual unit, with the nonspacing
mark positioned on a dotted circle. (This convention is used in Chapter 17, Code Charts.)

Figure 5-8. Fallback Rendering

Ggˆ ˆ G@g@ˆ ˆ
“Ideal” “Show

Hidden”
“Simple
Overlap”

Ĝĝ

Another method (Simple Overlap) uses a default fixed position for an overlapping zero-
width nonspacing mark. This position is generally high enough to make sure that the mark
does not collide with capital letters. This will mean that this mark is placed too high above
many lowercase letters. For example, the default positioning of a circumflex can be above
the ascent, which will place it above capital letters. Even though the result will not be par-
ticularly attractive for letters such as g-circumflex, the result should generally be recogniz-

able in the case of single nonspacing marks.

In a degenerate case, a nonspacing mark occurs as the first character in the text or is sepa-
rated from its base character by a line separator, paragraph separator, or other format char-
acter that causes a positional separation. This result is called a defective combining
character sequence (see Section 3.6, Combination). Defective combining character
sequences should be rendered as if they had a no-break space as a base character. (See
Section 7.9, Combining Marks.)

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

174 Implementation Guidelines

Bidirectional Positioning. In bidirectional text, the nonspacing marks are reordered with
their base characters; that is, they visually apply to the same base character after the algo-
rithm is used (see Figure 5-9). There are a few ways to accomplish this positioning.

Figure 5-9. Bidirectional Placement

Backing Store

Screen Order

Glyph Metrics

Aligned Glyphs

Ug @̂ V@

U@Vg @̂

UxxxVˆ
xgx x x x

ˆ
xgx UV xx

The simplest method is similar to the Simple Overlap fallback method. In the Bidirectional
Algorithm, combining marks take the level of their base character. In that case, Arabic and
Hebrew nonspacing marks would come to the left of their base characters. The font is
designed so that instead of overlapping to the left, the Arabic and Hebrew nonspacing
marks overlap to the right. In Figure 5-9, the “glyph metrics” line shows the pen start and
end for each glyph with such a design. After aligning the start and end points, the final
result shows each nonspacing mark attached to the corresponding base letter. More sophis-
ticated rendering could then apply the positioning methods outlined in the next section.

Some rendering software may require keeping the nonspacing mark glyphs consistently

ordered to the right of the base character glyphs. In that case, a second pass can be done
after producing the “screen order” to put the odd-level nonspacing marks on the right of
their base characters. As the levels of nonspacing marks will be the same as their base char-
acters, this pass can swap the order of nonspacing mark glyphs and base character glyphs in
right-to-left (odd) levels. (See Unicode Standard Annex #9, “The Bidirectional Algo-
rithm.”)

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.13 Rendering Nonspacing Marks 175

Justification. Typically, full justification of text adds extra space at space characters so as to
widen a line; however, if there are too few (or no) space characters, some systems add extra
letterspacing between characters (see Figure 5-10). This process needs to be modified if
zero-width nonspacing marks are present in the text. Otherwise, if extra justifying space is
added after the base character, it can have the effect of visually separating the nonspacing
mark from its base.

Figure 5-10. Justification

66 points/6 positions
= 11 points per position
66 points/5 positions
= 13.2 points per position

Zürich

Z ü r i c h
üZ r i c h

Because nonspacing marks always follow their base character, proper justification adds let-
terspacing between characters only if the second character is a base character.

Canonical Equivalence

Canonical equivalence must be taken into account in rendering multiple accents, so that
any two canonically equivalent sequences display as the same. This is particularly impor-
tant when the canonical order is not the customary keyboarding order, which happens in
Arabic with vowel signs or in Hebrew with points. In those cases, a rendering system may
be presented with either the typical typing order or the canonical order resulting from nor-
malization, as shown in Table 5-3.

Table 5-3. Typing Order Differing from Canonical Order

Typical Typing Order Canonical Order

U+0631 J arabic letter reh + U+0651 L
arabic shadda + U+064B K arabic
fathatan

U+0631 J arabic letter reh + U+064B K
arabic fathatan + U+0651 L arabic
shadda

With a restricted repertoire of nonspacing mark sequences, such as those required for Ara-

bic, a ligature mechanism can be used to get the right appearance, as described earlier.
When a fallback mechanism for placing accents based on their combining class is
employed, the system should logically reorder the marks before applying the mechanism.

Rendering systems should handle any of the canonically equivalent orders of combining
marks. This is not a performance issue: the amount of time necessary to reorder combining
marks is insignificant compared to the time necessary to carry out other work required for
rendering.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

176 Implementation Guidelines

A rendering system can reorder the marks internally if necessary, as long as the resulting
sequence is canonically equivalent. In particular, any permutation of the non-zero combin-
ing class values can be used for a canonical-equivalent internal ordering. For example, a
rendering system could internally permute weights to have U+0651 arabic shadda pre-
cede all vowel signs. This would use the remapping shown in Table 5-4.

Table 5-4. Permuting Combining Class Weights

Combining
Class

Internal
Weight

27 → 33
28 → 27
29 → 28
30 → 29
31 → 30
32 → 31
33 → 32

Only non-zero combining class values can be changed, and they can be permuted only, not
combined or split. This can be restated as follows:

• Two characters that have the same combining class values cannot be given dis-
tinct internal weights.

• Two characters that have distinct combining class values cannot be given the
same internal weight.

• Characters with a combining class of zero must be given an internal weight of
zero.

Positioning Methods

A number of methods are available to position nonspacing marks so that they are in the
correct location relative to the base character and previous nonspacing marks.

Positioning with Ligatures. A fixed set of combining character sequences can be rendered
effectively by means of fairly simple substitution (see Figure 5-11). Wherever the glyphs
representing a sequence of <base character, nonspacing mark> occur, a glyph representing
the combined form is substituted. Because the nonspacing mark has a zero advance width,

the composed character sequence will automatically have the same width as the base char-
acter. More sophisticated text rendering systems may take additional measures to account
for those cases where the composed character sequence kerns differently or has a slightly
different advance width than the base character.

Positioning with ligatures is perhaps the simplest method of supporting nonspacing marks.
Whenever there is a small, fixed set, such as those corresponding to the precomposed char-
acters of ISO/IEC 8859-1 (Latin-1), this method is straightforward to apply. Because the
composed character sequence almost always has the same width as the base character, ren-

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

Figure 5-11. Positioning with Ligatures

	

	

5.13 Rendering Nonspacing Marks 177

dering, measurement, and editing of these characters are much easier than for the general
case of ligatures.

If a combining character sequence does not form a ligature, then either positioning with
contextual forms or positioning with enhanced kerning can be applied. If they are not
available, then a fallback method can be used.

Positioning with Contextual Forms. A more general method of dealing with positioning
of nonspacing marks is to use contextual formation (see Figure 5-12). In this case for
Devanagari, a consonant RA is rendered with a nonspacing glyph (reph) positioned above
a base consonant. (See “Rendering Devanagari” in Section 9.1, Devanagari.) Depending on
the position of the stem for the corresponding base consonant glyph, a contextual choice is
made between reph glyphs with different side bearings, so that the tip of the reph will be
placed correctly with respect to the base consonant’s stem. Base glyphs generally fall into a
fairly small number of classes, depending on their general shape and width, so a corre-
sponding number of contextually distinct glyphs for the nonspacing mark suffice to pro-
duce correct rendering.

Figure 5-12. Positioning with Contextual Forms
In general cases, a number of different heights of glyphs can be chosen to allow stacking of
glyphs, at least for a few deep. (When these bounds are exceeded, then the fallback methods

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

178 Implementation Guidelines

can be used.) This method can be combined with the ligature method so that in specific
cases ligatures can be used to produce fine variations in position and shape.

Positioning with Enhanced Kerning. A third technique for positioning diacritics is an
extension of the normal process of kerning to be both horizontal and vertical (see
Figure 5-13). Typically, kerning maps from pairs of glyphs to a positioning offset. For
example, in the word “To” the “o” should nest slightly under the “T”. An extension of this
system maps to both a vertical and a horizontal offset, allowing glyphs to be positioned
arbitrarily.

Figure 5-13. Positioning with Enhanced Kerning

To

T o ẃ

ẃ
For effective use in the general case, the kerning process must be extended to handle more
than simple kerning pairs, as multiple diacritics may occur after a base letter.

Positioning with enhanced kerning can be combined with the ligature method so that in
specific cases ligatures can be used to produce fine variations in position and shape.

5.14 Locating Text Element Boundaries
A string of Unicode-encoded text often needs to be broken up into text elements program-
matically. Common examples of text elements include what users think of as characters,
words, lines, and sentences. The precise determination of text elements may vary according
to locale, even as to what constitutes a “character.” The goal of matching user perceptions
cannot always be met, because the text alone does not always contain enough information

to decide boundaries unambiguously. For example, the period (U+002E full stop) is used
ambiguously—sometimes for end-of-sentence purposes, sometimes for abbreviations, and
sometimes for numbers. In most cases, however, programmatic text boundaries can match
user perceptions quite closely, or at least not surprise the user.

Rather than concentrate on algorithmically searching for text elements themselves, a sim-
pler computation looks instead at detecting the boundaries between those text elements. A
precise definition of the default Unicode mechanisms for determining such text element

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.15 Identifiers 179

boundaries are found in Unicode Standard Annex #14, “Line Breaking Properties,” and in
Unicode Standard Annex #29, “Text Boundaries.”

5.15 Identifiers
A common task facing an implementer of the Unicode Standard is the provision of a pars-
ing and/or lexing engine for identifiers. To assist in the standard treatment of identifiers in
Unicode character-based parsers, a set of guidelines is provided in Unicode Standard
Annex #31, “Identifier and Pattern Syntax,” as a recommended default for the definition of
identifier syntax. That document provides details regarding the syntax and conformance
considerations. Associated data files defining the character properties referred to by the
identifier syntax can be found in the Unicode Character Database.

5.16 Sorting and Searching
Sorting and searching overlap in that both implement degrees of equivalence of terms to be
compared. In the case of searching, equivalence defines when terms match (for example, it
determines when case distinctions are meaningful). In the case of sorting, equivalence
affects the proximity of terms in a sorted list. These determinations of equivalence often
depend on the application and language, but for an implementation supporting the Uni-
code Standard, sorting and searching must always take into account the Unicode character
equivalence and canonical ordering defined in Chapter 3, Conformance.

Culturally Expected Sorting and Searching

Sort orders vary from culture to culture, and many specific applications require variations.
Sort order can be by word or sentence, case-sensitive or case-insensitive, ignoring accents
or not. It can also be either phonetic or based on the appearance of the character, such as
ordering by stroke and radical for East Asian ideographs. Phonetic sorting of Han charac-
ters requires use of either a lookup dictionary of words or special programs to maintain an
associated phonetic spelling for the words in the text.

Languages vary not only regarding which types of sorts to use (and in which order they are
to be applied), but also in what constitutes a fundamental element for sorting. For exam-
ple, Swedish treats U+00C4 latin capital letter a with diaeresis as an individual let-

ter, sorting it after z in the alphabet; German, however, sorts it either like ae or like other
accented forms of ä following a. Spanish traditionally sorted the digraph ll as if it were a let-
ter between l and m. Examples from other languages (and scripts) abound.

As a result, it is not possible either to arrange characters in an encoding such that simple
binary string comparison produces the desired collation order or to provide single-level
sort-weight tables. The latter implies that character encoding details have only an indirect
influence on culturally expected sorting.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

180 Implementation Guidelines

Unicode Technical Standard #10, “Unicode Collation Algorithm” (UCA), describes the
issues involved in culturally appropriate sorting and searching, and provides a specification
for how to compare two Unicode strings while remaining conformant to the requirements
of the Unicode Standard. The UCA also supplies the Default Unicode Collation Element
Table as the data specifiying the default collation order. Searching algorithms, whether
brute-force or sublinear, can be adapted to provide language-sensitive searching as
described in the UCA.

Language-Insensitive Sorting

In some circumstances, an application may need to do language-insensitive sorting—that
is, sorting of textual data without consideration of language-specific cultural expectations
about how strings should be ordered. For example, a temporary index may need only to be
in some well-defined order, but the exact details of the order may not matter or be visible to
users. However, even in these circumstances, implementers should be aware of some issues.

First, some subtle differences arise in binary ordering between the three Unicode encoding
forms. Implementations that need to do only binary comparisons between Unicode strings
still need to take this issue into account so as not to create interoperability problems
between applications using different encoding forms. See Section 5.17, Binary Order, for
further discussion.

Many applications of sorting or searching need to be case-insensitive, even while not caring
about language-specific differences in ordering. This is the result of the design of protocols
that may be very old but that are still of great current relevance. Traditionally, implementa-
tions did case-insensitive comparison by effectively mapping both strings to uppercase
before doing a binary comparison. This approach is, however, not more generally extensi-
ble to the full repertoire of the Unicode Standard. The correct approach to case-insensitive
comparison is to make use of case folding, as described in Section 5.18, Case Mappings.

Searching

Searching is subject to many of the same issues as comparison. Other features are often
added, such as only matching words (that is, where a word boundary appears on each side
of the match). One technique is to code a fast search for a weak match. When a candidate is
found, additional tests can be made for other criteria (such as matching diacriticals, word
match, case match, and so on).

When searching strings, it is necessary to check for trailing nonspacing marks in the target

string that may affect the interpretation of the last matching character. That is, a search for
“San Jose” may find a match in the string “Visiting San José, Costa Rica, is a...”. If an exact
(diacritic) match is desired, then this match should be rejected. If a weak match is sought,
then the match should be accepted, but any trailing nonspacing marks should be included
when returning the location and length of the target substring. The mechanisms discussed
in Unicode Standard Annex #29, “Text Boundaries,” can be used for this purpose.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.17 Binary Order 181

One important application of weak equivalence is case-insensitive searching. Many tradi-
tional implementations map both the search string and the target text to uppercase. How-
ever, case mappings are language-dependent and not unambiguous. The preferred method
of implementing case insensitivity is described in Section 5.18, Case Mappings.

A related issue can arise because of inaccurate mappings from external character sets. To
deal with this problem, characters that are easily confused by users can be kept in a weak
equivalency class (ë d-bar, ä eth, ê capital d-bar, – capital eth). This approach tends to do
a better job of meeting users’ expectations when searching for named files or other objects.

Sublinear Searching

International searching is clearly possible using the information in the collation, just by
using brute force. However, this tactic requires an O(m*n) algorithm in the worst case and
an O(m) algorithm in common cases, where n is the number of characters in the pattern
that is being searched for and m is the number of characters in the target to be searched.

A number of algorithms allow for fast searching of simple text, using sublinear algorithms.
These algorithms have only O(m/n) complexity in common cases by skipping over charac-
ters in the target. Several implementers have adapted one of these algorithms to search text
pre-transformed according to a collation algorithm, which allows for fast searching with
native-language matching (see Figure 5-14).

Figure 5-14. Sublinear Searching

T h e _ q u i c k _ b r o w n …
q u i c k

q u i c k
q u i c k

q u i c k
q u i c k

The main problems with adapting a language-aware collation algorithm for sublinear
searching relate to multiple mappings and ignorables. Additionally, sublinear algorithms
precompute tables of information. Mechanisms like the two-stage tables shown in
Figure 5-1 are efficient tools in reducing memory requirements.
5.17 Binary Order
When comparing text that is visible to end users, a correct linguistic sort should be used, as
described in Section 5.16, Sorting and Searching. However, in many circumstances the only

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

182 Implementation Guidelines

requirement is for a fast, well-defined ordering. In such cases, a binary ordering can be
used.

Not all encoding forms of Unicode have the same binary order. UTF-8 and UTF-32 data,
and UTF-16 data containing only BMP characters, sort in code point order, whereas UTF-
16 data containing a mix of BMP and supplementary characters does not. This is because
supplementary characters are encoded in UTF-16 with pairs of surrogate code units that
have lower values (D80016..DFFF16) than some BMP code points.

Furthermore, when UTF-16 or UTF-32 data is serialized using one of the Unicode encod-
ing schemes and compared byte-by-byte, the resulting byte sequences may or may not have
the same binary ordering, because swapping the order of bytes will affect the overall order-
ing of the data. Due to these factors, text in the UTF-16BE, UTF-16LE, and UTF-32LE
encoding schemes does not sort in code point order.

In general, the default binary sorting order for Unicode text should be code point order.
However, it may be necessary to match the code unit ordering of a particular encoding
form (or the byte ordering of a particular encoding scheme) so as to duplicate the ordering
used in a different application.

Some sample routines are provided here for sorting one encoding form in the binary order
of another encoding form.

UTF-8 in UTF-16 Order

The following comparison function for UTF-8 yields the same results as UTF-16 binary
comparison. In the code, notice that it is necessary to do extra work only once per string,
not once per byte. That work can consist of simply remapping through a small array; there
are no extra conditional branches that could slow down the processing.

int strcmp8like16(unsigned char* a, unsigned char* b) {

 while (true) {

 int ac = *a++;

 int bc = *b++;

 if (ac != bc) return rotate[ac] - rotate[bc];

 if (ac == 0) return 0;

 }

}

static char rotate[256] =

{0x00, ..., 0x0F,

 0x10, ..., 0x2F,

 . .

 . .

 . .

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.17 Binary Order 183

 0xD0, ..., 0xDF,

 0xE0, ..., 0xED, 0xF0, 0xF1,

 0xF2, 0xF3, 0xF4, 0xEE, 0xEF, 0xF5, ..., 0xFF};

The rotate array is formed by taking an array of 256 bytes from 0x00 to 0xFF, and rotating
0xEE and 0xEF to a position after the bytes 0xF0..0xF4. These rotated values are shown in
boldface. When this rotation is performed on the initial bytes of UTF-8, it has the effect of
making code points U+10000..U+10FFFF sort below U+E000..U+FFFF, thus mimicking
the ordering of UTF-16.

UTF-16 in UTF-8 Order

The following code can be used to sort UTF-16 in code point order. As in the routine for
sorting UTF-8 in UTF-16 order, the extra cost is incurred once per function call, not once
per character.

int strcmp16like8(Unichar* a, Unichar* b) {

 while (true) {

 int ac = *a++;

 int bc = *b++;

 if (ac != bc) {

 return (Unichar)(ac + utf16Fixup[ac>>11]) -

 (Unichar)(bc + utf16Fixup[bc>>11]);

 }

 if (ac == 0) return 0;

 }

}

static const Unichar utf16Fixup[32]={

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0x2000, 0xf800, 0xf800, 0xf800, 0xf800

};

This code uses Unichar as an unsigned 16-bit integral type. The construction of the
utf16Fixup array is based on the following concept. The range of UTF-16 values is

divided up into thirty-two 2K chunks. The 28th chunk corresponds to the values
0xD800..0xDFFF—that is, the surrogate code units. The 29th through 32nd chunks corre-
spond to the values 0xE000..0xFFFF. The addition of 0x2000 to the surrogate code units
rotates them up to the range 0xF800..0xFFFF. Adding 0xF800 to the values 0xE000..0xFFFF
and ignoring the unsigned integer overflow rotates them down to the range
0xD800..0xF7FF. Calculating the final difference for the return from the rotated values pro-
duces the same result as basing the comparison on code points, rather than the UTF-16

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

184 Implementation Guidelines

code units. The use of the hack of unsigned integer overflow on addition avoids the need
for a conditional test to accomplish the rotation of values.

Note that this mechanism works correctly only on well-formed UTF-16 text. A modified
algorithm must be used to operate on 16-bit Unicode strings that could contain isolated
surrogates.

5.18 Case Mappings
Case is a normative property of characters in specific alphabets such as Latin, Greek, Cyril-
lic, Armenian, and archaic Georgian, whereby characters are considered to be variants of a
single letter. These variants, which may differ markedly in shape and size, are called the
uppercase letter (also known as capital or majuscule) and the lowercase letter (also known
as small or minuscule). The uppercase letter is generally larger than the lowercase letter.
Alphabets with case differences are called bicameral; those without are called unicameral.
For example, the archaic Georgian script contained upper- and lowercase pairs, but they
are not used in modern Georgian. See Section 7.7, Georgian, for more information.

The case mappings in the Unicode Character Database (UCD) are normative. This follows
from their use in defining the case foldings in CaseFolding.txt and from the use of case
foldings to define case-insensitive identifiers in Unicode Standard Annex #31, “Identifier
and Pattern Syntax.” However, the normative status of case mappings does not preclude the
adaptation of case mapping processes to local conventions, as discussed below. See also the
Common Locale Data Repository (CLDR), in Section B.6, Other Unicode Online Resources,
for extensive data regarding local and language-specific casing conventions.

Titlecasing

Titlecasing refers to a casing practice wherein the first letter of a word is an uppercase letter
and the rest of the letters are lowercase. This typically applies, for example, to initial words
of sentences and to proper nouns. Depending on the language and orthographic practice,
this convention may apply to other words as well, as for common nouns in German.

Titlecasing also applies to entire strings, as in instances of headings or titles of documents,
for which multiple words are titlecased. The choice of which words to titlecase in headings
and titles is dependent on language and local conventions. For example, “The Merry Wives
of Windsor” is the appropriate titlecasing of that play’s name in English, with the word “of”

not titlecased. In German, however, the title is “Die lustigen Weiber von Windsor,” and
both “lustigen” and “von” are not titlecased. In French even fewer words are titlecased: “Les
joyeuses commères de Windsor.”

Moreover, the determination of what actually constitutes a word is language dependent,
and this can influence which letter or letters of a “word” are uppercased when titlecasing
strings. For example l’arbre is considered two words in French, whereas can’t is considered
one word in English.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.18 Case Mappings 185

The need for a normative Titlecase_Mapping property in the Unicode Standard derives
from the fact that the standard contains certain digraph characters for compatibility. These
digraph compatibility characters, such as U+01F3 “dz” latin small letter dz, require
one form when being uppercased, U+01F1 “DZ” latin capital letter dz, and another
form when being titlecased, U+01F2 “Dz” latin capital letter d with small letter z.
The latter form is informally referred to as a titlecase character, because it is mixed case,
with the first letter uppercase. Most characters in the standard have identical values for
their Titlecase_Mapping and Uppercase_Mapping; however, the two values are distin-
guished for these few digraph compatibility characters.

Complications for Case Mapping

A number of complications to case mappings occur once the repertoire of characters is
expanded beyond ASCII.

Case mappings may produce strings of different lengths than the original. For example, the
German character U+00DF ß latin small letter sharp s expands when uppercased to
the sequence of two characters “SS”. This also occurs where there is no precomposed char-
acter corresponding to a case mapping, such as with U+0149 N latin small letter n pre-

ceded by apostrophe. The maximum string expansion as a result of case mapping in
Unicode 5.0 is three. For example, uppercasing U+0390 t greek small letter iota with

dialytika and tonos results in three characters.

The lengths of case-mapped strings may also differ from their originals depending on the
Unicode encoding form. For example, the Turkish strings “topkapc” (with a dotless i) and
“TOPKAPI” have the same number of characters and are the same length in UTF-16 and
UTF-32; however, in UTF-8, the representation of the uppercase form takes only seven
bytes, whereas the lowercase form takes eight bytes. By comparison, the German strings
“heiß” and “HEISS” have a different number of characters and differ in length in UTF-16
and UTF-32, but in UTF-8 both strings are encoded using the same number of bytes.

Some characters require special handling, such as U+0345 combining greek ypogegram-

meni (iota subscript). As discussed in Section 7.2, Greek, the iota-subscript characters used
to represent ancient text can be viewed as having special case mappings. Normally, the
uppercase and lowercase forms of alpha-iota-subscript will map back and forth. In some
instances, uppercase words should be transformed into their older spellings by removing
accents and changing the iota subscript into a capital iota (and perhaps even removing
spaces).
Characters may also have different case mappings, depending on the context. For example,
U+03A3 “£” greek capital letter sigma lowercases to U+03C3 “√” greek small let-

ter sigma if it is followed by another letter, but lowercases to U+03C2 “¬” greek small

letter final sigma if it is not.

Characters may have case mappings that depend on the locale. The principal example is
Turkish, where U+0131 “±” latin small letter dotless i maps to U+0049 “I” latin

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

186 Implementation Guidelines

capital letter i and U+0069 “i” latin small letter i maps to U+0130 “∞” latin cap-

ital letter i with dot above.

Figure 5-15 shows the case mappings for these characters and canonically equivalent
sequences. A mapping with a double-sided arrow round-trips—that is, the opposite case
mapping results in the original sequence. A mapping with a single-sided arrow does not
round-trip.

Figure 5-15. Case Mapping for Turkish I

i I

Iı

i + ˙ I + ˙

0069 0049

0131 0049

00490069 0307

Normal Turkish

0307

i I

Iı

i + ˙ + ˙

0069 0130

0131 0049

01300069 0307 0307

˙

İ

I i

I + ˙ i + ˙

0049 0069

0130

00690049 0307

Normal Turkish

0307

I ı

i

i + ˙

0049 0131

0069

0049 00690307
I

Uppercase Mapping

Lowercase Mapping

i + ˙
0069 0307

I
0130

˙İ

@ @@

@

@ @@

@

Because many characters are really caseless (most of the IPA block, for example) and have
no matching uppercase, the process of uppercasing a string does not mean that it will no
longer contain any lowercase letters.

Case mappings may occasionally depend on the context surrounding a character in the

original string. Such context-sensitive case mappings are not numerous, but where they
occur, consideration of context is required for correct case operations. Because only a few
context-sensitive case mappings exist, and because they involve only a very few characters,
implementations may choose to hard-code the treatment of these characters for casing
operations rather than using data-driven code based on the Unicode Character Database.
However, if this approach is taken, each time the implementation is upgraded to a new ver-
sion of the Unicode Standard, hard-coded casing operations should be checked for consis-

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.18 Case Mappings 187

tency with the updated data. See SpecialCasing.txt in the Unicode Character Database for
details of context-sensitive case mappings.

Reversibility

No casing operations are reversible. For example:

toUpperCase(toLowerCase(“John Brown”)) í “JOHN BROWN”

toLowerCase(toUpperCase(“John Brown”)) í “john brown”

There are even single words like vederLa in Italian or the name McGowan in English, which
are neither upper-, lower-, nor titlecase. This format is sometimes called inner-caps—or
more informally camelcase—and it is often used in programming and in Web names. Once
the string “McGowan” has been uppercased, lowercased, or titlecased, the original cannot
be recovered by applying another uppercase, lowercase, or titlecase operation. There are
also single characters that do not have reversible mappings, such as the Greek sigmas.

For word processors that use a single command-key sequence to toggle the selection
through different casings, it is recommended to save the original string and return to it via
the sequence of keys. The user interface would produce the following results in response to
a series of command keys. In the following example, notice that the original string is
restored every fourth time.

1. The quick brown

2. THE QUICK BROWN

3. the quick brown

4. The Quick Brown

5. The quick brown (repeating from here on)

Uppercase, titlecase, and lowercase can be represented in a word processor by using a char-
acter style. Removing the character style restores the text to its original state. However, if
this approach is taken, any spell-checking software needs to be aware of the case style so
that it can check the spelling against the actual appearance.

Caseless Matching

Caseless matching is implemented using case folding, which is the process of mapping

strings to a canonical form where case differences are erased. Case folding allows for fast
caseless matches in lookups because only binary comparison is required. It is more than
just conversion to lowercase. For example, it correctly handles cases such as the Greek
sigma, so that “xy{|” and “butu” will match.

Normally, the original source string is not replaced by the folded string because that substi-
tution may erase important information. For example, the name “Marco di Silva” would be
folded to “marco di silva,” losing the information regarding which letters are capitalized.
Typically, the original string is stored along with a case-folded version for fast comparisons.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

188 Implementation Guidelines

The CaseFolding.txt file in the Unicode Character Database is used to perform locale-inde-
pendent case folding. This file is generated from the case mappings in the Unicode Charac-
ter Database, using both the single-character mappings and the multicharacter mappings.
It folds all characters having different case forms together into a common form. To com-
pare two strings for caseless matching, one can fold each string using this data and then use
a binary comparison.

Case folding logically involves a set of equivalence classes constructed from the Unicode
Character Database case mappings as follows.

For each character X in Unicode, apply the following rules in order:

R1 If X is already in an equivalence class, continue to the next character. Otherwise,
form a new equivalence class and add X.

R2 Add any other character that uppercases, lowercases, or titlecases to anything in
the equivalence class.

R3 Add any other characters to which anything in the equivalence class uppercases,
lowercases, or titlecases.

R4 Repeat R2 and R3 until nothing further is added.

R5 From each class, one representative element (a single lowercase letter where possi-
ble) is chosen to be the common form.

Each equivalence class is completely disjoint from all the others, and every Unicode charac-
ter is in one equivalence class. CaseFolding.txt thus contains the mappings from other
characters in the equivalence classes to their common forms. As an exception, the case fold-
ings for dotless i and dotted I do not follow the derivation algorithm for all other case fold-
ings. Instead, their case foldings are hard-coded in the derivation for best default matching
behavior. Additional, alternate case foldings for these characters that can be used for Turkic
languages. However, the use of these alternate case foldings does not maintain canonical
equivalence, and it is often undesirable to have alternate behavior for caseless matching. In
addition, language information is often not available where caseless matching is applied.

The Unicode case folding algorithm is defined to be simpler and more efficient than case
mappings. It is context-insensitive and language-independent (except for the optional,
alternate Turkic case foldings). As a result, there are a few rare cases where a caseless match
does not match pairs of strings as expected; the most notable instance of this is for Lithua-
nian. In Lithuanian typography for dictionary use, an “i” retains its dot when a grave,

acute, or tilde accent is placed above it. This convention is represented in Unicode by using
an explicit combining dot above, occurring in sequence between the “i” and the respective
accent. (See Figure 7-2.) When case folded using the default case folding algorithm, strings
containing these sequences will still contain the combining dot above. In the unusual situ-
ation where case folding needs to be tailored to provide for these special Lithuanian dictio-
nary requirements, strings can be preprocessed to remove any combining dot above
characters occurring between an “i” and a subsequent accent, so that the folded strings will
match correctly.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.18 Case Mappings 189

For more information on character foldings, see Unicode Technical Report #30, “Character
Foldings.”

Where case distinctions are not important, other distinctions between Unicode characters
(in particular, compatibility distinctions) are generally ignored as well. In such circum-
stances, text can be normalized to Normalization Form KC or KD after case folding,
thereby producing a normalized form that erases both compatibility distinctions and case
distinctions. However, such normalization should generally be done only on a restricted
repertoire, such as identifiers (alphanumerics). See Unicode Standard Annex #15, “Uni-
code Normalization Forms,” and Unicode Standard Annex #31, “Identifier and Pattern
Syntax,” for more information. For a summary, see “Equivalent Sequences” in Section 2.2,
Unicode Design Principles.

Caseless matching is only an approximation of the language-specific rules governing the
strength of comparisons. Language-specific case matching can be derived from the colla-
tion data for the language, where only the first- and second-level differences are used. For
more information, see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

In most environments, such as in file systems, text is not and cannot be tagged with lan-
guage information. In such cases, the language-specific mappings must not be used. Other-
wise, data structures such as B-trees might be built based on one set of case foldings and
used based on a different set of case foldings. This discrepancy would cause those data
structures to become corrupt. For such environments, a constant, language-independent,
default case folding is required.

Stability. The definition of case folding is guaranteed to be stable, in that any string of
characters case folded according to these rules will remain case folded in Version 5.0 or later
of the Unicode Standard. To achieve this stability, no new lowercase character will be added
to the Unicode Standard as a casing pair of an existing upper- or titlecase character that has
no lowercase pair

Normalization

Casing operations as defined in Section 3.13, Default Case Algorithms, preserve canonical
equivalence, but are not guaranteed to preserve Normalization Forms. That is, some strings
in a particular Normalization Form (for example, NFC) will no longer be in that form after
the casing operation is performed. Consider the strings shown in the example in Table 5-5.

Table 5-5. Casing and Normalization in Strings
Original (NFC) MÎ <U+01F0 latin small letter j with caron,
U+0323 combining dot below>

Uppercased JOÎ <U+004A latin capital letter j,
U+030C combining caron,
U+0323 combining dot below>

Uppercased NFC JÎO <U+004A latin capital letter j,
U+0323 combining dot below,
U+030C combining caron>

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

190 Implementation Guidelines

The original string is in NFC format. When uppercased, the small j with caron turns into an
uppercase J with a separate caron. If followed by a combining mark below, that sequence is
not in a normalized form. The combining marks have to be put in canonical order for the
sequence to be normalized.

If text in a particular system is to be consistently normalized to a particular form such as
NFC, then the casing operators should be modified to normalize after performing their
core function. The actual process can be optimized; there are only a few instances where a
casing operation causes a string to become denormalized. If a system specifically checks for
those instances, then normalization can be avoided where not needed.

Normalization also interacts with case folding. For any string X, let Q(X) = NFC(toCase-
fold(NFD(X))). In other words, Q(X) is the result of normalizing X, then case folding the
result, then putting the result into NFC format. Because of the way normalization and case
folding are defined, Q(Q(X)) = Q(X). Repeatedly applying Q does not change the result;
case folding is closed under canonical normalization for either Normalization Form NFC or
NFD.

Case folding is not, however, closed under compatibility normalization for either Normal-
ization Form NFKD or NFKC. That is, given R(X) = NFKC(toCasefold(NFD(X))),
there are some strings such that R(R(X)) ≠ R(X). FC_NFKC_Closure, a derived prop-
erty, contains the additional mappings that can be used to produce a compatibility-closed
case folding. This set of mappings is found in DerivedNormalizationProps.txt in the Uni-
code Character Database.

5.19 Unicode Security
It is sometimes claimed that the Unicode Standard poses new security issues. Some of these
claims revolve around unique features of the Unicode Standard, such as its encoding forms.
Others have to do with generic issues, such as character spoofing, which also apply to any
other character encoding, but which are seen as more severe threats when considered from
the point of view of the Unicode Standard.

This section examines some of these issues and makes some implementation recommenda-
tions that should help in designing secure applications using the Unicode Standard.

Alternate Encodings. A basic security issue arises whenever there are alternate encodings
for the “same” character. In such circumstances, it is always possible for security-conscious

modules to make different assumptions about the representation of text. This conceivably
can result in situations where a security watchdog module of some sort is screening for pro-
hibited text or characters, but misses the same characters represented in an alternative
form. If a subsequent processing module then treats the alternative form as if it were what
the security watchdog was attempting to prohibit, one potentially has a situation where a
hostile outside process can circumvent the security software. Whether such circumvention
can be exploited in any way depends entirely on the system in question.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.19 Unicode Security 191

Some earlier versions of the Unicode Standard included enough leniency in the definition
of the UTF-8 encoding form, particularly regarding the so-called non-shortest form, to raise
questions about the security of applications using UTF-8 strings. However, the conformance
requirements on UTF-8 and other encoding forms in the Unicode Standard have been
tightened so that no encoding form now allows any sort of alternate representation, includ-
ing non-shortest form UTF-8. Each Unicode code point has a single, unique encoding in
any particular Unicode encoding form. Properly coded applications should not be subject
to attacks on the basis of code points having multiple encodings in UTF-8 (or UTF-16).

However, another level of alternate representation has raised other security questions: the
canonical equivalences between precomposed characters and combining character
sequences that represent the same abstract characters. This is a different kind of alternate
representation problem—not one of the encoding forms per se, but one of visually identi-
cal characters having two distinct representations (one as a single encoded character and
one as a sequence of base form plus combining mark, for example). The issue here is differ-
ent from that for alternate encodings in UTF-8. Canonically equivalent representations for
the “same” string are perfectly valid and expected in Unicode. The conformance require-
ment, however, is that conforming implementations cannot be required to make an inter-
pretation distinction between canonically equivalent representations. The way for a
security-conscious application to guarantee this is to carefully observe the normalization
specifications (see Unicode Standard Annex #15, “Unicode Normalization Forms”) so that
data is handled consistently in a normalized form.

Spoofing. Another security issue is spoofing, meaning the deliberate misspelling of a
domain name, or user name, or other string in a form designed to trick unwary users into
interacting with a hostile Web site as if it was a trusted site (or user). In this case, the confu-
sion is not at the level of the software process handling the code points, but rather in the
human end users, who see one character but mistake it for another, and who then can be
fooled into doing something that will breach security or otherwise result in unintended
results.

To be effective, spoofing does not require an exact visual match—for example, using the
digit “1” instead of the letter “l”. The Unicode Standard contains many confusables—that is,
characters whose glyphs, due to historical derivation or sheer coincidence, resemble each
other more or less closely. Certain security-sensitive applications or systems may be vulner-
able due to possible misinterpretation of these confusables by their users.

Many legacy character sets, including ISO/IEC 8859-1 or even ASCII, also contain confus-
ables, albeit usually far fewer of them than in the Unicode Standard simply because of the

sheer scale of Unicode. The legacy character sets all carry the same type of risks when it
comes to spoofing, so there is nothing unique or inadequate about Unicode in this regard.
Similar steps will be needed in system design to assure integrity and to lessen the potential
for security risks, no matter which character encoding is used.

The Unicode Standard encodes characters, not glyphs, and it is impractical for many rea-
sons to try to avoid spoofing by simply assigning a single character code for every possible
confusable glyph among all the world’s writing systems. By unifying an encoding based

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

192 Implementation Guidelines

strictly on appearance, many common text-processing tasks would become convoluted or
impossible. For example, Latin B and Greek Beta í look the same in most fonts, but lower-
case to two different letters, Latin b and Greek beta ≤, which have very distinct appear-
ances. A simplistic fix to the confusability of Latin B and Greek Beta would result in great
difficulties in processing Latin and Greek data, and in many cases in data corruptions as
well.

Because all character encodings inherently have instances of characters that might be con-
fused with one another under some conditions, and because the use of different fonts to
display characters might even introduce confusions between characters that the designers
of character encodings could not prevent, character spoofing must be addressed by other
means. Systems or applications that are security-conscious can test explicitly for known
spoofings, such as “MICROS0FT,” “A0L,” or the like (substituting the digit “0” for the letter
“O”). Unicode-based systems can provide visual clues so that users can ensure that labels,
such as domain names, are within a single script to prevent cross-script spoofing. However,
provision of such clues is clearly the responsibility of the system or application, rather than
being a security condition that could be met by somehow choosing a “secure” character
encoding that was not subject to spoofing. No such character encoding exists.

Unicode Standard Annex #24, “Script Names,” presents a classification of Unicode charac-
ters by script. By using such a classification, a program can check that labels consist only of
characters from a given script or characters that are expected to be used with more than
one script (such as the “COMMON” or “INHERITED” script names defined in Unicode
Standard Annex #24, “Script Names”). Because cross-script names may be legitimate, the
best method of alerting a user might be to highlight any unexpected boundaries between
scripts and let the user determine the legitimacy of such a string explicitly.

For further discussion of security issues, see Unicode Technical Report #36, “Unicode Secu-
rity Considerations,” and Unicode Technical Standard #39, “Unicode Security Mecha-
nisms.”

5.20 Default Ignorable Code Points
Default ignorable code points are those that should be ignored by default in rendering
unless explicitly supported. They have no visible glyph or advance width in and of them-
selves, although they may affect the display, positioning, or adornment of adjacent or sur-
rounding characters. Some default ignorable code points are assigned characters, while

others are reserved for future assignment.

The default ignorable code points are listed in DerivedCoreProperties.txt in the Unicode
Character Database with the property Default_Ignorable_Code_Points. Examples of such
characters include U+2060 word joiner, U+00AD soft hyphen, and U+200F right-to-

left mark.

An implementation should ignore default ignorable characters in rendering whenever it
does not support the characters.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

5.20 Default Ignorable Code Points 193

This can be contrasted with the situation for non-default ignorable characters. If an imple-
mentation does not support U+0915 ∑ devanagari letter ka, for example, it should not
ignore it in rendering. Displaying nothing would give the user the impression that it does
not occur in the text at all. The recommendation in that case is to display a “last-resort”
glyph or a visible “missing glyph” box. See Section 5.3, Unknown and Missing Characters,
for more information.

With default ignorable characters, such as U+200D Ä zero width joiner, the situation is
different. If the program does not support that character, the best practice is to ignore it
completely without displaying a last-resort glyph or a visible box because the normal dis-
play of the character is invisible—its effects are on other characters. Because the character is
not supported, those effects cannot be shown.

Other characters will have other effects on adjacent characters. For example:

• U+2060 É word joiner does not produce a visible change in the appearance
of surrounding characters; instead, its only effect is to indicate that there should
be no line break at that point.

• U+2061 Ê function application has no effect on the text display and is
used only in internal mathematical expression processing.

• U+00AD Á soft hyphen has a null default appearance in the middle of a
line: the appearance of “therÁapist” is simply “therapist”—no visible glyph.
In line break processing, it indicates a possible intraword break. At any intra-
word break that is used for a line break—whether resulting from this character
or by some automatic process—a hyphen glyph (perhaps with spelling
changes) or some other indication can be shown, depending on language and
context.

This does not imply that default ignorable code points must always be invisible. An imple-
mentation can, for example, show a visible glyph on request, such as in a “Show Hidden”
mode. A particular use of a “Show Hidden” mode is to show a visible indication of “mis-
placed” or “ineffectual” formatting codes. For example, this would include two adjacent
U+200D Ä zero width joiner characters, where the extra character has no effect.

The default ignorable unassigned code points lie in particular designated ranges. These
ranges are designed and reserved for future default ignorable characters, so as to allow for-
ward compatibility. All implementations should ignore all unassigned default ignorable
code points in all rendering. Any new default ignorable characters should be assigned in

those ranges, permitting existing programs to ignore them until they are supported in
some future version of the program.

Some other characters have no visible glyphs—the whitespace characters. They typically
have advance width, however. The line separation characters, such as the carriage return,
do not clearly exhibit this advance width because they are always at the end of a line, but
most implementations give them a visible advance width when they are selected.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

194 Implementation Guidelines

Stateful Format Controls. There are a small number of paired stateful controls. These char-
acters are used in pairs, with an initiating character (or sequence) and a terminating char-
acter. Even when these characters are ignored, complications can arise due to their paired
nature. When text is deleted, these characters can become unpaired. To avoid this problem,
any unpaired characters should be moved outside of the deletion so that the pairing is
maintained. When text is copied or extracted, unpaired characters may also require the
addition of the appropriate pairs to the copied text to maintain the pairing.

The paired stateful controls are listed in Table 5-6.

Table 5-6. Paired Stateful Controls

Characters Documentation
Bidi Overrides and Embeddings Section 16.2, Layout Controls; UAX #9
Deprecated Format Characters Section 16.3, Deprecated Format Characters
Annotation Characters Section 16.8, Specials
Tag Characters Section 16.9, Tag Characters

The bidirectional overrides and embeddings and the annotation characters are more
robust because their behavior terminates at paragraphs. The tag characters, by contrast, are
particularly fragile. See Section 5.10, Language Information in Plain Text, for more informa-
tion.

Some other characters have a scope of influence over the behavior or rendering of neigh-
boring characters. These include the fraction slash and the arabic end of ayah. However,
because these characters are not paired, they do not give rise to the same issues with
unaware text modifications.
Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

	Purchasing the book
	Implementation Guidelines
	5.1 Transcoding to Other Standards
	Issues
	Multistage Tables

	5.2 Programming Languages and Data Types
	Unicode Data Types for C

	5.3 Unknown and Missing Characters
	Reserved and Private-Use Character Codes
	Interpretable but Unrenderable Characters
	Default Property Values
	Default Ignorable Code Points
	Interacting with Downlevel Systems

	5.4 Handling Surrogate Pairs in UTF-16
	5.5 Handling Numbers
	5.6 Normalization
	5.7 Compression
	5.8 Newline Guidelines
	Definitions
	Line Separator and Paragraph Separator
	Recommendations

	5.9 Regular Expressions
	5.10 Language Information in Plain Text
	Requirements for Language Tagging
	Language Tags and Han Unification

	5.11 Editing and Selection
	Consistent Text Elements

	5.12 Strategies for Handling Nonspacing Marks
	Keyboard Input
	Truncation

	5.13 Rendering Nonspacing Marks
	Canonical Equivalence
	Positioning Methods

	5.14 Locating Text Element Boundaries
	5.15 Identifiers
	5.16 Sorting and Searching
	Culturally Expected Sorting and Searching
	Language-Insensitive Sorting
	Searching
	Sublinear Searching

	5.17 Binary Order
	UTF-8 in UTF-16 Order
	UTF-16 in UTF-8 Order

	5.18 Case Mappings
	Titlecasing
	Complications for Case Mapping
	Reversibility
	Caseless Matching
	Normalization

	5.19 Unicode Security
	5.20 Default Ignorable Code Points

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

