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Main goals

Asymptotic preserving numerical schemes for hyperbolic problems.

⊲ hyperbolic balance laws with stiff relaxation

⊲ convergence to equilibrium and large time behaviour

⊲ uniformly stable and asymptotic preserving numerical schemes

⊲ a-posteriori error analysis and sensitivity calculus

Model problem

Gas transport in pipelines is modeled by
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with de = de(ρe, qe) = λ/(2D)|q|/ρ and p(ρ) = c2ρ.

Balance laws across junctions yield

ρe
(v ) = ρe′

(v ), for all e, e
′ ∈ E(v ), v ∈ V0, (3)
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(v ) = 0, for all v ∈ V0. (4)

Input/boundary condition described by pressure at the ports

ρe
(v ) = uv , for all v ∈ V∂ . (5)

Example network:
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⊲ V0 = {v2}, V∂ = {v1, v3, v4}

⊲ E(v2) = {e1, e2, e3}

⊲ ne1 (v2) = 1, ne2 (v2) = −1

Physical properties:

(P1) dissipation of energy E = 1

2
(‖ρ‖2 + ‖q‖2), i.e.

d

dt
E = −(dq, q) − (q, nu)V∂

(P2) conservation of mass: d

dt

∫
E
ρ dt =

∑
v∈V∂ ,e∈E(v )

ne(v )qe(v );

(P3) exponential convergence to equilibrium when u ≡ 0;

(P4) existence of unique steady states for the stationary problem.

Galerkin semidiscretization

Variational characterization: Any solution of (1)-(5) satisfies

(GD)

{
(a

e∂tρ(t),µ) + (∂′
x q(t),µ) = 0,

(b
e∂t q(t), v ) − (ρ(t), ∂′

x v ) + (dq(t), v ) = (u(t), nv )V∂
,

for all µ ∈ L2(E) and v ∈ H(div ) = {τ : τ e ∈ H1(e) ∀e ∈
E and (4) holds}.

Conforming Galerkin discretization (GDh):
Find ρh ∈ Mh ⊂ L2(E) and qh ∈ Vh ⊂ H(div ), such that variational

principle holds for all µh ∈ Mh and vh ∈ Vh.

Results

Theorem. Assume that Mh, Vh satisfy

(A1h) Mh = ∂′
x Vh

(A2h) {r : ∂′
x r = 0} ⊂ Vh

(A3h) 1 ∈ Mh

Then any solution of (GDh) fulfills (P1)-(P4).

Further results:

⊲ mixed fem of arbitrary order satisfying (A1h)-(A3h)

⊲ stability preserving time-discretization of arbitrary order possible;

⊲ uniform stability and error estimates for fully discrete schemes
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with constants C,α independent of n, h,∆t .

Structure preserving model reduction

Model reduction by Galerkin projection can be interpreted as

PDE GDh

ALG ÂLG

GDH

(A1h) − (A3h) (A1H ) − (A3H )

(Â1) − (Â3)

Reduced model in algebraic form

(ÂLG)
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⊤
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⊤
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⊤
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Theorem (Model reduction). Assume that the coarse spaces
MH , VH respectively projection matrices V1, V2 satisfy

(A1H) MH = ∂′
x VH (Â1) R(M1V1) = R(GV2)

(A2H) {v : ∂′
x v = 0} ⊂ VH (Â2) N(G) ⊂ R(V2)

(A3H) 1 ∈ MH (Â3) o1 ∈ R(V2)

Then any solution of the Galerkin approximation (GDH ) and
its algebraic representation ÂLG satisfies (P1)–(P4).

Construction of projection matrices V1, V2:

1. Create subspaces W1,W2 via Krylov iteration.

2. Choose finite dimensional spaces Z1,Z2, such that

V1 = W1 + Z1 and V2 = W2 + Z2

satisfy the compatibility conditions (Â1) − (Â3).
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