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PDAE Model Perturbed Problem

Gas transport through a network G = (V, £) can be described by a set of hyper- We are interested in the behaviour of a solution of a pipe network described by
bolic PDEs equations (ISO2) and (1)-(3) regarding perturbations in these equations.
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where pe and ge are the pressure and mass flow, ae, Be are pipe parameter
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are coupled to the pipes by a set of balance equations for the flows and pairwise o5 A5 , s 5
mappings for the pressures go(lf/)eéq ) solves (1ISO2’) with (17) - (3'), then (p°, q°) =
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for e € £ and (1’) - (3") with zero right hand side. The non-linear function fs is

with A = [Ag AL Ac As Ar] the incidence matrix of G and B € ker |A]. given by the right hand side from the 2nd equation of (ISO2).
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> Depending on the semi-discretization in space of system (ISO2) & (1)-(3),
the resulting DAEs may be of arbitrary high index. qu _ Ki(q‘{ +39) ‘733 -0
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> Solutions may not reflect the properties of the PDAE system correctly. ‘
2~ =0

=5
Example: V= {ui,..,us} Vi={w} E={e1,...er} = Pe, =

GB@GB@@
‘@

59 =104 sin(10°1) kgls Mass inflow at uy, Mass inflow at g, After hpmogenlzatlon of both systems, the perturbation analysis reduces to the
6 max Ax = 40 km. max Ax = 2 km. analySIS of

Perturbation Analysis
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in an appropriate function .Hereu = 5 = (0%, q%.
Extension to General Networks an appropriate function space . Here 1 = (p, g). u* = (¢, 4")
Theorem 1 (A priori estimates). Let the boundary data o', qf" and
> This approach seems applicable to more general gas networks e.g., with the perturbations 6% and 6" and their first derivatives w.r.t. time
compressors (COM) be bounded. And let the velocity of each pipe e € £ be bounded by
> Analysis of hyperbolic PDAEs of the form |1'/e| < 0. Then (p,q) and (p°,q%) and their first derivatives w.r.t.

time are bounded as well.
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9z =0 Theorem 2 (Perturbation result). If the assumptions of Theorem 1

hold, we can derive that

> g possesses some properties that have been proven useful in the treatment 52 2 Q)2 r
of elliptic and parabolic PDAEs of that form. max|u — [z < K (I|60||L2 +max (|97 + max|o l)
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