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Challenges in Gas Networks under Uncertainty

gas network with active elements and flows q, pressure p
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possible sources of uncertainty:

demand qnom ∈ D, roughness φ ∈ U

goal:

is there a configuration of the active elements such that there is

a feasible pressure/flow for every value in the uncertainty set?

challenge:

multi-stage non-convex mixed-integer robust optimization problem

Active Networks: Splitting the Uncertainty Set

⊲ piecewise linear relaxation of pressure-drop functions

⊲ so far: works on networks with edge-disjoint cycles

⊲ result: segments of linearization map to partitions of U

⊲ splitting of U allows elimination of auxiliary binary variables

for piecewise linearization on second stage
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Experimental Splitting in Strict Robust Model

⊲ three-node network with two uncertain pipes

⊲ adaptive splitting of U until feasibility is reached

⊲ 6 iterations (732 partitions)
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Passive Networks: Set Containment Approach

⊲ robust feasible: ∀φ ∈ U ∃ feasible p, q ⇐⇒ U ⊆ Projφ(B)

⊲ leads to polynomial optimization problems

(SDP approximation hierarchy)
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B = {(φ, p, q) | p, q feasible for φ}

Deciding Feasibility

⊲ result: U ⊆ Projφ(B) ⇐⇒
G = {x | gj (x) = 0, j ∈ J} ⊆ H = {x | hi (x) ≤ 0, i ∈ I},

for gj , hi polynomial functions

⊲ need to check if for all i ∈ I: maxx∈G hi (x) ≤ 0

computational experiments for feasible one-cycle networks:

nodes #probs hierarchy level mean cpu [s] #infeas.

2 3 4 2 3 4

3 6 6 0 0 0.5 3.5 6.1 0

4 12 5 1 6 0.9 3.7 30.0 6

5 20 10 0 10 1.0 8.7 198.0 0

Deciding Infeasibility

⊲ find polynomial f which is non-negative on Projφ(B) but is

negative for some φ̂ ∈ U

⊲ result: f exists if U \ Projφ(B) contains an open subset
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Preprint: D. Aßmann, D. den Hertog, F. Liers, M. Stingl, J. Vera.

Deciding Robust Feasibility and Infeasibility Using a Set Containment

Approach: An Application to Stationary Passive Gas Network Opera-

tions

Contributions

⊲ Demo 3: validation of solutions via set containment, maxi-

mization of additional gas flow via splitting approach

⊲ Uncertainty Team (→ talk by René Henrion)


