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Topic and Challenges

The aim of this project consists in applying nonlinear probabilistic constraints to optimization problems in gas transportation assuming the underlying
random parameter obeys a multivariate and continuous distribution. Robustness in the sense of probabilistic network design shall be facilitated

> Modeling of uncertain parameters as random vectors with multivariate

> Optimization in gas transport networks requires non-linear and even
distribution, taking network node correlations into consideration

implicit probabilistic constrains

> Using continuous distributions for higher efficiency compared with > There are no analytical representations for both function values and

discretization of the random vector

Probabilistic Constraints

Stochastic optimization problem with probabilistic constraints:

| min{f0)]e(x) > p, x € X} |

Probability function: ¢ (x) = P(g(x, &) < 0)

In general, both values and gradients are needed for ¢(-):
Spheric-Radial Decomposition: ¢ € A(0, ) with ¥ = LLT

If g(x, -) continuous, convex and x such that g(x,0) < 0. Then
o(x) = / Xedf (P(X, V))dpin(V)
VES"_1

where p(x, v) = sup {r > 0| g(x, rLv) < 0}.
Additionally, if g : R® x R” — R continuously differentiable, then

_ _ Xedt (P(X V))
Vox) = / gy VA6 o VLN ()

vesn—1

In general: Smooth g, £ do not imply smooth probability functions

Derivatives (subdifferential) in terms of
Clarke or Mordukhovich

Spheric-Radial Decomposition

Let be € ~ N(0,X) n-dimensional Gaussian random vector with
covariance ¥ = LLT . Then it holds:

PEeM = [ x{r>0]|rLv e M}duy(v),
sn—1

where S"~" is the unit sphere in R”, 1y the law of uniform distribution
on it. x is the law of chi-distribution with n degree of freedom.
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gradients of the probability function

Stationary Gas Networks

Feasibility of exit load nomination b for pressure bounds p™"/ ™

Jz: Awgb, 2) dylz|z
. max\2
Jnin [(PK™)* + gk(b, 2)]

min, 2

(Po )
(™)

Definition: g(u, v) = (Ag ) ' dplA; (U — AvV)|A5 " (U — Ayv)
A=(Ag|An) incidence matrix, ® = (P5|Py) frictional coefficients

Uncertainty: Nomination b assumed to be of Gaussian type

Joint Robust/Probabilistic Approach

Two different characters of uncertainty:
1. Gas demand (nominations) = Distribution available
2. Friction coefficients = No statistical information available

Find maximum uncertainty allowed for friction coefficients while
guaranteeing demand satisfaction at high probability:

max {f(d) ( P(g(®,b) <0 Vb € Us) > p}

Us ... uncertainty set (e.g. rectangle, ellipsoid)
6 ... certain shape parameter (e.g. edge length, axis)

i @&lx X

Out-of-sample constraint violation (p = 0.80) for fixed uncertainty set
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