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Topic and Challenges

The aim of this project consists in applying nonlinear probabilistic constraints to optimization problems in gas transportation assuming the underlying

random parameter obeys a multivariate and continuous distribution. Robustness in the sense of probabilistic network design shall be facilitated.

⊲ Modeling of uncertain parameters as random vectors with multivariate

distribution, taking network node correlations into consideration

⊲ Using continuous distributions for higher efficiency compared with

discretization of the random vector

⊲ Optimization in gas transport networks requires non-linear and even

implicit probabilistic constrains

⊲ There are no analytical representations for both function values and

gradients of the probability function

Probabilistic Constraints

Stochastic optimization problem with probabilistic constraints:

min{f (x) |ϕ(x) ≥ p, x ∈ X}

Probability function: ϕ(x) := P
(

g(x , ξ) ≤ 0
)

In general, both values and gradients are needed for ϕ(·):

Spheric-Radial Decomposition: ξ ∈ N (0,Σ) with Σ = LL⊤

If g(x , ·) continuous, convex and x such that g(x , 0) ≤ 0. Then

ϕ(x) =

∫

v∈Sn−1

χcdf(ρ(x , v ))dµη(v ) ,

where ρ(x , v ) := sup {r ≥ 0 | g(x , rLv ) ≤ 0}.

Additionally, if g : Rs × R
n → R continuously differentiable, then

∇ϕ(x) =

∫

v∈Sn−1

−
χpdf(ρ(x , v ))

〈∇ξg(x , ρ(x , v )Lv ), Lv〉
∇x g(x , ρ(x , v )Lv )dµη(v )

In general: Smooth g, ξ do not imply smooth probability functions

=⇒
Derivatives (subdifferential) in terms of

Clarke or Mordukhovich

Spheric-Radial Decomposition

Let be ξ ∼ N (0,Σ) n-dimensional Gaussian random vector with

covariance Σ = LL⊤. Then it holds:

P(ξ ∈ M) =
∫

Sn−1

χ{r ≥ 0 | rLv ∈ M}dµη(v ),

where S
n−1 is the unit sphere in R

n, µη the law of uniform distribution

on it. χ is the law of chi-distribution with n degree of freedom.

Stationary Gas Networks

Feasibility of exit load nomination b for pressure bounds pmin/max

∃z : A
⊤
N g(b, z) = ΦN |z|z
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Definition: g(u, v ) :=
(

A⊤
B

)−1
ΦB|A

−1
B (u − ANv )|A−1

B (u − ANv )

A=(AB|AN ) incidence matrix, Φ=(ΦB|ΦN ) frictional coefficients

Uncertainty: Nomination b assumed to be of Gaussian type

Joint Robust/Probabilistic Approach

Two different characters of uncertainty:

1. Gas demand (nominations) ⇒ Distribution available

2. Friction coefficients ⇒ No statistical information available

Find maximum uncertainty allowed for friction coefficients while

guaranteeing demand satisfaction at high probability:

max

{

f (δ)

∣

∣

∣
P
(

g(Φ, b) ≤ 0 ∀Φ ∈ Uδ

)

≥ p

}

Uδ ... uncertainty set (e.g. rectangle, ellipsoid)

δ ... certain shape parameter (e.g. edge length, axis)
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Out-of-sample constraint violation (p = 0.80) for fixed uncertainty set
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