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Summary

⊲ The aim of the project is the development of a new methodo-

logy for the coupling of widely different models from different

physical/mathematical domains in a network.

⊲ Therefore, a balancing of the different errors, such as model,

approximation, discretisation, and model reduction errors, as

well as stochastic uncertainties, should be developed using

an interpretation as the backward error.

⊲ This poster presents a perturbation analysis for two dis-

cretizations of the Euler equations in semilinear form. In or-

der to obtain a more accurate first order upper bound for the

error in the solution due to uncertainties in the input param-

eters, a new componentwise condition number is derived.

Theoretical Results

Given two nonlinear systems of equations

F (x ; d) = 0 and F (x̃ ; d̃) = 0, (1)

with data d , its perturbed values d̃ , and solutions x and x̃ . We

are interested in the sensitivity of the solution x with respect to

perturbations in the data d . Taylor series expansion gives
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with ∆x = x̃ − x , ∆d = d̃ − d , and . denoting "less than or

equal to except for higher order terms". Hence, the componen-

twise relative condition number of the nonlinear system F = 0

in (1) is given by

κrel,c(x ; d) = ‖D−1
x
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On the other hand, the normwise relative condition number

κrel,n(x ; d) =
‖[F ′
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is given in [1, 2]. Taking the infinity norm yields the inequality

κrel,c(x ; d) ≤ κrel,n(x ; d),

due to the sub-multiplicativity of the infinity norm.

Application to Gas Flow Simulation

A model hierarchy is used to control the different errors. As an

example, we consider the Euler equations in semilinear form,

given by
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with mass flow rate q = Aρv . Applying a two-point discretiza-

tion in space and the implicit Euler method in time results in

the nonlinear system
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with x
i = [pi

R , q i
L]T and d = [A,λ, D, c, pi

s, q i
s, x i−1

1 , x i−1
2 ]T ,

called the 1S-scheme. Using the midpoint rule in space yields

the MP-scheme. Applying condition number (2) on these two

nonlinear systems results in the following figure.
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Figure 1. Contour graphs for the condition number (2) of

the 1S- and the MP-schemes as a function of L

and τ .

Using these results, a compromise between the discretization

and the data uncertainty error can be made.
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