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Good Old-Fashioned Monte Carlo

Good old-fashioned Monte Carlo (GOFMC), also called ordinary

Monte Carlo (OMC) or independent and identically distributed

Monte Carlo (IIDMC) is the idea of using IID simulations X1,

. . ., Xn of a random process to approximate expectations

µ = E{g(Xi)}

by sample averages

µ̂n =
1

n

n∑
i=1

g(Xi)

The cutesy name “Monte Carlo” alludes to the most famous

casino in the world (randomness = gambling), get it? Over

time it has lost its color and become a boring technical term.
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Monte Carlo Error

A Monte Carlo approximation µ̂n is only an approximation to
the true quantity µ we are trying to calculate. So we need a
discussion of Monte Carlo error µ̂n − µ.

Fortunately, we don’t need any new theory. All we need is ele-
mentary statistics.

The law of large numbers (LLN) says

µ̂n
a. s.−→ µ, n →∞

and the central limit theorem (CLT) says

√
n
(
µ̂n − µ

) D−→ Normal(0, σ2), n →∞
where

σ2 = var{g(Xi)}

(assuming this variance exists).
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Monte Carlo Standard Error

Of course, if we don’t know µ then we probably don’t know σ

either. But elementary statistics has the answer to this too.

The Monte Carlo standard error (MCSE) is a consistent estimate
of σ, such as

σ̂n =

√√√√1

n

n∑
i=1

(
g(Xi)− µ̂n

)2
Then Slutsky’s theorem says

µ̂n − µ

σ̂n/
√

n

D−→ Normal(0,1), n →∞

or in sloppy notation

µ̂n ≈ Normal

(
µ,

σ̂2
n

n

)
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MCSE Continued

It is remarkably difficult to get people to take standard errors

seriously. Generally estimates (µ̂n) are reported, but MCSE (σ̂n)

are not. So no one, neither authors or readers has a clue what

the numbers mean.

Why is a mystery to me. A statistician who doesn’t care about

standard errors certainly doesn’t think like a statistician. I won-

der what they are thinking.

Monte Carlo estimates not accompanied by standard errors are

worthless.
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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is the idea of using simula-

tions X1, . . ., Xn of a Markov chain to approximate expectations

µ = Eπ{g(Xi)}

by sample averages

µ̂n =
1

n

n∑
i=1

g(Xi)

where π is the equilibrium distribution, also called invariant dis-

tribution, stationary distribution, or ergodic limit of the Markov

chain (assuming such exists).

In other words, MCMC is just like GOFMC, except replace IID

in GOFMC by Markov chain to get MCMC and proceed mutatis

mutandis.
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MCMC History

MCMC is a remarkable tour de force.

It dates back to the dawn of the computer age (Metropolis,
et al., 1953), but is highly non-obvious, even in its original in-
carnation, which was calculating ergodic limits for models of
physical systems.

What is obvious is run the (model of the) physical system and
average over time (that’s what an ergodic limit is).

The tour de force is the realization that any other Markov process
with the same ergodic limit will also do.

Metropolis, et al. (1953) realized this and provided a simple
algorithm for constructing a Markov chain having a specified
equilibrium distribution (the Metropolis algorithm).
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MCMC History Continued

The Metropolis algorithm, as generalized by Hastings (1970) and
Green (1995), called the Metropolis-Hastings-Green algorithm,
is the only known method of MCMC.

Every MCMC-like method is either a special case of the MHG
algorithm, or is bogus.

Many researchers have invented almost-but-not-quite MCMC al-
gorithms. But there is no theory about almost-but-not-quite
Markov chains or about Markov chains having almost-but-not-
quite a specified equilibrium distribution.

If you’re going to do MCMC, do real MCMC, not bogo-MCMC.

The first task in any MCMC project is to verify that your com-
puter code actually implements a Markov chain having the spec-
ified equilibrium distribution.
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MCMC Theory

MCMC theory is just like IIDMC theory (except MC replaces

IID).

The Markov chain law of large numbers (LLN) says

µ̂n
a. s.−→ µ, n →∞

and the Markov chain central limit theorem (CLT) says

√
n
(
µ̂n − µ

) D−→ Normal(0, σ2), n →∞

where

σ2 = var{g(Xi)}+2
∞∑

k=1

cov{g(Xi), g(Xi+k)}

(see Chan and Geyer, 1994, for assumptions).
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Markov Chain MCSE via Batch Means

Fortunately, we do not have to approximate the rather obnoxious

formula for asymptotic variance on the preceding slide.

If b is large, then
√

b
(
µ̂b − µ

)
≈ Normal(0, σ2)

and

b
(
µ̂b − µ

)2
≈ σ2

And if b is small compared to n, then

b
(
µ̂b − µ̂n

)2
≈ σ2

Thus if 1� b � n the sample average of b
(
µ̂b−µ̂n

)2
over batches

of length b estimates σ2.
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Normal Random Walk Metropolis

Let h be any nonnegative function on Rd that integrates, in which
case we call h an unnormalized probability density .

Let Q be any d-dimensional, mean-zero, multivariate normal dis-
tribution.

The following is one step of a Markov chain having equilibrium
distribution with unnormalized density h.

1. [Proposal] Simulate z ∼ Q.

2. [Metropolis Rejection] Simulate u ∼ Unif(0,1). If

h(x + z)/h(x) < u

set x = x + z. (Otherwise, x is unchanged.)
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Normal Random Walk Metropolis (Continued)

Points to note.

• Does any continuous distribution on Rd specified by unnor-

malized density.

• There are many normal random walk Metropolis algorithms

for any particular h, one for each positive definite matrix

specifying the variance of Q.

• There are many other Metropolis algorithms, not to mention

Metropolis-Hastings-Green.
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Demo

I use an R package mcmc in computing classes.

It is still in version 0.x and not yet submitted to CRAN. You can

get it at

http://www.stat.umn.edu/geyer/mcmc

For a demo problem, we will do the following, which was a PhD

take-home exam question here at Minnesota.

http://www.stat.umn.edu/geyer/PhD/F03/q1.pdf
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Demo (Continued)

The problem is to do Bayesian logistic regression with normal

prior on the parameters with four predictor variables plus con-

stant (five parameters).
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