
SAS Programming Fundamentals
• A program can create a log, results, and output data
• Programs are comprised of Data and Procedure steps
• Steps end with a run; statement (sometimes quit;)
• Each step is a series of statements
• A statement begins with a keyword (e.g. data) and end with a semicolon

“;”
• Assignment statements do not begin with a keyword

Program Explanation
Creates a new dataset myclass in the
work library. Calculates a new variable
heightcm

Prints a view of the myclass dataset in
the results window displaying only 2
variables: age, heightcm.

There are 7 statements.

Example Program
Data myclass;
 set sashelp.class;
 heightcm = height*2.54;
Run;

Proc print data = myclass;
 var age heightcm;
Run;

Accessing Data

• SAS can read and understand structured (e.g. xlsx) and
unstructured (e.g. csv) data types

• Structured data can be read via a LIBNAME statement or PROC
IMPORT step

• Unstructured data requires PROC IMPORT to define rules
Importing data using Proc Import

Program Explanation

Import a CSV file (unstructured data)
that outputs a SAS dataset example
in a user defined permanent library
mylib.
Optionally add a guessingrows
statement to read n rows to
determine variable attributes.

Example Program

Proc import datafile = “myfile. csv” dbms
= csv out = mylib.example replace;
guessingrows = 100;
Run;

Procedures for Exploring and Analyzing Data

• PROC CONTENTS: Prints descriptor portion of a data set

• PROC PRINT: lists all columns and rows in the input table by default
• OBS = option limits the number of rows listed
• VAR statement limits and orders columns listed

• Use _NUMERIC_, _CHARACTER_, and _ALL_ keywords to
specify variables of a certain type (numeric or character)
or all types

• WHERE statement filters the data
• BY statement groups output data
• FORMAT statement applies a temporary* format in the output
• LABEL statement applies a temporary* label to the variable

names in the output
 * Permanent characteristics are defined in the data step

• PROC MEANS: generates simple summary statistics for each numeric
column in the input data by default unless the VAR statement is used

• CLASS specifies variables to group data before calculating
statistics

• WAYS specifies number of ways to make unique combinations
of class variables

• OUTPUT provides the option to create an output table and
specific output statistics

• OUT = names the output table to be created

• PROC UNIVARIATE: Generates summary statistics and more detailed
statistics about distribution and extreme values for each numeric
variable by default

• PROC FREQ: Creates a frequency table for each variable in the input
table by default.

• TABLES limits the variables analyzed
• <options> customizes the outputs by limiting columns (i.e.

nocum), modifying output style (i.e. crosslist, listing) or
generating graphs

• Creates a crosstabulation report by adding an asterisk (*)
between two variable names on the TABLES Statement

PROC CONTENTS DATA = data-set-name;
RUN;

PROC PRINT DATA = data-set-name <label> (OBS = n);
 <VAR col-name(s);>
 <WHERE expression;>
 <BY col-names(s);>
 <FORMAT col-name(s) <$> format name. ;>
 <LABEL col-name = “Label”; >
RUN;

PROC MEANS DATA = data-set-name;
 <WHERE expression;>
 <VAR col-name(s);>
 <CLASS col-names(s);>
 <WAYS n;>
 <OUTPUT OUT = output-table <statistic =col-name>
RUN;

PROC UNIVARIATE DATA = data-set-name;
 <VAR col-name(s);>
 <WHERE expression;>
RUN;

PROC FREQ DATA = data-set-name;
 <TABLES col-name(s) </options>;>
 <WHERE expression; >
RUN;

• Options …; sets SAS system options
 EX: Options Validvarname = V7;

• Title <options> “...”; set up to 10 titles
 EX: TITLE “Student Ages and Heights”;

 TITLE2 “Classroom 105”;

• Footnote “ ….”; sets up to 10 footnotes
EX: FOOTNOTE “Data refreshed annually”;

• Libname libref <engine> “….”; sets a shortcut reference to data of
a specific type in a specific location
o libref: name to call a library. 8-character max length
o engine: contains predefined set of rules for reading data. Base is

the default engine reading SAS datasets
o “…..” physical name of the library recognized by the system
 EX: LIBNAME mylib “/C:/documents/project/data”;
 LIBNAME myXL xlsx “/C:/documents/class.xlsx”;

• Libname clear; ends connection to the data source

Global Statements

OPTIONS …;

TITLE <options> “…title text…”;

FOOTNOTE <options> “…..” ;

LIBNAME libref <engine> “..…”;

LIBNAME libref CLEAR;

Commenting Code

• Comments can be added to prevent text in the program from
executing

• There are 2 comment styles
• Comments are not executable statements

/* insert commented text here */
* Insert commented text here ;

SAS Base Programming Reference Sheet

Copyright © 2022 SAS Institute Inc. Cary, NC, USA. All rights reserved

Procedures for Data Manipulation

• PROC SORT: sorts the rows in a table on one or more character or
numeric columns. A PROC SORT is required before any step that uses a
BY statement

• BY specifies the columns used in the sort
• OUT = specifies an output table
• NODUPKEY keeps only the first row for each unique value of

the columns(s) listed in the by statement
• DUPOUT creates an output table containing duplicates
• DESCENDING sorts column from 9 to 0 or Z to A

• PROC TRANSPOSE: is used to restructure a table
• VAR lists column(s) to be transposed
• ID creates a separate column for each value of the ID

Variable and can only be one column.
• BY transpose data within groups. Unique combinations of BY

values creates one row in the output table
• PREFIX provides a prefix for each value of the ID column
• NAME names the column that identifies the source column

containing the transposed values

PROC SORT DATA = input-table <OUT = output-table>
<NODUPKEY> <DUPOUT = output-table>;
 BY <DESCENDING> col-name(s) </options>;
RUN;

Preparing Data: The DATA Step

• The data step is processed in two phases:
• Compilation: creates the PDV, establishes data attributes

and rules for execution
• Execution: SAS reads, manipulates and writes data

• DATA Steps create two default variables:
• _N_ counts the number of iterations through the data

step when processing
• _ERROR_ is initialized at 0. If an error is encountered,

the value is set to 1
• Explicit Output statements can be used to control when and where

each row is written.
• Multiple datasets can be created in one data step

PROC TRANSPOSE DATA = input-table OUT = output-table
<PREFIX = column> <NAME = column>;
 <BY col-name(s); >
 <ID column;>
 <VAR columns(s);>
RUN;

DATA output-dataset;
 set input-dataset;
Run;

DATA work.cheap work.expensive;
 set work.shopping;
 if price >100 then output work.expensive;
 else output work.cheap;
Run;

• DROP= / KEEP = options can be added to a table on the DATA
statement or SET statement.

• DROP/ KEEP statements can be added within the data step
• Columns kept or dropped will be flagged in the PDV
• Dropping a column on the SET statement makes a column unavailable

for processing in the data step

• Process data in groups after sorting data first
• First.bycol is 1 for the first row within a group and 0 otherwise.
• Last.bycol is 1 for the last row within a group and 0 otherwise

• Accumulating columns require modifying SAS’ default behavior to
retain all PDV values with each iteration.

• Accumulating columns are often used in conjunction with FIRST./LAST.
logic allowing BY GROUP calculations & totals

• Column is the new variable holding the accumulating total

• Conditionally process data using IF/ELSE IF/ ELSE statements
• SAS will check the expressions sequentially until one is true
• IF statements can create new variables or new data sets

• Execute multiple statements by using a DO statement

• Process repetitive code using DO LOOPS
• The optional OUTPUT statement will output a row for each iteration of

the loop

• A DO UNTIL executes until a condition is true, and the condition is
checked at the bottom of the DO loop. A DO UNTIL loop always
executes at least one time.

• A DO WHILE executes while a condition is true, and the condition is
checked at the top of the DO loop. A DO WHILE loop does not iterate
even once if the condition is initially false.

DATA work.expensive (KEEP = price item_name);
 SET work.shopping (DROP = city state);
 KEEP store_name;
RUN;

BY col-names(s);
FIRST.bycol <expression>;
LAST.bycol<expression>;

Column + expression;

if price >100 then newVar = “Expensive”;
else if price <100 and price >0 then newVAR = “Cheap”;
else if price = 0 then newVAR = “FREE”;
else newVAR = “Priceless”;

if price >100 then do;
 newVar = “Expensive”;
 output work.expensive;
end;

DATA output-table;
SET input-table;
DO indexcolumn = start TO stop <BY increment> ;

. . . repetitive code . . .
<OUTPUT;>

END;
RUN;

DO WHILE | UNTIL expression;
. . . repetitive code . . .
END;

SAS Base Programming Reference Sheet

Copyright © 2022 SAS Institute Inc. Cary, NC, USA. All rights reserved

Program Explanation
The data step creates two output tables CHEAP and EXPENSIVE
based on the input dataset WORK.SHOPPING.
If an observation has PRICE greater than 100, then the observation
is assigned to the EXPENSIVE dataset.

The DATA Step: Controlling Variable Output

The DATA Step: Processing Data in Groups

The DATA Step: Conditional Processing and Loops

Customizing SAS Output: Labels and Formats

• Labels and Formats can be applied in the DATA step and assigned as
permanent attributes. These statements can also be used in reporting
procedures as temporary attributes. (e.g. they need to be specified in
each procedure)

• Labels can be used to provide more descriptive column headers. A label
can include any text up to 256 characters.

• Add labels to more than one column in a single label statement

• Formats are used to change the way values are displayed in data and
reports.

• Formats do not change the underlying data values.
• Add formats to more than one column in a single statement

• Create your own custom formats using the PROC FORMAT procedure
• VALUE statement specifies the criteria for creating one

custom format.
• Multiple VALUE statements can be used within the PROC

FORMAT step.

• Combine tables by concatenating them (stacking), or matching them
based on a variable

• Concatenating:
• SAS reads all the rows from the first table listed on the set

statement and writes them to the output table. Then from
the second table, and so on

• Columns with the same name are aligned
• Columns not in all tables are included
• The RENAME = option can rename columns in input tables, so

they align in the output table
• Additional DATA step statements can be used after the set

statement to manipulate data

• Merging tables
• All tables in the MERGE statement must be sorted by the

column(s) listed in the BY statement
• The MERGE statement combines rows where the BY-Column

values match
• Identify matching and no matching rows by using the IN=

dataset option. IN variable values are 0 or 1.
• 0 → table did NOT include the by-column value.
• 1 → table did include the by-column value

• Use a subsetting IF or IF-THEN logic to handle matching &
nonmatching rows

• SAS has functions to handle character, numeric and date columns.

• Convert numeric values to character using the PUT function

• Convert character values to numeric using the INPUT function

• SAS has functions to handle character, numeric and date columns.
• Common Numeric Functions:

DATA output-dataset;
 set input-dataset1 input-dataset2
 (rename=(currentName = newName));
Run;

DATA output-dataset;
 MERGE input-dataset1 <(in = VAR1)>
 input-dataset2 <(in = VAR2)>;
 BY by-column(s);
 < IF var1 = 1 and var2 = 1;> /* all matching rows */
RUN;

new-var = function(argument1, argument2,…);

Function What is does

RAND(distribution,
paramter1,...)

Generates random numbers from a
selected distribution

ROUND(number,
<rounding unit>)

Rounds number to the nearest
rounding unit (.01, .001, etc)

LARGEST(k, value1,
value2, …)

Returns the Kth largest non missing
value

SUM(argument1,
argument2,…)

Sums all non missing arguments

Numeric-var = input(char-var, informat);

char-var = put(numeric-var, format);

• Common Date Functions:
 NOTE: SAS Dates are numeric values calculated as the number
 of days since JAN 1, 1960.

• Common Character Functions

Function What is does

MDY(month, day, year) Creates a SAS Date Value

TODAY() Returns the current date as a numeric SAS
date value

YEAR(date-var);
MONTH(date-var)
DAY(date-var)
QTR(date-var)

Returns Year/Month/Day/QTR of the SAS
date value input

INTNX(interval, start-
from, increment
<,'alignment'>)

Increments a date/time/datetime value by
a given time interval

Function What is does

TRIM(string) Removes trailing blanks

STRIP(string) Removes all leading and trailing blanks

SCAN(string, count,
<char-list, <modifier>>)

Returns the nth word from a string

PROPCASE(string)
UPCASE(string)
LOWCASE(string)

Changes the casing of the string.
Commonly used in statements of equality

SUBSTR(string, start-
from, length)

Extracts a substring from the argument

LABEL col-name1 = “Label Text 1”
 col-name2 = “Label Text 2” ;

FORMAT date-var mmddyy10. num-var dollar13.2;

PROC FORMAT;
 VALUE format-name <$>
 value-or-range-1 = 'formatted-value’
 value-or-range-2 = 'formatted-value’
 . . . ;
RUN;

SAS Base Programming Reference Sheet

Copyright © 2022 SAS Institute Inc. Cary, NC, USA. All rights reserved

The DATA Step: Combining Data

The DATA Step: Functions

Exporting Reports

• The SAS Output Delivery System (ODS) can send reports to various file
types to display reports including CSV, PowerPoint, RTF, and PDF.

• Each output type holds the same basic structure to open and close a
file. Additional statements are available based on the file type.

• Additional options to excel files include:
• Adding a style
• Adding a worksheet label

• PDF outputs can include a Table of Contents (PDFTOC) and Procedure
labels in the bookmarks.

Filtering Data

• WHERE Statements filter rows and can be used in both the DATA
step and PROC steps.

• If the expression is true, rows are read, if false, they are not.
• WHERE statements can only work with columns that exist on an

input dataset, not ones that are calculated during manipulation.
• Character values are case sensitive and must be in quotes “ ”
 EX: WHERE Car_Make = “Honda” will select
 different rows than WHERE Car_Make = “HONDA”
• Numeric values are not in quotes and can only include digits, decimal

points and/or negative signs
• Compound conditions can be created using AND/OR
• Logic can be reversed with the NOT keyword
• Use the SAS Date constant when filtering with dates: “ddMONyyyy”d

• A subsetting IF statement can be used on any variable that exists in
the PDV. (e.g. variables on the input data set and new variables
created)

• The expression used in the IF statement is written with most of the
same operators as a WHERE expression.

ODS <destination> < destination specifications>;
 /* SAS Code that produces output */
ODS destination CLOSE;

PROC EXPORT DATA=input-table
 OUTFILE="output-file“
 <DBMS = identifier REPLACE> ;
RUN;

MACRO variables

• A macro variable stores a value that can be submitted into a SAS
program

• If a macro variable is referenced inside quotation marks, then
double quotation marks must be used

• Assign a value to a macro variable using a %LET statement
• The ampersand “&” must be used when calling a macro variable.

The & triggers the macro facility

WHERE Operators:
 = or EQ,
 ^=, ~= or NE
 > or GT
 >= or GE
 < or LT
 <= or LE
IN Operator
 WHERE col-name in (value1, value2,…);
 WHERE col-name NOT in (value1, value2,…);
Special Operators
 WHERE col-name IS MISSING
 WHERE col-name IS NOT MISSING
 WHERE col-name IS NULL
 WHERE col-name BETWEEN value1 AND
 value2
 WHERE col-name LIKE “value%”
 WHERE col-name LIKE “value_”

/*Implicit output */
IF expression;
IF expression THEN output;

/* Explicit output to specific table*/
IF expression THEN output libref.output-dataset-name;

%LET macro-variable = value;
WHERE numvar = ¯ovar;
WHERE charvar = “¯ovar”;

Exporting Data

• Export a SAS dataset to variable file types (XLSX, TXT,CSV, etc)
using a PROC EXPORT step

• PROC EXPORT must be used to export unstructured data
type. (e.g. CSV files)

• DMBS = the database management system which
specifies the type of data to export. (e.g. CSV, DLM, JMP,
TAB)

• Alternatively use a LIBNAME statement to export data.
• A LIBNAME statement can only be used if the output data type has

an accessible SAS Engine (e.g. XLSX, JSON, XML).
• Ensure a LIBNAME libref CLEAR statement is used at the end to

close the connection to the excel workbook.

ODS EXCEL FILE="filename.xlsx"
 STYLE=style
 OPTIONS(SHEET_NAME='label') ;
 /* SAS code that produces output on first
 worksheet */
 ODS EXCEL OPTIONS(SHEET_NAME=‘label’);
 /* SAS code that produces output on second

worksheet */
ODS EXCEL CLOSE;

ODS PDF FILE="filename.xlsx"
 STYLE=style
 STARTPAGE = NO PDFTOC= 1;
 ODS PROCLABEL “label”;
 /* SAS code that produces output */
ODS PDF CLOSE;

Additional Information

• For more information on SAS programming techniques, visit
go.documentation.sas.com

SAS Base Programming Reference Sheet

Copyright © 2022 SAS Institute Inc. Cary, NC, USA. All rights reserved

WHERE expression;

LIBNAME myXL XLSX “C:/documents/Shopping.XLSX”;
DATA myXL.shopping;
 SET work.shopping;
RUN;
LIBNAME myXL CLEAR

go.documentation.sas.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4

