
A Security Analysis of Honeywords
Ding Wang, Haibo Cheng, Ping Wang

Peking University
{wangdingg, chenghaibo, pwang}@pku.edu.cn

Jeff Yan
Linköping University

jeff.yan@liu.se

Xinyi Huang
Fujian Normal University
xyhuang81@gmail.com

Abstract—Honeywords are decoy passwords associated with
each user account, and they contribute a promising approach to
detecting password leakage. This approach was first proposed by
Juels and Rivest at CCS’13, and has been covered by hundreds
of medias and also adopted in various research domains. The
idea of honeywords looks deceptively simple, but it is a deep
and sophisticated challenge to automatically generate honeywords
that are hard to differentiate from real passwords. In Juels-
Rivest’s work, four main honeyword-generation methods are
suggested but only justified by heuristic security arguments.

In this work, we for the first time develop a series of practical
experiments using 10 large-scale datasets, a total of 104 million
real-world passwords, to quantitatively evaluate the security that
these four methods can provide. Our results reveal that they
all fail to provide the expected security: real passwords can
be distinguished with a success rate of 29.29%∼32.62% by
our basic trawling-guessing attacker, but not the expected 5%,
with just one guess (when each user account is associated
with 19 honeywords as recommended). This figure reaches
34.21%∼49.02% under the advanced trawling-guessing attackers
who make use of various state-of-the-art probabilistic password
models. We further evaluate the security of Juels-Rivest’s methods
under a targeted-guessing attacker who can exploit the victim’
personal information, and the results are even more alarming:
56.81%∼67.98%. Overall, our work resolves three open problems
in honeyword research, as defined by Juels and Rivest.

I. INTRODUCTION

Passwords firmly remain the most prevalent method for
user authentication and are likely to keep their place in the
foreseeable future, despite their notorious defects in both
security and usability [3], [6], [30]. An inherent limitation of
the existing password-based authentication systems is that the
server need maintain a sensitive file comprised of passwords
of all registered users, and this file provides attackers/insiders
with a rich target for compromise. These days it is no news
to hear that high-profile web services have been compromised
and millions of passwords were leaked, and some quite recent
victims include Yahoo [18], Dropbox [20], Last.fm, LinkedIn,
Weebly [27], and MySpace [31], to just name a few.

What’s most disturbing is that, these breaches were often
detected only when the attackers had well exploited the data
and then posted (or sold) it online, which is generally months,
even years after the breach initially occurred. For instance,
the most recent catastrophic password breach revealed on
October 2017 involves the entire 3 billion Yahoo userbase,
yet the breach actually had occurred four years before [18];
The Weebly password breach revealed in Oct. 2016 involves

43 million users, and users were asked to change passwords,
yet the breach actually had occurred eight months before [27];
The 68 million Dropbox breach occurred in 2012, yet users
are asked to change passwords four years later when the stolen
data surfaced in the public in May 2016 [20]; The detection of
the 360 million Myspace dataset took eight years: this dataset
was compromised in 2008 [31] yet only detected until May
2016, when its sale information was posted online. The 2016
data breach report by Verizon also reveals that, among the
2,260 breaches investigated, over 85% were first detected by
external parties, 91% took weeks to detect, 70% took months
even years to detect [13]. All this highlights the imperative
need for active, timely password-breach detection methods to
enable responsive counter-actions.

Even if the leaked passwords are stored in salted-hash as
standard practice, this poses no real obstacle for an attacker to
recover them by an overwhelming percentage by using modern
machine-learning based cracking algorithms [24], [30] and
common hardware like GPUs (see [12]). Sophisticated hash
functions (e.g., bcrypt) are designed to slow down the attack-
er’s cracking process by the same factor as the honest server
is willing to spend on password verification, but the attacker is
likely to be better equipped with dedicated password-cracking
hardware [15]. Thus, once the password hash file is obtained
by an attacker, it is realistic to assume that most of them can
be offline guessed. In addition, since the attacker only need
perform guessing locally, slow hash functions do not facilitate
the detection of password-file leakage.

Recently, there have been approaches proposed to com-
pletely eliminate the possibility of offline password guessing:
(1) using a machine-dependent function (e.g., ErsatzPasswords
[2]); (2) employing distributed cryptography (e.g., threshold
password-authenticated secret sharing [7]); and (3) using exter-
nal password-hardening services (e.g., Phoenix [23]). However,
all these approaches require substantial changes to the server-
side authentication systems. Besides, the first approach does
not support backing up password hash files in a distributed
manner, and thus it is unsuitable for Internet-scale sites due to
its poor scalability; The second necessitates client-side system
changes, which is not user-friendly and widely deemed not
desirable; The third is subject to a single point of failure and
may leak user behavior information to external parties.

A more promising approach to improving the situation, first
proposed by Juels and Rivest in 2013 [21], is to introduce
decoy passwords (called “honeywords”) to associate with each
user’s account (see Fig. 1). Their intriguing idea is that, even
if an attacker A has stolen the password file and recovered
all the passwords, she has to first tell apart the user’s real
password from a set of k − 1 (e.g., k=20 suggested in [21])
intentionally generated honeywords. These k − 1 honeywords
and the real password are unifiedly called k “sweetwords”.
When honeywords are well generated, to figure out the real

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23142
www.ndss-symposium.org

Fig. 1. Password (PW) authentication with honeywords. For better illustration,
here passwords are shown in plain-text, while in reality they are stored in salted
hash. The bottom of the figure shows some personal information about the
victim user Ui, and exemplifies two sets of 19(=k-1) honeywords generated
for Ui’s password “tiger81” by two different methods in [21]: tweaking-tail
and hybrid (see Sec. III-A).

password, A has to perform a few online login attempts by
using the server as a verification oracle. Such online login
attempts would not only significantly impede attackers [11],
but also set off an alarm of password-file compromise at the
server when a honeyword is attempted for login. This approach
involves relatively few changes to the existing server-side
system and no changes to the client-side system, and thus it
seems rather practical. It has attracted hundreds of medias and
also been adopted in various research domains (e.g., graphical
passwords [33] and cryptographic protocol [29]).

A. Challenges and motivations

A main challenge, as discussed in [7], [14], [21], is how to
generate honeywords that cannot be easily distinguished from
real passwords. In Juels-Rivest’s work [21], five honeyword-
generation methods are suggested: four for the legacy user-
interface (UI) and one for the modified-UI, and these legacy-
UI methods are preferred due to usability advantages. Thus,
we also focus on honeyword generation for the legacy-UI.

All the Juels-Rivest methods are random-replacement based,
and thus inherently unable to resist semantic-aware attackers
as shown by some typical counter-example passwords (e.g.,
bound007 and john1981) in the literature [10], [14]. Yet, to
what extent these methods are effective (or ineffective) against
semantic aware/un-aware attackers has never been theoretically
or empirically quantified.

Most prior art on honeywords (see [10], [14], [21]) mere-
ly provide heuristic security arguments when evaluating a
method, neither a rigorous theoretical analysis nor an empiri-
cal evaluation with real-world datasets was given. As we will
show with realistic experiments, all the honeyword-generation
methods in [21] largely fail to provide the expected security,
and real passwords can be distinguished with high success
rates. An improvement named “honeyindex” was given in [14],
yet its evaluation is still heuristic-based and it suffers from
the “peeling-onions style” distinguishing attack and critical
deployment issues.1 Golla et al. [17] empirically showed how

1The companion site: https://github.com/pkusec/rethinking-honeywords

the Kullback-Leibler divergence (KLD) metric can be used to
distinguish a real password distribution from a decoy one, yet
this metric is unsuitable for the honeyword-attacking scenario
where we need to distinguish the single, real password from a
set of distinct sweetwords. In all, existing honeyword methods
(see [14], [21]) are short of a sound evaluation, and whether
they can achieve the claimed security is unknown.

What’s more, little attention has been given to the analysis
of honeyword security under targeted guessing attackers. A
targeted attacker (see [30]) exploits not only users’ behavior of
selecting popular passwords (e.g., abc123, iloveyou) but
also the victims’ personally identifiable information (PII) like
name and birthday. To our knowledge, existing works [10],
[14], [21] mainly consider trawling guessing attackers (see
[5], [24], [32]) who exploit only users’ behavior of choosing
popular passwords. However, a large fraction of users build
passwords using their own PII. For instance, as we will show in
Sec. II-A, 51.43% of Dodonew normal users, 27.16% of Qutar
national bank users and 12.76% of Rootkit hackers employ
their own, common PII to build passwords.

This user behavior is increasingly vulnerable, as users’ PII
can now be easily learned from social networks and unending
data breaches [16], [18], [26]. For example, the recent large-
scale data breach in Oct. 2017 involves 3 billion Yahoo users,
with their names, phone numbers, birthdates leaked [18]; In
July 2017, the largest credit-reporting agency in America,
Equifax, leaked PII data about half of the US population,
including names, birthdates, SSN [25]; The April 2016 PII
breach against Turkishens involves 64% of the total population
[1]. As the targeted guessing threat is becoming increasingly
realistic, honeywords shall be evaluated under this new threat.

B. Our contributions
In this work, we make the following key contributions:

• Trawling guessing attacks. We for the first time
develop a series of experiments using large-scale
real password data to evaluate the four honeyword-
generation methods in [21], and find that they all
fail to provide the expected security. We show that
real passwords can be distinguished with a success
rate of 29.29%∼32.62%, but not the expected 5%,
with just one guess under a basic, trawling guessing
attacker (when each user account is associated with 19
honeywords as recommended, i.e., the parameter k =
20 [21]). This figure reaches 34.21%∼49.02% under
the advanced trawling-guessing attackers who make
use of various state-of-the-art probabilistic password
cracking models (e.g., Markov [24] and PCFG [32]).

• Targeted guessing attacks. To see how Juels-Rivest’s
methods perform under semantic-aware attackers, we
for the first time evaluate the security of honeywords
by performing targeted guessing attacks. We show that
real passwords can be distinguished with a success rate
of 56.8%∼67.9% by performing just one guess (when
k = 20), if the attacker knows some common personal
information like name and birthday of the victim user.
This answers the question of “how well can targeted
attacks help identify users’ passwords for particular
honeyword-generation methods” as left in [21].

• Extensive evaluation. Our experiments build on var-
ious leading probabilistic password cracking models

2

https://github.com/pkusec/rethinking-honeywords

(e.g., Markov [24], TarGuess [30] and PCFG [32]).
To make our results as generic as possible, we employ
10 large-scale real-world password lists, which consist
of a total of 104.36 million passwords, covering
various popular web services. This is the first study
that empirically evaluates honeywords. Our extensive
evaluation suggests that Juels-Rivest’s methods can
survive neither PII-unaware nor PII-aware attackers.

• New insights. We obtain a number of insights, some
expected and some surprising, from our empirical
experiments. We reveal that generating decoy pass-
words (by randomly replacing parts/whole of the real
password) to be equally probable with the user’s real
password is inherently impossible. This indicates that
Juels-Rivest’s random-replacement based approach is
inherently vulnerable, which is unexpected. We also
show that probabilistic password models cannot be
readily employed to generate honeywords, which is
opposed to common belief (as hold in [21]). As ex-
pected (and confirmed by us), these password models
can be used as building blocks to design effective
experiments with real-world datasets to evaluate a
honeyword method. This answers the open question of
“are there good experimental methods for quantifying
the flatness of honeyword methods” in [21].

II. DATASETS, SECURITY MODEL AND METRICS

A. Our datasets

We evaluate Juels-Rivest’s honeyword methods based on 10
large real password datasets (see Table I), including four from
Chinese sites and six from English sites. In total, our datasets
are composed of 104.36 million plain-text passwords and
involve 9 different web services. Besides some early disclosed
datasets (e.g., Rockyou and Dodonew) which have been widely
used in research [8], [24], [30], we also incorporate three
very recently leaked datasets that may exhibit up-to-date user
password behaviors. These datasets were compromised by
hackers or leaked by insiders, and were publicly available
on the Internet for some time. Since the canonical dataset
Rockyou only contains passwords (with no user names or
emails), and it will not be used for evaluating targeted threats.
The role of each dataset will be specified where necessary.

TABLE I. BASIC INFO ABOUT OUR 10 PASSWORD DATASETS†

Dataset Web service Language When leaked Total PWs With PII
Tianya Social forum Chinese Dec., 2011 30,901,241
Dodonew E-commerce Chinese Dec., 2011 16,258,891
CSDN Programmer Chinese Dec., 2011 6,428,277
Rockyou Social forum English Dec., 2009 32,581,870
000webhost Web hosting English Oct., 2015 15,251,073
Yahoo Web portal English July, 2012 442,834
12306 Train ticketing Chinese Dec., 2014 129,303 X
ClixSense Paid task platform English Sep., 2016 2,222,045 X
Rootkit Hacker forum English Feb., 2011 69,418 X
QNB∗ E-bank English April, 2016 79,580 X

†PW stands for password, PII for personally identifiable information.
∗QNB passwords are from e-Bank and used as high-value targets.

Two of our datasets were leaked in MD5 hash, and we
manage to recover an overwhelming fraction of them by using
various trawling guessing models [24] as well as the targeted
guessing model TarGuess [30] on a common PC with GPU in
one week. More specially, Rootkit initially consists of 71,228
passwords and we manage to recover 97.46% of them; QNB

TABLE II. BASIC INFO ABOUT OUR PII DATASETS.

Dataset Language Items num Types of PII useful for this work
Hotel Chinese 20,051,426 Name, Birthday, Phone, NID∗

51job Chinese 2,327,571 Email, Name, Birthday, Phone

12306 Chinese 129,303 Email, User name, Name, Birthday,
Phone, NID

ClixSense English 2,222,045 Email, User name, Name, Birthday
Rootkit English 79,580 Email, User name, Name, Birthday

QNB English 77,799 Email, User name, Name, Birthday,
Phone, NID

†NID=National identification number, e.g., social security number.

initially contains 97,415 passwords [19], and we manage to
recover 79,580 (81.69%) of them. The QNB dataset was leaked
from the Qatar national bank, which is located in Middle
East, in April 2016 [19]. To our knowledge, this is the first
real-world banking-password dataset that is explored in an
academic study.

Particularly, four password datasets (i.e., 12306, ClixSense,
Rootkit and QNB) are associated with various kinds of PII as
shown in Table II. To facilitate a more comprehensive empiri-
cal analysis of honeyword security under targeted attackers, we
further match the non-PII-associated datasets with these PII-
associated datasets by using email. As a result, this produces
nine PII-associated password datasets as shown in the first row
in of Table III: (1) the four Chinese ones are obtained by
matching the corresponding non-PII-associated dataset with
12306; (2) the four US-English ones are: PII-Rootkit, PII-
ClixSense, and two other ones obtained by matching 000web-
host and Yahoo with ClixSense, respectively; and (3) PII-QNB,
which is QNB itself. Note that, the non-PII-associated US-
English dataset Rockyou includes neither email nor NID, and
thus it cannot be matched.

We further employ two auxiliary PII datasets (i.e., Hotel and
51job) to augment each Chinese password dataset to obtain
more PII-associated accounts by matching email or NID. We
note that many PII-associated accounts miss some important
PII attributes, and they can be supplemented by using the
auxiliary PII datasets.

Table III demonstrates that users love to employ their
personal information to build passwords. Here we measure
the PII usages by using the type-based PII-tagging approach
proposed in [30], for it has been shown much more accurate
than other approaches. As high as 36.95%∼51.43% of Chi-
nese users employ at least one of their six kinds of PII to
construct passwords, while this figure for US-English users
is 12.76%∼29.94% and for ME-English users is 27.16%. In
comparison, the PII-associated US-English users show a more
secure behavior in PII usages. This is expected, because they
are all Rootkit hackers or ClixSense online cash-earning users
(as resulted from email matches). In other words, our PII-
associated US-English users well represent technique-savvy
users. Our results show that a large number of users build
passwords using PII, and thus sound honeyword-generation
methods shall take this user behavior into account.

We highlight that though QNB users speak English, their
passwords have little correlation with the other four English
userbases. This is expected: QNB users are mainly from
Middle East. Thus, we divide users into three groups: Chinese,
US-English and ME-English. In all, our corpus is new, compre-
hensive and well represents real-world password distributions,
and to our knowledge, it is also among the largest and most
diversified ones ever collected for use in a password study.

3

TABLE III. PERCENTAGES OF USERS BUILDING PASSWORDS WITH THEIR own HETEROGENEOUS PERSONALLY IDENTIFIABLE INFORMATION (PII).†

Typical usages of personally identifiable information PII-Tianya PII-Dodonew PII-12306 PII-CSDN PII-Rootkit PII-000web- PII-ClixSense PII-Yahoo PII-QNB
(430,966) (161,517) (129,303) (77,216) (69,330) host(153,390) (2,222,045) (16,307) (77,799)

Name (7 subtypes, e.g., johnsmith, john, jsmith) 9.13% 23.82% 23.83% 16.71% 4.32% 12.66% 9.14% 6.95% 8.52%
Birthday (10 subtypes, e.g., 01171981, 1981, 0117) 20.80% 16.37% 18.75% 19.16% 1.57% 7.36% 7.07% 5.20% 11.85%
Email prefix (3 subtypes, e.g., moon123, moon, 123) 6.31% 8.60% 6.61% 8.65% 3.75% 7.89% 5.14% 3.86% 4.91%
User name (3 types, e.g., loveu1314, loveu, 1314) 3.09% 10.53% 10.12% 7.46% 3.45% 5.74% 5.29% 3.82% 7.61%
Phone # (3 subtypes, e.g., 4153022671, 415, 2671) 1.18% 1.00% 0.89% 1.43% – – – – 1.92%

NID (3 subtypes, e.g., 620915337, 620, 5337) 0.81% 0.39% 0.71% 0.12% – – – – 0.13%
Total personal information usages (all above) 36.95% 51.43% 50.71% 46.87% 12.76% 29.94% 24.81% 18.76% 27.16%

†The specific sub-types of each kind of PII we consider are the same with that of TarGuess-I [30]. For instance, 23.82% in the top left corner means that
23.82% of the 161,517 PII-associated Dodonew users employ at least one of their 7 sub-types of name information to build passwords.

B. Security model

In this paper, we mainly focus on the security that can be
provided to the underlying user authentication system when
honeywords are in place. Without loss of generality, we consid-
er the most general case, i.e. the client-server architecture. We
discuss the primary kinds of attacks which exploit honeywords
and can be possibly launched against the honeyword system.

The honeyword system. As shown in Fig. 1, there are four en-
tities involved: a user Ui, an authentication server S, a honey-
checker, and an attacker A. User Ui has registered an account
(IDi, PWi) at S, and some PII may also be needed (e.g., Gmail
registration requires name, birthday, phone and gender). On
the server side, what’s different from the traditional password
authentication is that, S conducts a command Gen(k; PWi):
S generates a list of k-1 distinct, plausibly looking decoy
passwords (called honeywords) to associate with Ui’s account,
where k = 20 as recommended in [21]. Password PWi and its
k-1 honeywords are unifiedly called k sweetwords. Generally,
there are two broad kinds of honeyword methods: random-
replacement based (e.g., tweaking tail [21]) and password-
model based (see Sec. III-E).

Now Ui’s account record in S can be represented as
(IDi, SWi), where SWi = (swi,1, swi,2, · · · , swi,k). Exactly
one of these k sweetwords, denoted by swi,j , equals Ui’s
password PWi. Let Ci denote the correct index of Ui’s
password in the sweetword list SWi, and thus Ci = j. The
k sweetwords on S shall be hashed, with salting in a per-
user or even per-sweetword manner. The record (IDi, Ci)
is kept on the honeychecker which is a separate, hardened
computer system of minimalist design. It may be placed
in different administrative domains, runs different operating
system, software stacks, security mechanisms and so on,
and ensures distributed security [7], [21]. The honeychecker
is not publicly accessible, and it only interacts with S by
using a “dedicated and/or encrypted and authenticated” [21]
communication channel.

When Ui logs in with (IDi, PW∗
i), S first looks up the list

SWi and sees whether there is one element (with index C∗
i)

that matches PW∗
i . If not, the login is rejected. Otherwise,

S submits a command Check(IDi, C∗
i) to the honeychecker.

If C∗
i =Ci, then the honeychecker signals to S to accept

Ui. Otherwise, it suggests that a login with honeyword is
attempted, and an alarm is raised to S. Depending on the alarm
policy, S may take an appropriate action, such as: 1) accept the
login but on a honeypot system, and more stringently monitor
the user’s activities; 2) if the number of honeyword logins
against Ui’s account exceeds a pre-defined threshold T1 (e.g.,
3), lock out Ui’s account until the user resets a new password;
or 3) shut down the computer system and require all users
to reset new passwords, if all users’ total honeyword login
attempts exceeds a pre-defined threshold T2. The value of T2

depends on the system’s risk analysis and is out of our scope.
Since the system has to balance honeyword-distinguishing
attacks and DoS attacks, T2 shall not be too small or too large,
and without loss of generality, we set T2=104.

Honeyword distinguishing attacker. As mentioned earlier,
the most essential security goal of any honeyword method is
to produce a set of k-1 honeywords for a given user Ui’s
account such that they shall be indistinguishable from Ui’s
real password PWi. This goal corresponds to the honeyword
distinguishing attacker A as shown in Fig. 1, who aims to tell
the real password apart from the k-1 honeywords associated
with Ui’s account by using S as a querying oracle. A’s honey-
word login attempts will be detected by the honeychecker, and
if the number of such attempts against Ui’s account exceeds
the per-user threshold T1 (e.g., 3), A will raise the alarm on
Ui’s account. A will also raise the system-wide alarm if her
login attempts exceed the threshold T2 (e.g., 104). Thus, A’s
honeyword login attempts shall be as few as possible.

We assume that A has somehow already got access to the
server S’s password hash file, knows the algorithm under
which the honeywords are generated and hashed, and is armed
with all the publicly available information (e.g., various pub-
licly leaked password datasets and the target site’s password
policy). We call this attacker a type-A1 attacker. As said
earlier, A may also obtain the victim Ui’s PII. We call this
advanced attacker a type-A2 attacker. These assumptions about
A’s capabilities are indeed realistic, yet they are often only
implicitly made (or missed) in previous studies [7], [14], [21].

Other attackers. As discussed in [21], other valid threats
facing honeywords include attacking the honeychecker sys-
tem, denial-of-service (DoS) attacks that game the honeyword
system and intersection attacks where an attacker exploits user
passwords reused across different systems. Since these attacks
have little relevance to the strength of a honeyword-generation
method, and thus they are beyond our scope.

C. Evaluation metrics

Juels and Rivest [21] proposed a notion of ϵ-flat to measure
the security of a honeyword generation method. ϵ-flat denotes
the maximum success rate ϵ that, when given Ui’s k sweet-
words, the distinguishing attacker A can gain by submitting
only one online guess to S. However, this metric is inadequate
for measuring a method’s security level when A is allowed
to make more than one online guess per user (e.g., when
T1 > 1). In addition, ϵ-flat falls short of reflecting the system’s
“low-hanging fruits” produced by a method, i.e. these most
vulnerable honeywords that can be easily distinguished.

Accordingly, we propose two new metrics: flatness graph
and success-number graph. These two metrics (see Fig. 2)

4

(a) Metric 1: Flatness graph. (b) Metric 2: Success-number graph.
Fig. 2. Two metrics for measuring the resistance of a honeyword generation
method against the distinguishing attacker. Here methods A and B are
conceptual. The closer to the perfect line, the better a method will be.

measure a method’s resistance against the honeyword distin-
guishing attacker in the average and worse-case point of view.

Flatness graph plots the probability of distinguishing the real
password vs. the number of sweetword login attempts per user.
As shown in Fig. 2(a), a point (x, y) on a curve indicates
that the real password is guessed with a probability y in the
first x attempts, where x≤k. In reality, it also requires that
x≤T1 (e.g., T1=1 or 3). Clearly, the data point (x=1, y) on
our flatness curve corresponds to the ϵ-flat metric introduced
in [21], i.e., ϵ=y|x=1. A flatness graph provides a view of the
average resistance against a distinguishing attacker with varied
guess numbers per user all the way to k.

Success-number graph measures to what extent a method
will produce vulnerable “low-hanging fruits” for A. This
graph plots the total number of successful login attempts (i.e.,
login with a real password) vs. the total number of failed
login attempts (i.e., login with a honeyword). A point (x, y)
on a curve in Fig. 2(b) indicates that y real passwords are
successfully distinguished from the system before the x-th
honeyword login attempt occurs, where x ≤ T2 (e.g., T2=104).
A 1

k -flat method is perfect, since it produces no “low-hanging
fruits” and each of the k sweetwords per user is of the same
probability to be a real password.

III. TRAWLING GUESSING ATTACKS

The stated security goal for Juels-Rivest’s four primary
honeyword-generation methods is that, when given Ui’s k
sweetwords, the distinguishing attackerA can gain a maximum
success rate about 1

k by making an online query to S (see Table
1 of [21]). However, by using large-scale real-world datasets
as listed in Table I, we now show that these methods all fall
short of its intended security goal. We first provide a review of
Juels-Rivest’s methods, and then show that their methods fail
to achieve the expected security (i.e., 1

k -flat) under the weak
assumptions of the attacker (i.e., a type-A1 attacker).

A. Review of Juels-Rivest’s methods

Juels-Rivest’s four main methods (see Table 1 of [21]) are all
based on the random-replacement approach: each honeyword
is produced by randomly replace parts (or whole) of the real
password. Particularly, the first three are real-password related
ones, i.e., the k−1 honeywords depend on the structure of the
real password PWi.

Tweaking by tail. Their first method is to “tweak” the selected
character positions of the real password PWi to generate
the k − 1 honeywords. Let t (e.g., t = 2 or 3) denote the

desired number of positions to tweak. Juels and Rivest [21]
mainly discussed the “tweaking by tail” version, and we also
focus on this version. Each character in the last t positions of
PWi is replaced by a randomly-chosen character of the same
type: a digit is replaced by a digit, a letter by a letter, and a
special character by a special character. For instance, if PWi

is trustno1 and t = 3, then the sweetword list SWi might
be trustyp0, trustmi7, trustno1, trustme5, etc.

Modeling syntax. Their second method, inspired by [4],
is to parse PWi into tokens of consecutive characters of
the same type and extract the corresponding syntax, and
then honeywords are generated by replacing tokens with
randomly selected values that match the syntax. For instance,
the syntax L7D1 can be abstracted from trustno1, and then
honeywords, such as dfdphus3, letmein4 and kebrton9
can be generated.

Hybrid. Their third method is to combine the tweaking-tail
and modelling syntax methods, aiming to gain advantages from
both methods. More specially, when given Ui’s password PWi,
the hybrid method first employs the modeling syntax approach
to extract PWi’s syntax and produces a seed sweetwords
(including PWi), and then generates b − 1 honeywords by
tweaking each seed sweetword, where a · b ≥ k. Finally,
k−1 honeywords except for PWi are randomly selected from
these a · b− 1 honeywords. It is recommended that a≈b≈

√
k.

For instance, assume k=20, and a=4, b=5; the syntax L7D1

can be abstracted from trustno1, and 3 seed sweetwords
dfdphus3, letmein4 and kebrton9 are generated. Then,
4 new honeywords are produced for each of the 4 seed
sweetwords, resulting in 20 sweetwords for Ui.

Simple model. Their fourth method is to use real password
samples as an aid to generate honeywords (see Appendix of
[21]). First, a list L is built by combining large-scale real-
life passwords and 8% random passwords of varying lengths.
Then, a random element w = w1w2 · · ·wd of length d is picked
from L, and a honeyword c with char sequence w1c2 · · · cd is
generated heuristically. More specifically, for j = 2, 3, · · · d,

• With probability 10%, replace w by a random element
in L, and then set cj = wj ;

• With probability 40%, replace w by a random element
in L satisfying cj−1 = wj−1, and set cj = wj ;

• With probability 50%, set cj = wj .

For fair evaluation, when implementing Juels-Rivest’s meth-
ods, we strictly follow the specifications in [21].

Remark 1. We note that in a passing comment, Juels and
Rivest mention the possibility of using probabilistic password
models (e.g., Weir et al.’s PCFG [32]) to build honeywords:
“see Weir et al. [32] for a presentation of an interesting alterna-
tive model for passwords, based on probabilistic context-free
grammars” [21]. However, due to the Zipf-distribution nature
of passwords [28], generating decoy passwords (according to a
probabilistic password model or not) that are equally probable
to the user’s real password is inherently impossible (see Sec.
VI). Moreover, each password model has its own inherent
weaknesses. Other challenges like sparsity also arise. They
all make the use of probabilistic models not straightforward
but rather challenging, Juels and Rivest explicitly leave it as
an open question (see Section 9 of [21]): “can the password

5

models underlying cracking algorithms (e.g., [32]) be easily
adapted for use?” In Sec. III-E, we will provide a negative
answer to this question.

Remark 2. Also note that, besides the above four methods,
there is another legacy-UI method called “Chaffing with tough
nuts”. It needs to be used together with other methods, and
aims to generate some tough honeywords that are much harder
to crack to render A’s offline guessing work more challenging.
However, as pointed out by Erguler [14], the attacker A cares
cost-effectiveness: if the cracking time exceeds her acceptable
time-threshold, A would stop cracking these tough nuts and
simply avoid using these “tough nuts”, because common user
rarely use “tough nuts”. In this regard, introducing “tough
nuts” as honeywords would make the number of a user’s
effective honeywords less than k-1 and thus actually decreases
security. Hence, we do not consider it.

B. Two attacking strategies

We now present two simple yet practical honeyword dis-
tinguishing strategies (with varying tunings) against Juels-
Rivest’s methods. They work on real-world password datasets,
inherently different from the existing heuristic strategy (see
[7], [14], [21]) that is mainly based on some specific counter-
example passwords. Essentially, they make use of the fact that
user-chosen passwords follow the Zipf’s law [28], and ranks
the sweetwords based on some known probability distribution,
either normalized within a user or not. The probability distri-
bution can be calculated from a leaked password dataset, or
based on a probabilistic password model such as Markov [24].

For fair evaluation, here we consider the attacker capabilities
of A1, i.e., a basic attacker (see Sec. II-B). In brief, A1 has got
the password hash file, knows all cryptographic algorithms and
public info, but does not exploit user PII. Such an assumption
of attacker capabilities is in line with Juels-Rivest’s work [21]
as well as the other previous studies [7], [14].

Top-PW attack. This attack is simple yet effective. The
distinguishing attacker A is faced with a password file F of
n lists {SW1, SW2, · · · , SWn}, where each list consists of a
set k of distinct sweetwords. Given such a multi-set of n · k
sweetwords, A’s aim is to find as many real passwords as
possible before making T2 (e.g., 104) failed honeyword login
attempts. Note that A can only make at most T1 (e.g., 1,
3, or 10) honeyword logins against each account. A simply
tries these n ·k sweetwords in decreasing order of probability,
where the probability of each sweetword swi,j (1 ≤ i ≤ n
and 1 ≤ j ≤ k) comes directly from a known probability
distribution PD (e.g., a leaked dataset D like the 32 million
Rockyou) as follows:

Step 1. ∀swi,j ∈ F , if swi,j ∈ D, set Pr(swi,j) =
PD(swi,j);

Step 2. ∀swi,j ∈ F , if swi,j ̸∈ D, set Pr(swi,j) = 0.

We call PD(·) the List password model, where ∀x∈ D,
PD(x) = Count(x)

|D| , where Count(x) means the occurrence
number of password x and |D| is the size of the multi-set D.
We empirically evaluate this attack against the four methods
in [21]. More specifically, we randomly split the Dodonew
dataset into two parts of equal size, resulting in: 8.129 million

Algorithm 1: Distinguish the real passwords from a given
password file F that is consisted of n lists of sweetwords.

Input: n sweetword lists {SW1, SW2, · · · , SWn}, one list per user;
the threshold T1 of honeyword login attempts per user; the
threshold T2 of honeyword login attempts for the system.

Output: A vector V shows the success-number graph.
1 Initialize the vector V to be ∅;
2 Initialize the priority queue crackQueue to be ∅; /* crackQueue is

ranked by the conditional probability of sweetwords. */
3 numFailure = 0, numSucess = 0;
4 for i = 1 to n do
5 (p, sw) = getSweetword(SWi); /* according to the specified

attacking strategy, get the sweetword sw with the highest priority p
normalized among all the un-attempted sweetwords in SWi. */

6 crackQueue.Insert((p,SWi, sw));
7 while numFailure < T2 and !crackQueue.empty() do
8 (p,SWj , sw) = crackQueue.getF irst();
9 crackQueue.removeF irst();

10 if SWj .numFailure < T1 then
11 success=Login(SWj .id, sw);/*use SWj .id as user name

and sw as password to login as user Uj . */
12 if success then
13 numSuccess++;
14 else
15 SWj .numFailure++, numFailure++;
16 V.Insert((numFailure, numSuccess));
17 (p, sw) = getSweetword(SWj);
18 crackQueue.Insert((p, SWj , sw));

19 return V;

Dodonew-tr and 8.129 million Dodonew-ts. For each method
in [21], k − 1 honeywords are produced for each of the
password in Dodonew-ts, while PD of the Top-PW attack
comes from Dodonew-tr. As shown in Figs. 3(a)∼3(d), the
Top-PW attack tells apart at least 615,664 passwords from
the 8,129,445 Dodonew-ts accounts protected by any of the
four methods in [21]. However, according to Juels-Rivest’s
original security goal, an attacker should distinguish only about
526(=T2/(k−1)) real passwords from Dodonew-ts. That is, in
terms of the success-number metric, their methods are weaker
than the claimed security by a factor of at least 1170.

We also employ the Top-PW attacking strategy to evaluate
the flatness of the four methods in [21]. In brief, when given
a list SWi of k sweetwords for user Ui, A simply tries
these k sweetwords in decreasing order of probability, where
each sweetword’s probability comes directly from a known
probability distribution PD as above. Fig. 3(e) shows that all
methods are 0.35+-flat. In other words, there is over 35% of
success rate in telling part the real password from the k=20
sweetwords with just one guess. See more details in Sec. III-D.
Evidently, there is a large gap between these four methods and
the expected (perfect) method.

Though this attack is effective, it is subject to an obvious
defect: when identifying the next sweetword swi,j to be
guessed, this identifying process bears little relevance to the
nature of the underlying sweetword list to which swi,j belongs.
For example, assume there are two sweetword lists left: SWi

and SWi+1, where (1) Pr(swi,j)=0.030 and all the other 19
sweetwords in SWi are with a equal probability 0.029; (2)
Pr(swi+1,j)=0.028, and all the other 19 sweetwords in SWi+1

are with a equal probability 0.001. Then, which sweetword
shall be tried next, swi,j or swi+1,j? It is more likely that
swi+1,j will be the real password for SWi+1 than swi,j

for SWi. Thus, it is better to first try swi+1,j against user
Ui+1. This intuition gives rise to the following more effective
attacking strategy.

6

Normalized top-PW attack. The essential difference between
this strategy and the above one is that, A now tries these
n · k sweetwords from lists {SW1, SW2, · · · , SWn} in
decreasing order of normalized probability. More specifically,
the probability of each sweetword swi,j (1 ≤ i ≤ n and
1 ≤ j ≤ k) comes directly from a known password distribution
D (i.e., using the List password model PD(·)), but it has been
normalized among each user’s own k sweetwords:

Step 1. ∀swi,j ∈ SWi, if swi,j ∈ D, set
Pr(swi,j) = PD(swi,j);

Step 2. ∀swi,j ∈ SWi, if swi,j ̸∈ D, set Pr(swi,j) = 0;
Step 3. ∀swi,j ∈ SWi, set

Pr(swi,j) = Pr(swi,j)/
∑k

t=1 Pr(swi,t).

If the system allows more than one honeyword login attempt
(i.e., T1 >1), after any one of the sweetwords in SWi has
been attempted, the probability of all the other unattempted
sweetwords in SWi shall be normalized:

Step 3’. Let I denote the set of subscripts of all the sweet-
words in SWi that have already been used in
login attempts. ∀swi,j ∈ SWi ∧ j ̸∈ I, set

Pr(swi,j) = Pr(swi,j)/
∑

t ̸∈I Pr(swi,t).

After the probability of each unattempted sweetwords in
SWi has been normalized, one can sort the sweet list SWi

and identify the one with the highest priority. This corresponds
to an instantiation of the function getSweetword(SWi)
in Line 5 of Algorithm 1. Once it has been instantiated, a
run of Algorithm 1 will produce the success-number graph.
Similarly, after the Steps 1∼3, every sweetword in SWi

is with a (normalized) probability, and thus the function
getSweetword(SWi) in Line 5 of Algorithm 2 is instanti-
ated. Finally, a run of Algorithm 2 produces the flatness graph.

Since password distributions in reality differ greatly from
each other (see concrete examples in Fig. 3 of [30]), many
sweetwords in the password file F do not appear in the
distribution D, and they will be assigned a probability 0. This
causes great inaccuracies in sweetword ranking. For instance,
when using Dodonew-tr as the training set (i.e., to be D) and
Dodonew-ts as the test set, over 74% sweetwords in the file
F (which is generated from Dodonew-ts) will be assigned a
probability 0 according to Step 2. Crucially, one should not
think that things that one has not yet seen are of probability
0. This is called sparsity issue in machine learning, and it
can be addressed by applying the techniques of smoothing.
A number of smoothing methods have been proposed for
language modeling, such as Laplace and Good-Turing, and
they have been widely used in password studies [24], [30].
However, they cannot be readily applied to our settings where
the majority of sweetwords do not appear in the training set.
We devise an “+1” smoothing method:

Step 2’. ∀swi,j ∈ SWi, if swi,j ̸∈ D, set Pr(swi,j)= 1
|D|+1 .

We have experimented with the Laplace, Good-Turing and
“+1” smoothing methods, and found our “+1” method though
simple yet most effective. Thus, we prefer the “+1” method.
Note that, “+1” method assigns the same, constant value 1

|D|+1
to all sweetwords that have not appeared, and thus it is mainly
effective for ranking popular sweetwords, mainly suitable for
attacking Juels-Rivest’s four methods. When the main goal is
to rank unpopular sweetwords, other smoothing methods shall

Algorithm 2: Distinguish the real password from every list
of sweetwords in a given password file F .

Input: n sweetword lists {SW1,SW2, ..., SWn}, one list per user.
Output: A vector V shows the flatness graph.

1 Initialize the vector V to be empty;
2 for i = 1 to n do
3 r = 0;/* r counts the attempt num before a success for SWi.*/
4 while !SWi.isEmpty() do
5 (p, sw) = getSweetword(SWi); /* according to the

specified attacking strategy, get sweetword sw with the highest
priority p among all un-attempted sweetwords in SWi. */

6 success=Login(SWi.id, sw);/*use SWi.id as user name
and sw as password to login as user Ui. */

7 SWi.deleteSweetword(sw);
8 r++; /* the attempt num for SWi increases by one. */
9 if success then

10 break /* if succeed, move to the list SWi+1. */

11 V.Insert(r);
12 return V

be designed. In Sec. III-E, we will devise a new strategy for
attacking unpopular sweetwords.

Remark 3. It is worth noting that, the key difference between
the above two attacking strategies, i.e. the (additional) Step
3 of the Normalized top-PW, will have a large effect on the
success-number graph. However, this difference has no effect
on the flat graph, because all of each user’s k sweetwords
will be attempted and the Step 3 of the “normalized Top-
PW” strategy does not change the relative rankings within
each sweetword list. Both strategies (and the third one “Norm
PW-model” in Sec. III-E) do not mean that “if a password
appeared in a breach list D, and appears in the list of
honeywords, it is the actual password”. Generally, there are
j (1≤j≤k) sweetwords appear in D and k − j sweetwords
don’t, and the key difficulty lies in how best to rank these k
sweetwords. This requires creative efforts: new normalization
and smoothing techniques, and retooling password models to
eliminate sweetword ties which have the same probability.

“Using a blacklist” is ineffective against all our proposed
attacks, because: (1) Each service has vastly different pass-
word distributions—As shown in Fig. 3 of [30], every two
services share less than 40% of passwords, and thus no
pre-constructed blacklist will block the majority of popular
passwords; (2) Users tend to circumvent the blacklist [8],
[28], and new popular passwords will arise: if password is
blocked, password1 will arise; if password1 is blocked,
password123 (and p@ssword1) will arise; (3) Blacklist is
inherently unable to recognize/block PII-based passwords, and
thus is ineffective against the Type-A2 attacker.

Remark 4. Essentially, our two honeyword attacking strate-
gies are effective in distinguishing popular sweetwords from
unpopular ones. Thus, when more popular sweetwords are
more likely to be users’ passwords, our attacking strategies will
be effective. This indicates that they are particularly suitable
for attacking non-password-model based methods (e.g., Juels-
Rivest’s four methods) which generate a set of k − 1 honey-
words that are generally less probable than the user’s original
password. When password-model based methods are in place,
the main goal is to rank unpopular sweetwords, and other
attacking strategies shall be designed. In Sec. III-E, we will
show how to revise the “Normalized top-PW attack” strategy
for attacking password-model based methods.

7

C. Experimental setups

When evaluating a honeyword method, the success-number
graph is resulted from a run of Algorithm 1, while the flatness
graph from a run of Algorithm 2. The differences in each
evaluation lie in how the function getSweetword(SWi) is
instantiated: the attacking strategy (i.e., Top-PW, Norm top-
PW, or Norm PW-model in Sec. IV), the training set and
the test set. For each attacking strategy, there are 7 different
password models (i.e., List, PCFG [32], Markov [24], their
targeted versions [30], and no-training-set) for possible choice.

In most of our experiments, we use the first half of a
password dataset for training (e.g., 8.129 million Dodonew-tr),
and the second half for testing (e.g., 8.129 million Dodonew-
ts). Now we explain why. On the one hand, the effectiveness of
a machine-learning-based distinguishing algorithm depends on
two factors: the algorithm itself and the training sets used. By
randomly dividing a dataset into equally two parts, and using
part-1 for training and part-2 for testing, we can preclude the
impacts of training sets when evaluating an algorithm. On the
other hand, as unending lists of real-world password lists have
been disclosed (see [18], [20], [22]), the attacker can constantly
improve her training set to make it as close as possible to the
test set. For instance, the target system’s password distribution
can be largely approximated by a leaked site with the same
language, service type, password policy, etc. Actually, many
sites (e.g., Yahoo [18], Phpbb and Anthem [26]) have leaked
their user passwords more than once. Thus, we argue that when
evaluating a honeyword generation method, it is desirable to
employ a powerful yet realistic attacker and train the attacker
on a training set close to the test set.

This “half-half” practice does not violate the machine-
learning principle that the training set and test set shall be
different. It enables the attacker knows a large portion of the
knowledge of the target system’s password distribution, but
not exactly the full knowledge. The underlying reason is that,
according to the scale-free nature of Zipf’s law in passwords
[28], a non-negligible portion of passwords in “the first half
of dataset for training” will not appear in “the second half for
testing”, making the training set and test set similar but not the
same. For instance, among the 5.59 million distinct passwords
in the test set Dodonew-ts, 4.54 million (81.22%) do not appear
in the training set Dodonew-tr. Actually, this practice is also
quite routine in password research (see [9], [30], [32]), but we
for the first time explain why it is acceptable.

Besides experiments where the training set and test set stem
from the same original distribution, we also investigate the
impacts of varied training sets which come from different web
services in Sec. III-E. In addition, our non-train-set model
(see Sec. IV-A) does not employ any training set at all.
In our figures, generally, the lower the line, the better the
corresponding honeyword-method will be; Whenever a perfect
method line is presented, the closer to the perfect line, the
better the corresponding honeyword-method will be.

D. Our basic, trawling guessing attacks

In the above two attacking strategies, we instantiate the
probabilities of sweetwords for a given password file by using
the List password model PD(·) as defined in Sec. III-B:
∀x∈ D, PD(x) = Count(x)

|D|). That is, the probability of a
sweetword directly comes from the training set D. We call

it the basic, trawling guessing attack. In Sec. III-E, we will
instantiate the probabilities of sweetwords by using much more
sophisticated password models like PCFG and Markov.

Figs. 3(a)∼3(d) show that, in terms of the success-number
graph, the “norm Top-PW” attack strategy with smoothing
performs significantly better than the no-smoothing version.
Generally, it also performs much better than the “Top-PW”
strategy, especially when the login number allowed is small.
This suggests the critical role of smoothing in attacking honey-
words. When trained on Dodonew-tr, it can tell at least 710930
(8.75%) real passwords apart from the 8,129,445 Dodonew-
ts accounts protected by any of the 4 methods in [21]. This
indicates that, in terms of the success-number metric, there
are over 1352=(710930/(T2/(k-1))) times of underestimation
of the vulnerabilities in Juels-Rivest’s methods.

As said earlier, when evaluating the flatness security goal
of the methods in [21], the two attacking strategies (see
Sec. III-B) will essentially try the same sequences of sweet-
words for each user account. Hence, they will produce the
same flatness graph as shown in Fig. 3(e). Our results show that
all 4 methods provide very similar security levels of flatness,
with the modeling syntax being slightly better. Their similarity
holds in all our later experiments, and due to space constraints,
hereafter we only take the tweaking-tail method as an example.

As shown in Figs. 3(a)∼3(d), no matter each user account
can be attacked 1, 3, or 10 times, both attacking strategies
perform rather stably. The underlying reasons are that: (1)
when an account can be attacked just once (i.e., T1=1),
both strategies can successfully identify at least 615,664 real
passwords from Dodonew-ts against every method in [21];
and (2) When an account can be attacked more than once
(i.e., T1>1), there are no more than T2 un-distinguished user
accounts involved in the attack, and thus A will crack at most
an additional T2 real passwords as compared to T1=1; and
(3) 615,664≫T2, thus 615,664+T2≈615, 664. Therefore, from
then on we only consider the case where T1=1 when evaluating
the success-number graphs. Note that, the setting of T1=1 has
no relevance to our evaluation of the flatness graph where k
login attempts per user are always allowed.

Recall that the success-number metric measures a method’s
strength against the distinguishing attackerA in the worse-case
point of view, i.e., A first attacks the weakest user accounts.
Take the case of “Top-PW: 1t” in Fig. 3(a) for example. Since
123456 is the top-1 password (1.44%) in Dodonew-tr, A will
first use 123456 as the guess to test against all the 8,129,445
Dodonew-ts accounts. One might think that, 1.44% · 8,129,445
≈ 110K successful logins shall occur before the 1st failed
login occurs. However, this is not true, because 123456 can
also be a honeyword for user accounts that are with a real
password of the pattern 123xxx (e.g., 123123). Thus, A’s
login with 123456 may fail for such accounts before reaching
110K successful logins. Fig. 3(a) shows that, to reach 110K
successful logins, A fails about 100 times when using the
“Norm Top-PW with smoothing” strategy, and about 1000
times when using the “Top-PW” strategy.

In the above, we mainly used the Dodonew dataset to
evaluate Juels-Rives’s methods. The evaluation using the other
9 datasets show similar results, and due to space constraints,
they are omitted here. The evaluation figures of three re-

8

(a) Attacks on the tweaking-tail method. (b) Attacks on the modelling-syntax method. (c) Attacks on the hybrid method.

(d) Attacks on the simple-model method. (e) The flatness graph of each method (k=20). (f) Tweaking-tail: n=8,129,445, ϵ=0.3755.

Fig. 3. Experiment results for attacking the four methods in [21] in terms of the success-number and flatness metrics. Each method is
evaluated by two attacking strategies with various tunings, trained on 50% of Dodonew (i.e., Dodonew-tr) and tested on the remaining 50%
(i.e., Dodonew-ts). Whenever a perfect method line is presented, the closer to the perfect line, the better the corresponding honeyword method
will be. Sub-figures (a)∼(d) show that the “norm top-PW” attacking strategy with smoothing can distinguish 711K+ real PWs against every
method when allowed T2=104 honeyword logins, where 1t means T1=1, 3t means T1=3 and so on; Sub-figure (e) reveals that all 4 methods
are 0.35+-flat, over 7 times weaker than expected in [21]. Sub-figure (f) exemplifies the correlations between the flatness and success-number
metrics: (1) the upper-bound of success-number is x+n ·ϵ, which means before the x-th failed login occurs, all the total Dododnew-ts accounts
(i.e., n=8,129,445) have already been tried (since x ≪ n∗η, then x+n∗η≈n∗η, being a horizontal line); and (2) the lower-bound is ϵ

1−ϵ
·x,

which means before the x-th failed login occurs, A has at least tried 1
1−ϵ

· x accounts, and her success number is ϵ · (1
1−ϵ

· x).

TABLE IV. SUCCESS-NUMBER INFORMATION (%) ABOUT EACH
HONEYWORD METHOD, EVALUATED UNDER THE (TYPE-A1) “NORM

TOP-PW: SMOOTH, 1T” STRATEGY AND T2 = 104 .†

Tweak-tail Model-syntax Hybrid Simple model
Tianya 14.41% 13.04% 14.90% 5.81%
Dodonew 10.10% 9.06% 10.46% 8.75%
CSDN 18.78% 15.75% 18.39% 16.32%
12306 9.32% 7.88% 9.17% 9.51%
Rockyou 21.63% 7.35% 14.01% 2.41%
000webhost 9.56% 14.33% 16.86% 4.56%
ClixSense 16.87% 5.27% 9.52% 6.08%
Yahoo 24.25% 7.61% 13.81% 16.84%
Rootkit 20.39% 12.72% 17.82% 19.57%
QNB 20.99% 20.85% 20.97% 20.48%
Average 16.63% 11.39% 14.59% 11.03%

†A value in bold means the corresponding method perform best among
four methods, while a value with background color means the worst.

maining million-sized datasets (i.e., Tianya, Rockyou and
000webhost) can be found in the companion site. Tables
IV and V summarize all the evaluation results for our ten
datasets. As said earlier, the choices of training and test sets
follow the “half-half” practice. When allowing 10000 failed
attempts, 11.03%∼16.63% accounts of the ten test sets can
be successfully guessed; Tweak-tail provides the worst ϵ-
flatness (i.e., 0.3262), even the best method Model-syntax are
0.2929-flat: users’ real passwords can be distinguished with a
success rate of 29.29% by a trawling guessing attacker, but
not the expected 5%, with just one guess (when k=20 as
recommended). No method always performs the best in both
metrics, yet in general there does show a hierarchy: Model-
syntax > Simple model ≈ Hybrid > Tweak-tail.

Remark 5. Why our experiments are so effective? It has
been discussed in Remark 4 that, our “Normalized top-PW”

TABLE V. ϵ-FLAT INFO ABOUT EACH HONEYWORD METHOD.†

Tweak-tail Model-syntax Hybrid Simple model
Tianya 0.4368 0.4400 0.4580 0.4463
Dodonew 0.3755 0.3582 0.3796 0.3828
CSDN 0.3664 0.3437 0.3716 0.3978
12306 0.1309 0.1177 0.1287 0.1327
Rockyou 0.5498 0.4831 0.5334 0.5035
000webhost 0.3550 0.3587 0.3594 0.3541
ClixSense 0.3055 0.2221 0.2758 0.2943
Yahoo 0.2785 0.2080 0.2527 0.2661
Rootkit 0.2293 0.1636 0.2052 0.2210
QNB 0.2348 0.2342 0.2355 0.2313
Average 0.3262 0.2929 0.3200 0.3230

†Both our attacking strategies in Sec. III-B would produce the same
flatness graph. The experimental setups and the meaning of the
bold/background-color emphasis are the same with that of Table IV.

attacking strategy is essentially effective in distinguishing pop-
ular sweetwords from unpopular ones. Thus, it is particularly
suitable for attacking Juels-Rivest’s four random-replacement
methods which generate a set of k-1 honeywords that are
generally less probable than the user’s original password.
For instance, Table VI shows that the typical most popular
passwords in Dodonew-ts was rarely (<0.01%) generated as a
honeyword by any method. This means that, once these popular
passwords appear in a user’s sweetword list, they are probably
a real password, and our algorithm can identify them.

E. Further evaluations
Varying training sets. In the above, we have evaluated Juels-
Rivest’s four primary methods under two attacking strategies
with various tunings. In all experiments, the training set and
the test set stem from the same original distribution, and
they would be of quite similar distributions. One may wonder

9

TABLE VI. AN ILLUSTRATION OF PERCENTAGES OF POPULAR
PASSWORDS THAT APPEAR IN A SWEETWORD LIST (EITHER AS A REAL

PASSWORD OR AS A HONEYWORD).†

Top PWs Dodonew-ts Generated as honeywords for Dodonew-ts
Real PW Tweak-tail Model-syntax Hybrid Simple model

123456 1.4437% 0.0057% 0.0000% 0.0016% 0.0003%
a123456 0.3818% 0.0013% 0.0036% 0.0003% 0.0002%
123456789 0.3199% 0.0004% 0.0000% 0.0008% 0.0014%
111111 0.2273% 0.0004% 0.0033% 0.0002% 0.0005%
5201314 0.1898% 0.0002% 0.0000% 0.0010% 0.0035%
123123 0.1741% 0.0299% 0.0000% 0.0049% 0.0000%
a321654 0.1670% 0.0001% 0.0003% 0.0000% 0.0008%
woaini 0.0383% 0.0006% 0.0000% 0.0003% 0.0020%
password 0.0436% 0.0002% 0.0000% 0.0002% 0.0001%
123qwe 0.0277% 0.0005% 0.0105% 0.0001% 0.0013%
Sum (%) 3.0134% 0.0393% 0.0177% 0.0093% 0.0101%

†All the % are obtained by dividing the 8,129,445 Dodonew-tr accounts.

what will happen when the training set and test set come
from more distinct distributions. To address this issue, we
fix the attacking strategy to be “normalized top-PW with
smoothing” (and set T1=1) and the test set to be Dodonew-
ts, but with varying training sets: Dodonew-tr, Tianya and
Rockyou. To understand the effects of the size of training sets,
we also employ two additional training sets: Tianya sample
and Rockyou sample, where Tianya sample means a dataset
randomly drawn from Tianya and its size equals Dodonew-tr,
similarly for Rockyou sample.

Fig. 4 shows the attacking results against the tweaking-
tail method. In Fig. 4(a), when the honeyword login number
allowed is small (e.g., <300), the attack trained on Tianya
performs the best; As this number increases, the attack trained
on Dodonew-tr performs the best. At 104 failed honeyword lo-
gins, the attack trained on Dodonew-tr can distinguish 820,703
real passwords, while the least effective attack, which is
trained on Rockyou sample, can still distinguish 642,668 real
passwords, 1222 times higher than against the perfect method.
Fig. 4(b) reveals that: (1) even trained and tested on two distant
distributions (i.e., Tianya vs Dodonew-ts), the “norm top-PW”
strategy can gain 26% of success rate with just one guess, 5
times higher than Juels and Rivest originally expected (i.e.,
5%); and (2) the 5 training sets show a clear hierarchy in
flatness: Dodonew-tr > Tianya > Tianya sample > Rockyou
> Rockyou sample. We also experimented on the three other
methods, and get similar results.

The high success-rates of English datasets (e.g., Rockyou)
against the Chinese dataset Dodonew-ts (see Fig. 4(a) and 4(b))
are because: (1) Different kinds of “low-hanging fruits” can be
revealed by the List model when trained on Dodonew-tr and
Rockyou, respectively; (2) there are many internationally popu-
lar passwords(e.g., digital-sequences and keyboard-patterns) in
both Dodonew-tr and Rockyou (see Fig. 3 of [30]). However,
when measuring “flatness” (see Fig. 4(b)), the training set
Rockyou is ineffective against Dodonew-ts.

In all, our results suggest that: (1) the closer the training set
is to the test set, the more effective the attack will be; (2) the
larger the training set, the more effective the attack will be;
(3) under quite practical attacks, all the four methods examined
provide far less security than expected.

Attacking password-model-based methods. Juels-Rivest’s
four primary methods are random-replacement based: the k-
1 honeywords for a given user are generated by randomly
replacing parts (or whole) of the real password. In a passing
comment, Juels and Rivest [21] mention the possibility of using
probabilistic password models (e.g., Weir et al.’s PCFG [32])

(a) Success-number graph of the tweaking-tail method.

(b) Flatness graph of the tweaking-tail method.
Fig. 4. An investigation of the effectiveness of different training sets:
tested on Dodonew-ts, attacking with the “norm top-PW: smooth, 1t” strategy.
Whenever a perfect method line is presented, the closer to the perfect line,
the better the corresponding honeyword-method will be.

to build password model based honeyword methods. They
explicitly left it as an open question (see Section 9 of [21]):
“can the password models underlying cracking algorithms
(e.g., [32]) be easily adapted for use?” Here we provide a
negative answer to this question.

Here we take the well-known PCFG password model for
example. We assume that, for a given user’s password PWi,
the k-1 honeywords are produced according to the PCFG
model (denoted by PPCFG(D)(·)) trained on a specified dataset
D. Thus, the k-1 honeywords will be independent to PWi.

In such methods, sweetwords with a higher probability gen-
erally will not be more likely to be the real password, because
now the k-1 honeywords generated for PWi are completely
dependent on the password model (e.g., PPCFG(D)(·)) but not
PWi: more popular events in the password model will be more
likely selected as honeywords for PWi.

As a result, the “Norm top-PW” strategy in Sec. III-B will
not be effective. We now propose a new attacking strategy,
called “Norm PW-model” strategy, by revising the “Norm
top-PW” strategy. More specifically, all the settings in “Norm
PW-model” strategy are the same with the “Norm top-PW”
strategy, except for that (using the PCFG model for instance):

1) Add an additional Step 0 to the “Norm top-PW” attack
strategy: the known password distribution D (e.g., a
leaked password list) is first applied to the PCFG model
(we use the laplace smoothing, see [24]), and this results
in a password distribution PCFG(D).

2) Revise the Step 3 of “Norm top-PW” attack strategy to
be: ∀swi,j ∈ SWi, set

Pr(swi,j) =
PrD(swi,j)

PrPCFG(D)(swi,j)∑k
t=1

PrD(swi,t)

PrPCFG(D)(swi,t)

.

10

TABLE VII. SUCCESS NUMBER INFO AND ϵ-FLAT INFO ABOUT JUELS-RIVEST’S 4 METHODS (UNDER THE “NORM TOP-PW” STRATEGY) AND 2
PASSWORD-MODEL-BASED METHODS (UNDER THE “NORM PW-MODEL” STRATEGY): TRAINED ON DODONEW-TR, TESTED ON DODONEW-TS.

Tweak tail Model-syntax Hybrid Simple model PCFG-based method Markov-based method Perfect method (base line)
Success number info 10.10% 9.06% 10.46% 8.75% 4.06% 7.52% 0.006%

ϵ-flat info 0.3755 0.4666 0.4063 0.3345 0.1761 0.2624 0.0500

For the Markov-model-based honeyword method, we can
similarly define the “Norm PW-model” attack strategy.

As shown in Fig. 5(a), if A exploits our “Norm PW-model”
strategy (trained on Dodonew-tr, tested on Dodonew-ts, and
T2 = 104), honeyword-generation methods directly adapted
from state-of-the-art password models are still vulnerable.
More specifically, before A makes the first failed login attempt,
she can successfully login 58,122 (0.71%) accounts against the
PCFG-based method, and 150,459 (1.84%) accounts against
the Markov-based method; before A makes the 104th wrong
login attempts, she can successfully login 329,957 (4.06%)
accounts and 611,388 (7.52%) accounts, respectively. Fig. 5(b)
reveals that both methods are 0.1761+-flat.

(a) Success-number graph of representative password-model-based methods.

(b) Flatness graph of representative password-model-based methods.
Fig. 5. An investigation of the effectiveness of two representative password-
model-based honeyword-generation methods that are mentioned in [21]:
trained on Dodonew-tr, tested on Dodonew-ts, attacking with the ‘Norm PW-
model” attack strategy (see Sec. III-E). Both methods are vulnerable.

As summarized in Table VII, the PCFG-based method
performs the best among the six methods in terms of both the
success number and ϵ-flatness metrics. Still, in terms of the
success-number metric, it is 628=(329957/(T2/(k-1))) times
weaker than the optimal method; it is 0.1761-flat, three times
weaker than the expected 0.05. It is likely that under more
effective attacking strategies, the PCFG-based method will be
even weaker. Naturally, an interesting question arises: is our
“Norm PW-model” attacking strategy optimal for password-
model based honeyword methods? Or, what’s the optimal
attacking strategy for password-model based methods? We left
both questions as future research.

Summary. Our real-data grounded attacks show that the four
methods examined all fall short of their expected security:
under Juels-Rivest’s assumed adversary model (i.e., a type-

A1 attacker), the real passwords can be distinguished with a
success rate of 29.29%∼32.62% by using our basic trawling-
guessing attack, but not the claimed 5%, with just one guess
when each user account is associated with 19 honeywords. We
also provided a negative answer to the question of “can the
password models underlying cracking algorithms (e.g., [32])
be easily adapted for use?” as left in [21].

IV. ADVANCED TRAWLING GUESSING ATTACKS

In the above, we have evaluated Juels-Rivest’s four primary
methods under two attack strategies by using the List password
model (which is the most basic/simple password model). One
defect of the List model is that, it is not good at eliminating
“sweetword ties” (which are of similarly low probabilities) in
uncommon sweetwords. In this Section, we address this issue
by exploiting two sophisticated password models (PCFG and
Markov) and smoothing techniques. Particularly, both models
follow the Zipf’s law (see Fig. 13(k) of [30]), and thus are
good at assigning monotonically decreasing probabilities to
strings/tokens to eliminate “sweetword ties”.

A. Our no-training-set password model
Before presenting our advanced-model-based experiments,

we propose a special password model for honeywords. It
exploits the fact: if honeywords are uniformly distributed
(i.e., PrHW(·|x)= 1

|T (x)|), then we can get the distribution of
passwords from the distribution of sweetwords, where T (x)
denotes the sweetword space obtainable from the sweetword
x and PrHW(x) denotes the probability that x is chosen as the
honeyword. We similarly define PrPW(x) and PrSW(x). Let
P̂rPW(x) denote an instantiation of PrPW(x).

The sweetword list consists of k − 1 honeywords and one
password. Thus, the sweetword distribution PrSW(·) can be
determined by the password distribution PrPW(·) and the
honeyword distribution PrHW(·|·) by using the equation:

PrSW(x) =
1

k
PrPW(x) +

k − 1

k

∑
y

PrPW(y) PrHW(x|y).

Then, we have

PrPW(x) =kPrSW(x)− (k − 1)
∑
y

PrPW(y) PrHW(x|y)

=kPrSW(x)− (k − 1)PrPW(T (x))
1

|T (x)|

=kPrSW(x)− (k − 1)PrSW(T (x))
1

|T (x)|
.

Since the probability of a sweetword, denoted by PrSW(x),
can generally be approximated by its empirical probability
countSW(x)

countSW
, we get an estimation of PrPW(x):

P̂rPW(x) = k · countSW(x)

countSW
−(k−1)countSW(T (x))

countSW
· 1

|T (x)|
.

As there are some sweetwords with P̂rPW(·)<0, smoothing
is needed. We tested five smoothing techniques for P̂rPW(x)
in Figs. 6(c) and 6(f), and results show ver5 performs the best.

11

(a) Success-number graph of PCFG-based attacks. (b) Success-number graph of Markov-based attacks. (c) Success-number graph of no-training-set attacks.

(d) Flatness graph of PCFG-based attacks. (e) Flatness graph of Markov-based attacks. (f) Flatness graph of no-training-set attacks.

Fig. 6. Experiment results for attacking the tweaking-tail method in [21] by using three sophisticated password models and five different
training sets, with Dodonew-ts as the test set. The List password model trained on Dodonew-tr is used as the baseline.

Ver1: P̂rPWwithSmooth1 = max{0, P̂rPW(x)};

Ver2: P̂rPWwithSmooth2 = max{ 1
countSW

, P̂rPW(x)};

Ver3: P̂rPWwithSmooth3 = max{ countSW(x)
countSW

, P̂rPW(x)};

Ver4: P̂rPWwithSmooth4 = max{ 1
countPW

, P̂rPW(x)};

Ver5: P̂rPWwithSmooth5 = countSW(x)
countSW

.

B. Sophisticated password models

In the basic attacks in Sec. III, the probability of sweetwords
comes from the List model—a known (leaked) password dis-
tribution PD(·). However, every leaked password distribution
is of very limited space compared to the total password space.
For instance, the currently known largest one is the 3 billion
Yahoo leak [18], which is still far smaller than the space (about
1032) of passwords that comply with a typical policy: consists
of three kinds of characters and with 8≤len≤16. Thus, one
may conjecture that, under more sophisticated probabilistic
password models (e.g., PCFG [32] and Markov [24]), the four
methods in [21] will be even weaker. Here we follow the
recommendations in [24], and use Laplace smoothing for the
PCFG model and Backoff smoothing for the Markov model.

We now establish this conjecture. We design a series of
attacks (see Fig. 6) against the tweaking-tail method to ex-
plore the effectiveness of various password-cracking models,
including PCFG [32], Markov [24] and our above no-training-
set ones. In our Markov-based attacks, all the settings are the
same with the “Norm top-PW: smooth, 1t” in Fig. 3(a), except
for that: the known password distribution D (e.g., a leaked
password list) is first applied to the Markov cracking model
(we use the backoff approach, see [24]), and this results in a
password distribution Markov(D), then PMarkov(D)(·) is used
instead of PD(·) to assign probabilities. We similarly denote
the PCFG-based password model to be PPCFG(D)(·) and the
no-training-set model to be PF (·). See the title of Fig. 6 for
how these models were trained and tested.

TABLE VIII. SUCCESS-NUMBER INFO (%) ABOUT THE
TWEAKING-TAIL METHOD BY USING FOUR ADVANCED PASSWORD

CRACKING MODELS AND FIVE DIFFERENT TRAINING SETS, UNDER THE
(TYPE-A1) “NORMALIZED TOP-PW ATTACK: 1T” ATTACK, TEST

SET=DODONEW-TS, AND T2 = 104 .†

List PCFG Markov No-training-set
Dodonew-tr 10.10% 12.45% 14.48% 13.80% (using ver5)
Tianya 8.94% 12.22% 14.01% 11.06% (using ver3)
Tianya sample 7.91% 11.15% 12.23% 10.43% (using ver4)
Rockyou 8.86% 10.73% 10.51% 8.87% (using ver2)
Rockyou sample 8.05% 9.59% 9.94% 1.79% (using ver1)

†A value in bold means the corresponding password model performs best.
All the % are obtained by dividing the 8,129,445 Dodonew-tr accounts.

TABLE IX. ϵ-FLAT INFO ABOUT THE TWEAKING-TAIL METHOD. ALL
THE EXPERIMENTAL SETTING ARE THE SAME WITH TABLE VIII.

List PCFG Markov No-training-set
Dodonew-tr 0.3755 0.4666 0.4063 0.3345 (using ver5)
Tianya 0.2565 0.3917 0.3817 0.2201 (using ver3)
Tianya sample 0.2204 0.3704 0.3480 0.2345 (using ver4)
Rockyou 0.2044 0.3194 0.3094 0.2030 (using ver2)
Rockyou sample 0.1813 0.3029 0.2753 0.1743 (using ver1)

As shown in Fig. 6, and summarized in Table VIII and Table
IX: (1) in general, the PCFG-based model PPCFG(D)(·) and the
Markov-based model PMarkov(D)(·) perform better than the List
model PD(·), when given the same training set and test set;
(2) the tweaking-tail method is 0.47+-flat (see Fig. 6(d)), 9
times weaker than expected in [21]; and (3) surprisingly, our
no-training-set model PF (·) (with smoothing version 5) well
approaches the List model PD(·), indicating that A can even
perform effective attacks by just using the sweetword file F
(and needs no external training sets).

Summary. Results show that Juels-Rivest’s four methods are
much weaker under our more advanced trawling-guessing
attackers who can exploit various state-of-the-art password
models like PCFG [32] and Markov [24]. More specifically,
under the adversary model (i.e., a type-A1 attacker) assumed
by Juels and Rivest, the real passwords can be distinguished
with a success rate of 34.21%∼49.02% (see the left category
of Table X), but not the claimed 5%, with just one guess when
each user account is associated with 19 honeywords.

12

(a) Success-number graph: List vs. TarList. (b) Success-number graph: PCFG vs. TarPCFG. (c) Success-number graph: Markov vs. TarMarkov.

(d) Flatness graph: List vs. TarList. (e) Success-number graph: PCFG vs. TarPCFG. (f) Success-number graph: Markov vs. TarMarkov.

Fig. 7. Evaluating Juels-Rivest’s methods under type-A2 attackers, trained on PII-Dodonew-tr, tested on PII-Dodonew-ts. Type-A2 attackers perform much
better than type-A1 ones: a clear security hierarchy appears. Sub-figure 7(f) reveals that, under a Type-A2 attacker, every method in [21] is 0.568+-flat.

V. TARGETED GUESSING ATTACKS

In the above, we have evaluated Juels-Rivest’s four main
honeyword methods [21] under their assumed adversary model
(i.e., a type-A1 attacker). As users love to build their (real)
passwords with PII and such PII is becoming increasingly easy
to be learned by A through various means (see Sec. II-A), a
natural question arises: What’s the security of these methods
when A is further equipped with the knowledge of user PII
(i.e., under a type-A2 attacker)? We now answer this question.

We employ three targeted password-cracking models:
TarPCFG [30], TarList and TarMarkov. Here TarPCFG is just
the TarGuess-I in [30], while TarList and TarMarkov are
PII-enriched Markov model and List model, respectively. The
TarMarkov model can be converted from the Markov model
by applying the type-based PII segment matching method as
proposed in [30]. To accomplish the conversion, we only
need to incorporate the various type-based PII tags {N1, · · · ,
N7; B1, · · · , B10; A1, A2, A3; · · · } defined in [30] into the
alphabet Σ (e.g., Σ = {95 printable ASCII characters} in
[24]) of the Markov n-gram model. Then, all operations for
these type-based PII tags are the same with the original
characters in Σ. Note that, the PII tag N stands for name
usages, B for birthday, A for account name, and so on; The
subscript of a PII usage means a specific type but not length,
e.g., N1 stands for full name “john smith” and N2 for the
abbrev. of full name: js←“john smith”. Similarly, we
can convert the List model into the TarList model.

In our TarPCFG-based attacks, all the settings are the
same with the “Norm top-PW: smooth, 1t” in Fig. 3(a),
except for that: the known password distribution D (e.g., a
leaked password list) is first used as the training set to the
TarPCFG password model [30], and this results in a password
distribution PTarPCFG(D). Then, PTarPCFG(D)(·) is used instead
of PD(·) to assign sweetword probabilities. We similarly
denote the TarMarkov model to be PTarMarkov(D)(·) and the
TarList model to be PTarList(·). Note that, each password model
is trained on PII-Dodonew-tr and tested on PII-Dodonew-ts.

Fig. 7 compares the effectiveness of type-A1 and type-A2

TABLE X. ϵ-FLATNESS INFO UNDER TYPE-A1 AND A2 ATTACKERS.†

Method Type-A1 Attacker Type-A2 Attacker IncreaseList PCFG Markov TarList TarPCFG TarMarkov
Tweak-tail 0.356 0.490 0.395 0.502 0.623 0.580 127.2%
Model-syntax 0.326 0.439 0.309 0.495 0.679 0.597 154.4%
Hybrid 0.346 0.478 0.364 0.506 0.636 0.596 133.0%
Simple model 0.342 0.171 0.273 0.505 0.384 0.568 165.9%

†A value in bold means that the corresponding password model perform
the best among its attacker category. The “Increase” column is computed
by dividing the best-case value under a type-A2 attacker with that of a
type-A1 attacker, e.g., 127.2%=0.623/0.490.

attackers against Juels-Rivest’s methods. Within each subfig-
ure, it is evident that type-A2 attackers are substantially more
effective than type-A1 ones. More specifically, A can guess
57.6%∼96.2% more real passwords when T2=104, and achieve
27.2%∼65.9% more success rates (see Table X) in terms of
the ϵ-flatness metric. Alarmingly, against every method in [21]
and based on some targeted-guessing password model, PII-
enriched A now can reach 56.8%∼67.9% of success rates
in telling apart the real password from 19 honeywords by
making just one online guess (see the point (x=1, y=0.5) in
Fig. 7(f)), while the claimed (desired) security is about 5%. In
all, honeyword methods that do not consider user PII cannot
withstand type-A2 attackers that exploit the victim’s PII.

Summary. We have evaluated Juels-Rivest’s four methods
under a type-A2 attacker, a powerful yet realistic attacker,
by employing three targeted password-cracking models. Our
results show that, these four methods all perform poorly:
the real passwords can be distinguished with a success rate
of 56.8%∼67.9% with just one online guess when each
user account is associated with 19 honeywords, under the
assumption that A knows some of the victim’s common PII.

VI. POTENTIAL COUNTERMEASURES

Only when we know how to attack, can we know how
to protect. Our above attacking results highlight three key
contributions to harden the process of generating honeywords.

An impossibility result. As said in Sec. III-A, all Juels-
Rivest’s four methods essentially belong to the random re-

13

(a) Performance in approximating the top 1000 passwords.

(b) Performance in approximating the last 1000 passwords.
Fig. 8. An investigation of the pros and cons of different password models,
trained on 8.129M Dodonew-tr and tested on 8.129M Dodonew-ts.

placement based honeyword-generation approach: each hon-
eyword is generated by randomly replacing parts (or whole)
of the real password PWi. Let T (PWi) denote the sweetword
space resulted from PWi, and D denote the password space.
We have T (PWi)⊆ D. For instance, the tweak-tail method
implies T (123456) = {123t1t2t3|t1, t2, t3 ∈ {0, 1, . . . , 9}}.
Under the random-replacement approach, each of the k − 1
honeywords in the sweetword list SWi can be seen as randomly
drawn from T (PWi), and thus they each have the same
probability (i.e., 1

|T (PWi)|) to be chosen as a honeyword. If
the real password PWi is also randomly drawn from T (PWi),
then the random-replacement approach will be perfect.

Fig. 9. Fitting Dodonew passwords by using the CDF-Zipf model [28]. The
probability of popular passwords decrease monotonically.

However, users generally do not randomly choose their real
passwords from T (PWi), but follow the highly skewed Zipf’s
law (see [28]) in D: pr = C · rs −C · (r− 1)s ≈ C · s · rs−1,
where pr denotes the probability of the rth popular password
in D, and s∈[0.15, 0.30] and C∈[0.001, 0.1] are constants
depending on D. It is easy to see that ∀x1, x2 ∈ T (PWi), if
x1, x2 ∈ SWi and Pr(x1) > Pr(x2), then x1 is more likely to
be the real password than x2. Both our “Top-PW” and “Norm

(a) Success-number graph of the hybrid password- model based method.

(b) Flatness graph of the hybrid password- model based method.
Fig. 10. Investigating the hybrid password model 1

3
List+ 1

3
Markov+ 1

3
PCFG,

trained on 8.129M Dodonew-tr and tested on 8.129M Dodonew-ts.

Top-PW” attacking strategies tend to rank x1 higher than x2,
and thus will successfully pick x1 out earlier.

To resist such attacks, a honeyword method should ensure
that the elements in T (PWi) satisfy: ∀x1, x2 ∈ T (PWi),
Pr(x1) = Pr(x2). Unfortunately, the Zipf’s law reveals that
pr is a monotonically decreasing function with r, which is
particularly true for popular passwords (see Fig. 9 for a
concrete example). Thus, when given the real password PWi,
it is inherently difficult to produce |T (PWi)| sweetwords with
the same probability of Pr(PWi). This indicates that random-
replacement methods (including Juels-Rivest’s) are impossible
to achieve expected security and cannot be easily remedied.

A counter-intuitive insight. The above impossibility result
suggests us to adopt the password model based approach.
However, in Sec. III-E we have demonstrated that, as opposed
to common belief (as hold in [21]), existing probabilistic pass-
word models cannot be readily used as honeyword generation
methods. Now we further investigate the underlying reason.

The goodness of a password model depends on how it
approximates user password behaviors. Fig. 8 shows that each
password model has its own weaknesses: (1) the List model is
good at approximating the probability of popular passwords,
yet worst at least popular passwords; (2) the PCFG model is
pretty good at approximating the probability of least-popular
passwords, yet worst at top popular passwords; and (3) The
Markov model lies between them.

A possible solution. The above findings naturally lead us to
propose a hybrid approach: combine varied password mod-
els to avoid individual defect. The key issue lies in how
to effectively combine them. We conduct a preliminary ex-
periment by using the simplest (i.e., linear) combination:
1
3List+1

3Markov+ 1
3PCFG. Though simple in its nature, the

hybrid password model greatly improves security: only 1 time
more real passwords can be identified than the perfect method

14

when T2=104 (i.e., 1113 vs 526, see Fig. 10(a)) and being
0.11-flat (see Fig. 10(b)). This suggests a promising direction
for the research community. Also note that, if there exist more
effective attacking strategies, the hybrid password model might
be less secure than it currently appears, and thus developing
honeyword attacking theories is important future research.

VII. CONCLUSION

We have for the first time empirically evaluated the four
primary honeyword-generation methods proposed by Juels and
Rivest at CCS’13, by using both trawling guessing attackers
with no user PII and targeted guessing attackers with some
common user PII. We showed that their methods all fail to
meet the expected security level by a large margin. We also
provided a negative answer to the open question of “can the
password models underlying cracking algorithms (e.g., [32])
be easily adapted for use?” left by Juels and Rivest.

We consider the value of our work mainly two-folds.
First, our work is the first to give comprehensive, convincing
quantitative evidence of how vulnerable the state-of-the-art
honeyword-generation approaches are, highlighting the decep-
tively simple nature of honeyword research—it is not easy, but
a great challenge to automatically generate honeywords that
are hard to differentiate from real passwords. Second, as the
limitations of the four honeyword methods examined cannot be
readily addressed, our work calls for novel and creative efforts
to contribute to principled honeyword-generation approaches
that are significantly better than the current heuristic approach-
es. Considering the prevalence and catastrophic impacts of
password-file leakage, we believe that achieving active and
timely compromise detection is of broad interest, and our work
constitutes an important step forward in this direction and will
trigger interest for new honeyword research.

ACKNOWLEDGMENT

The authors are grateful to the shepherd, Prof. Adam Aviv,
of our paper. We also thank the reviewers for their construc-
tive comments. Ping Wang is the corresponding author. This
research was supported by the National Natural Science Foun-
dation of China under Grants Nos. 61472016 and 61472083,
by the National Key Research and Development Plan under
Grants Nos. 2016YFB0800603 and 2017YFB1200700, and by
the Wallenberg Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] S. Achappell, Turkey: personal data of 50 million citizens leaked
online, April 2016, http://www.euronews.com/2016/04/06/turkey-
personal-data-of-50-million-citizens-leaked-online-hackers-claim.

[2] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and E. H. Spafford,
“Ersatzpasswords: Ending password cracking and detecting password
leakage,” in Proc. ACSAC 2015, pp. 311–320.

[3] J. Blocki, S. Komanduri, L. Cranor, and A. Datta, “Spaced repetition
and mnemonics enable recall of multiple strong passwords,” in Proc.
NDSS 2015, pp. 1–15.

[4] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage: Loss-
resistant password management,” in Proc. ESORICS 2010, pp. 286–302.

[5] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus
of 70 million passwords,” in Proc. IEEE S&P 2012, pp. 538–552.

[6] J. Bonneau, C. Herley, P. Oorschot, and F. Stajano, “The quest to
replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE S&P 2012, pp. 553–567.

[7] J. Camenisch, A. Lehmann, and G. Neven, “Optimal distributed
password verification,” in Proc. ACM CCS 2015, pp. 182–194.

[8] X. Carnavalet and M. Mannan, “From very weak to very strong:
Analyzing password-strength meters,” in Proc. NDSS 2014, pp. 1–16.

[9] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-
strength meters from markov models,” in Proc. NDSS 2012, pp. 1–15.

[10] N. Chakraborty and S. Mondal, “On designing a modified-UI
based honeyword generation approach for overcoming the existing
limitations,” Comput. Secur., vol. 66, pp. 155–168, 2017.

[11] M. Dürmuth, D. Freeman, and B. Biggio, “Who are you? A statistical
approach to measuring user authenticity,” in NDSS 2016, pp. 1–15.

[12] M. Dürmuth and T. Kranz, “On password guessing with GPUs and
FPGAs,” in Proc. Password 2014, pp. 19–38.

[13] V. Enterprise, 2016 Data Breach Investigations Report, May
2017, http://www.verizonenterprise.com/resources/reports/rp
dbir-2016-executive-summary xg en.pdf.

[14] I. Erguler, “Achieving flatness: Selecting the honeywords from existing
user passwords,” IEEE Trans. Depend. Secur. Comput., vol. 13, no. 2,
pp. 284–295, 2016.

[15] J. Goldberg, “Bcrypt is great, but is password cracking infeasible?” Mar.
2015, http://t.cn/RGYUtJO.

[16] J. Goldman, Chinese Hackers Publish 20 Million Hotel Reservations,
Dec. 2013, http://bit.ly/2aVKyBw.

[17] M. Golla, B. Beuscher, and M. Dürmuth, “On the security of cracking-
resistant password vaults,” in Proc. ACM CCS 2016, pp. 1230–1241.

[18] R. Hackett, Yahoo Raises Breach Estimate to Full 3 Billion Accounts,
By Far Biggest Known, Oct. 2017, http://fortune.com/2017/10/03/
yahoo-breach-mail/.

[19] V. Haran, Qatar National Bank Suffers Massive Breach, April 2016,
http://www.bankinfosecurity.com/qatar-national-bank-suffers-massive-
breach-a-9068.

[20] P. Heim, Resetting passwords to keep your files safe, Aug.
2016, https://blogs.dropbox.com/dropbox/2016/08/resetting-passwords-
to-keep-your-files-safe/.

[21] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking
detectable,” in Proc. ACM CCS 2013, pp. 145–160.

[22] How Many Times Has Your Personal Information Been Exposed to
Hackers?, Sep. 2016, http://nyti.ms/1SdFv0s.

[23] R. W. Lai, C. Egger, D. Schröder, and S. S. Chow, “Pheonix: Rebirth
of a cryptographic password-hardening service,” in Proc. Usenix SEC
2017, pp. 899–916.

[24] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proc. IEEE S&P 2014, pp. 689–704.

[25] Equifax Data Breach Impacts 143 Million Americans, Sep.
2017, https://www.forbes.com/sites/leemathews/2017/09/07/
equifax-data-breach-impacts-143-million-americans.

[26] T. Pham, Four Years Later, Anthem Breached Again: Hackers Stole
Credentials, Feb. 2015, http://duo.sc/2ene0Pr.

[27] S. Ragan, Weebly data breach affects 43 million customers, Oct. 2016,
http://bit.ly/2kP4EA2.

[28] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in
passwords,” IEEE Trans. Inform. Foren. Secur., vol. 12, no. 11, pp.
2776–2791, 2017.

[29] D. Wang and P. Wang, “Two birds with one stone: Two-factor
authentication with security beyond conventional bound,” IEEE Trans.
Depend. Secur. Comput, 2016, Doi:10.1109/TDSC.2016.2605087.

[30] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proc. ACM CCS 2016,
pp. 1242–1254.

[31] C. Weir, Cracking the MySpace List–First Impressions, July 2016,
http://reusablesec.blogspot.com/2016/07/cracking-myspace-list-first-
impressions.html.

[32] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proc. IEEE S&P
2009, pp. 391–405.

[33] B. B. Zhu, J. Yan, D. Wei, and M. Yang, “Security analyses of click-
based graphical passwords via image point memorability,” in Proc. ACM
CCS 2014, pp. 1217–1231.

15

http://www.verizonenterprise.com/resources/reports/rp_dbir-2016-executive-summary_xg_en.pdf
http://www.verizonenterprise.com/resources/reports/rp_dbir-2016-executive-summary_xg_en.pdf
http://bit.ly/2aVKyBw
http://fortune.com/2017/10/03/yahoo-breach-mail/
http://fortune.com/2017/10/03/yahoo-breach-mail/
http://nyti.ms/1SdFv0s
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans
http://duo.sc/2ene0Pr
http://bit.ly/2kP4EA2
Doi:10.1109/TDSC.2016.2605087

	I Introduction
	I-A Challenges and motivations
	I-B Our contributions

	II Datasets, Security model and Metrics
	II-A Our datasets
	II-B Security model
	II-C Evaluation metrics

	III Trawling guessing attacks
	III-A Review of Juels-Rivest's methods
	III-B Two attacking strategies
	III-C Experimental setups
	III-D Our basic, trawling guessing attacks
	III-E Further evaluations

	IV Advanced trawling guessing attacks
	IV-A Our no-training-set password model
	IV-B Sophisticated password models

	V Targeted guessing attacks
	VI Potential countermeasures
	VII Conclusion
	References

