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This paper describes an implemented connectionist
network at orms clinical diagnosis in the domain of
dementia. During the past decade, connectionism --also called
parllel distributed processing or neural processing- has been
established as a new cognitive and computational paradigm,
with strong claims that it provides powerful mechanisms to
bring solutons to problems previously intractable. To study the
suitability of connectionist networks to perform a sequential
diagnostic classification task under uncertainty, we have
implemented a network that learns to diagnose cases of
den tia. We describe in detail the implementation, training,
and behavior of this network. We also discuss directions for
futune resch suggested by the limitations of this network.

In the early 70s, analyses of the limitations of Bayesian
diascpr led to the adopton of Artificial Intlligence

(AI) echnques to develop clinical decision support systems [1,

2, 3]. As a result, the first genraton of medical expert systems
was developed [4, 5, 6, 7, 8, 9]. These systems perform

diagnosic classification tasks by matching findings with stored
profiles of diseases using statistic or heuristic associations
between findings and diagnoses. Despite high levels of
performance, these systems suffer from serious limitations:
"[They] are vhtually unable to cope with variations in the
clinical picture. In particular they have difficulties in
recogniing variations in the way that a disease can present, in
terms of both the spectrum of findings and severity" [10].

To overcome these limitations several researchers have
proposed the adoption of causal reasoning based on
representations of pathophysiologic mechanisms [7, 11].
During this decade, causal reasoning has become one of the
major focuses of research in Artificial Intelligence in Medicine
(AIM) [10]. However, some authors [7, 12] pointed out early
the severe limitations of causal reasoning to initiate and guide
the dianostic process: "[First] principles are good for
summarizing aruments and good to fall back on when you've
lost grp on the problem but they don't drive the process of
medical reasoning... It may be difficult or impossible to expect
a set of diagnostic rules both to serve as concise, "clincher"
methods for efficiendy getting to the right data and still
represnt amodel of disease" [12]. In addition, in many (if not
most) important clinical domains, the relevant underlying
causal mehanisms are not known.

The appeal of connectionism resides in its potential to
overcome some of the shortcmings of traditional methods that
directly match clinical fndings with stoed profiles of diseases
.and of causal reasoning. A connectionist network can be
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viewed as a device constituted by many units, organized in
distinct layers. Its input is constituted by the activation of the
units of the lowest layer, this activation vector is propagated
bottom-up to units of higher layers through activating and
inhibitng connections; in the process, the activation vector is
intrnally transformed; the activation pattern of the units of the
highest layer constitutes the output.

To date, connectionist networls have been successfully
applied to several low level cognitive tasks involving
perception, language processing, or motor control [13].
Connectionist techniques seem to be suited to the modeling of
higher level tasks such as classifiation prblem-solving under
uncertainty of which medical diagnosis is a typical example
[14]. Some characteistics of such connectionist networks are
particularly relevant: in a connectionist network information is
combined simultaneously and interactively. This allows the
implementation of what has been characterized as flexible
frames [15]. These flexible frames can cope with vaiations in
the clinical presentation of a disorder (due for instance to
various degree of severity) without having to specifically
repreent every variation. Similarly, connectionist networks
can model how various clusters of findings generate and
support a diagnostic hypothesis, without having to implement
each possible cluster. A connectionist network supports
generalizations; this of course is essential in clinical domains
where we need to reason on incomplete and noisy data.
Connectionist networks also provide a framework to
manipulate predictive and diagnostic beliefs and to manage
uncertainty. Finally, connectionism provides several learning
procedures [16, 17, 18, 19]; learning is a very attractive feature
that may have the potential to help overcome the
knowledge-acquisition bottle-neck [20].

To study the validity of these theoretical claims and the
feasibility of developing a connectionist network to perform
sequential medical diagnosis, we have implemented a network
that deals with the clinical diagnosis of dementia. In this
section, we describe in detail the implementation and the
operation of this network. This description illustrates
concretely what the application of connectionist techniques
entails and what results can be expected.

TasI- an&lds iaTnhC of
Elstein, Shulman, & Sprafka [21] have shown that

physicians' styles of problem-solving are often highly
dependent on the speciflc problem at hand. The diagnosis of
dementia is a problem fairly well circumscribed and of
moderate complexity (but of great prctcal imporance).

Dementia is a clinical syndrome defied as an acquired
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persistent impairment of intellectual function with compromise
of language, memory, visuospatial skills, emotion or
personality, and cognition (abstraction, calculation, judgement,
etc.) [22]. When dmentia is suspected, the physician's goal is
to establish its presence and to identify either a dementing
disorder or a non-dementing disorder that mimics the
syndrome. Particular attention has to be given to treatable
conditions. As with many other diagnostic tasks, the diagnostic
process is guided and biased by available therapeutic and
management options [23, 24]. For instance, psychiatrists tend
to diapose treatable disorders (e.g., depression) more readily
than irreversible disorders (e.g., Alzheimer's disease).

For purpose of simplification, we have ignored several rare
dementing diseases (e.g., syphillitic meningoencephalitis,
vitamin B12 deficiency, thyroid and parathyroid disorders,
tuberculous meningitis, etc.) that are rarely ruled in clinically
but routinely ruled out by laboratory tests [25]. We have
retained seven classes of dementing disorders that can be
clearly associated with distinct management decisions
(including further evaluation): dementia of Alzheimer's type
(DAT); vascular dmntia (including multiple-infarct dementia
-- MID); hydrocephalic dementia (NPH); Parkinson's
dementia; dementia with space-occupying lesion (SOL; i.e,
primary and secondary neoplasms; sub-dural hematoma);
delirium; dementia syndrome of depression (pseudodementia).
Technically neither delirium nor pseudodementi are dementias
but they are (with normal aging) major elements of the
differential diagnosis [26]. These seven classes constitute the
diagnoses known by our model. It is im nt to notice that
many d ing disorders evolve over several years and may
present very differently at different stages. For example, a
patient with an early DAT could present with a mild memory
deficit, some difficulties in performng complex construction
tasks (e.g., copying a Necker cube), anxiety, and sadness
because of his increasing difficulties at work. Five years later
the same "Alzheimers patient" may become mute, bedridden,
incontinent and totally oblivious of his condition. The same
diagnostic label can correspond to quite different sets of
manifestations.

eiStt otheJ5L
A study using high-fidelity clinical simulations [21] and

protocol analysis [27] confirmed that in this domain
psychiatrists use a hypothetico-deductive approach
(unpublished data, Mulsant & Servan-Schreiber). This study
also demonstrated that, since knowledge on the
pathophysiology of dementing disrdes is very limited, causal
reasoning based on "first principles" plays only a minimal role.
Therefore, we postulated a fairly simple knowledge stucture
associating observed data (e.g., stopped working; takes
Valium), data interpreted contextually into findings (e.g.,
difficulty working; insomnia), explicit or "hidden" diagnostic
facets corresponding to clusters of findings (e.g., dementia;
cognitive impairment), and high level diagnostic concepts
(e.g., Alzheimer's disease; dementia syndrome of depression).

Our network has the simplest possible architecture
necessary to represent this simple knowledge stmcture and to
use it to perform a sequential diagnostic classification task
using a hypothesize and test method. The network contains
four layers of units: an input layer, two in diate layers; and
an output layer.

Inulay rThe input layer contains 80 input units that
represent abstracted clinical features; we haven't attempted to
account for the contextual interpretation of observed data into
findings. The 58 finding units are grouped into 22 clinical
attributes selected for their relevance to the diagnostic task. For
instance, "age" or "memory" are attributes; "old -- over 7(' or
"severe memory impaimt" are findings.

In addition, 22 other input units code for the confidence in
the value attributed to each attribute; we will refer to them as the
confidnce units.

Fgure 1: The strcture and co_neeto patter of the ntwork

QumutJAx Ihe output layer represents diagnostic classes
and the request for further information It contains two tpe of
units: 7 diagnosis units repesent the 7 "target" classes of
disorders such as "dentia of Alzheime's type" or "dementa
syndrome of depresion"; 22 question units represent requests
for information about a specific patient's attribute as for
instance the presence or absence of maemry impairmet and its
degree of severity.

ediate laveThere are two layers of intemeiate
units. The lowest intmediate layer contains 10 units referred
to as hidden units. On this layer, the findings of a case are
recoded into a distributed patten of activation,c esponding
to the internal representation of the case; this internal
representation is derived by the network during the taining
phase (see below). The highest int iate layer contains 7
units refered to as hypothsis units. Each unit is constrainel to
epsent a specific diagnostic hypothesis corresponding to a
specific diagnostic class.

Actiiatio _atkhenpi vL The user can set the activation
of finding units to any value between 0 and 1; 0 means "no", 1
means "yes" and 0.5 means "unknown". Confidence units
code whether an attribute is already known or not; their
activation is either 0 (not yet known) or 1 (kmown).

Activation at the out level. The activation of diagnosis
and question units can have any value between 0 and 1. For a
diagnosis unit, an activation of 0 means "absent", 1 means
"present", and 0.5 means "uncertain". At baseline, all finding
and diagnosis units have an activation of 0.5 (this scheme
purposely ignores baseline prior probabilities; when an
individual patient is met, all diagnoses are equally likely to be
considered, even though their probabilities of being cormed
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are different). Confirming a single diagnosis and ruling-out its
competitno s is represented by having a diagnosis unit with an
activation close to 1 and the six others with an activation close
to 0. Converly, if several diagnoses are present concurndy,
several units should have intmediate activation values.
Similarly, the activations of question units are used to rank the
questions, so that the question with the highest activation is
asked (i.e., the value of the corresponding attribute is
requested).

no min The units of the network are linked
("connected") bottom-up and a weight is attached to each
connection. The connection patten is as follows: every finding
is connected to all the hidden units; every hidden unit is
connected to all the hypotheses; every hypothesis is connected
to all the diagnoses. Finally, each confidence unit is connected
to the corresponding question and each hypothesis unit is
connected to all the question units. Multiple paths exist from
one unit to higher level units. For instane, there am up to 10.*
7 * 7 = 490 different paths from a finding unit to a diagnosis
unit.

In addition, some weights arm linked: they arm forced to
take the same value. The 7 weights connecting each of the
seven hypotheses to their correspoding diagnoses am linked;
the rmaining 42 weights connecting each of the 7 hypotheses
to the 6 other dignoses am also linked.

We dido train network to select questions.
Consequently, the weights from the hypothess to the
questions were detrmined heuristicaUy so that infomaton
confirming the most active hypothes is requested. A weight
from a confidence unit to its ce ng queston unit is set
up so that once a question has been asked and answered
satisfactorily (activation of confidence unit is 1), the question
cannot be asked agn

in contrast, all the other weights were learned using a
trainin; corpus of 75 cases. The purpose of this learning
phase, is to discover a set of weights so that, upon pntation
of all the fidings of any tining case, the network activates
the corrct diagosis unit(s). To do so, we used the generalized
derule, also d backpropagaton karning method [281.

Trsiig_amp:Zro1QU= and.caac We constructed 75
non-ambiguous training cases constituted by a set of findings
and a single corepding diagnosis. These 75 taining cases
are unevenly distbuted amog the possible disorders. For
instance, dte am 14 cases of DAT, but only six cases of
NPH. It is noteworthy that even if we restrict the input
activations to binary values (O and 1), there is a total Of iss
(about 1017) possible inputpas; with the further semantic
restriction that only one ng per attribute can be true/active,
we can still define 43*38 * 211 (about 1010) input pattems.
However, only 75 of these possible input patrs e used
during tining.

We further reduced our initial raining corpus by defining
one to four prototes per diagnosis. A prototype captures the
regularities of a spcific class of disorders across all its cases
(or across sub-classes of its cases coesponding to specific
presentations or stages). The activation of a finding in a
prototype is grossly equivalent to the conditional probability
p(FindinglDisorder) calculated over the trining corpus. For
instance, each of our 14 DAT (Alzheimer's) cases presents
some degree ofmemory impant. Conversely, two-thirds of
the DAT cases ar continent of urine and only one third at an
advanced stage are incontinent Therefore, in DAT prtotypes,
the finding "memory impairment abset" has a value of 0 and
the fmdings "memory impairment mild" and "memory
impairment severe" have a value of 0.3 and 0.7 respectively.

Similarly the findings "incontinence ant' and "incontinence
present" have a value of 0.6 and 0.4.

Finally, four "indrinate" cases were used to create a
baseline state in which all fmdings are unknown and all
diagnoses are uncertain.

WihmWeights are assigned small random
positive or negative values. We also used some initial
constraints to help the network discover the desired mapping
between hypotheses and diagnoses and create a strong
competition between the diagnoses, while competing
hypothess can be activated concurmntly.

Irainingu~edure. The network is first trained with the
16 totpe and then with the 75 taining cases. The taining
is continued until all the cases have been learned according to a
preset leaning criterion. Roughly, this criterion imposes that if
all the findings of a taining case are presented to the network,
the coesponding correct diagnosis has an activation above
0.90 and all the otherdiagnoses have an activation below 0.10.
This riningpcure requirs only a few hours (usually, less
than 6) on an IBM RT workstation with a math. coprcessor.

We have described how our network is structurd and
trained to select one diagnosis among seven when preseted
with a set of findings corresponding to a complete and
unambiguous clinical case. Paraphrasing Hinton [29], we
observe with satisfaction that the network is able to leam how
to solve these training cases. However, this is not surprising
considering previous successes in using the genralized delta
rule to train other networks. The interesting questions are: Has
this network discovered an intemal repesentation that capture
the regularities implicit in the taining cases? How does the
network behave? Can the network generlize sensibly to cases
of relate diss?

W -h&CGadMDflo e

Behavior, Our network has been trained to associate
diagnoses with complete descriptions of cases, yet it has to
function in a normal diagnostic mode, guiding the incrmental
and sequential accumulation of data until a diagnosis is
concluded.

Initially, when no information is known, all the findings
arm "unknown". The activation of all the findings arm set
accordingly at 0.5 and the network settles at its baseline: it
produces an activation of 0.5 (uncertain) for all the diagnoses.
The user voluntees a few findings by setting their activation to
1 (yes) or 0 (no). The network settles in a new state: some
hypotheses become mildly activated, the activations of
corresponding diagnoses increase while the activations of their
competing diagnoses decrease. Hypotheses selectively activate
some questions. The question with the highest activation is
selected and asked. The status of the corresponding findings
are provided by the user. The propagation of the new
activations change the activations of the hypotheses, which in
turn change the activations of the diagnoses and of the
questions. The sequential nature of the task is modeled by these
successive states of activation, determined by the incremental
lkowledge about the case.

When only a few findings are known, if a new finding
"lits" the entertained hypotheses (i.e., support them), these
hypotheses ame strengthened otherwise these hypotheses are
weakened or even deactivated and altnative hypotheses are
generated. A hypothesis can be generated in two ways: either
directly by a cluster of fincngs sup ng it, or indirectly by a

cluster of findings supportng another related or competing
hypothesis. This is because competing hypotheses sham some
in ate units; in other words, the ineral representations
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of similar but competng diagnoses are similar.
A spcific question is selected either because it is strongly

associated with the most active hypothesis or because it is
assoiated with several m ely active hypotheses. In turn, a
change in the activations of the hypotheses can shift the focus
of questioning. Usually, hypotheses are evaluated and
odeed in a smooth fashion; the network requires several

(three tOfou fdiscepantfindings to switch its focus from the
domii~ering hypothsis to an altenative one. Conversely it
will tend to ignore (gly or rightly) a single discrepant
finding.

As more findings become known, the activations of the
potheses become less and less prone to drastic revisions. A

finding affects a hypothesis differently depending on the prior
value of this hypothesis' activation: a finding su ng or
inhibiing a hypohsis will affect its actvation the most when
the hypothesis is uncertain and the least when the hypothesis
has a very low or a very high activation. In other words, a
specific finding Supports a diagnois differently l ing on
the context crated by other findings. Once a tain level of
activation is reached, the accumulation of redundant findings
tends to weaken a diagnosis instead of strengthening it.
Finally, when one hypothesis dominates, its corresponding
diagnosis dominates even more: the competition between
diagnoses amplifies small differences of activation existing at
the hypothesis level and tends to establish a "winner takes all"
system.
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Figure 2: Sequntal dianoim

=edDrman~. The goal of this study was not to develop a
medical expert system, but to demonstrate the validity and
usability of connectionist techniques to solve diagnostic
problems. However, the level of performance may be an
indication of the potenial of similar ntwors to be used as
inference engines m decision support systems.

By virtue of the taining pocedure, any complete case
from the training corpus is diagnosed correctly. When the

network is pnted with only the critical featues of such a
casCe this diagnstc accuracy is maintained: the network is able
to gealiz a ialy when a case is fairly ticaL When
the network is tested with new cases, its diagnostic accuracy
depedIs on the similarity of the test case to the taining cases.
The network was tested with 18 cases seen dunn a 2 month
period on a psychiatric ward; contray to our trning cases,
these patients were often atypical and several presnted with
multiple concufrent disorders. Nevertheless, the network was
able to generate an appropriate pattern of activation on the
diagnosis units for 11 of these 18 cases; this corresponds to a
conrect clssification rate of 61%.

Scission
~~andZainiaw~rninin
TO i a e validity of generalztion and the accuracy

of diagnoses made by such a network, we need to expenment
with variations of the network's architecture and of the training
poeure.

The validity of generalizations could be improved by
implementing a more distributed representation of fidings so
that similar findings share more units. It would help the
network to discover how various findings pertaining to the
same clinical attribute are related. For instance, "absence of
memory impairment" would be: (1, 0, 0, 0); "mild memory
impairment": (0, 1, 1, 0) and "severe memory impairment": (0,
1,0, 1), instead of the localized representation we used: (1, 0,
0); (0, 1, 0); (0, 0, 1). With this new distributed
representation, the representation of "mild memory
impairment" and "severe memory impairment" are sharing a
unit together, if it is leaned with some cases that "mild memory
impairment" supports a diagnosis, "severe memory
impairment" would do so to a certain extent; note however that
the two findings have distinct representations and that, when it
is appropriate, the variation in the degree of severity can be
used to disminate b two diagnoses.

The diagotic acuracy can also be inceased by the use of
a larger taininr corpus esenting a broade spectrum of the
possible climcal presentations for a single disorder.
Alternatively, incomplete cases conveying clinical heuristic
rules could be used. These mles could prevent the network
from eithr ovgeneralizing or disregarding ina iately
discrepant findings.

During its taining, this network was presented first with a
few prototypical cases capturing the global structure of the
domain, and then with a large number of distinct cases
capturing the complexity of the domain. We need to study
further how a network can first acquire the structure of a
domain by being tained with a few "pre-digested desciptions"
(this is similar to acquing declarative knowledge by reading a
textbook or by being told) and then, fine-tune its knowledge by
being exposed to complex cases (this is similar to sfonning
declarative lnowledge into plural knowledge by doing).

Finally, we need to train the network so that it learns to
select appropriate diagnostic questions. Once this is done, we
need to reassess the adequacy of using complete cases to train
the network while it has to perform sequential diagnosis and
reason on incomplete cases.

CalfforialmaQin
The reasoning of the network can be characterized as a

blend of categrical and staistical reasoning [2]. Conceptually,
some (unknown) pathophysiologic rules govem the way a
given disorder manifests itself; the findings presented by
patients suffering from this disorder are determined by these
rules. By inspecting a set of cases we can induce some
diagnostic rules that correspond to "the invert" of the deeper
pathophysiologic rules. For instance, if a finding is present in
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all cases of a disorder, its presence will be deemed necessary to
make this diagnosis. Similarly some rules of sufficiency can be
derived. No such clear-cut rules emnerges from the network;
nevertheless, it discovers structures implicit in the training
cases. When presented with enough fimdings, it is able to select
the right diagnosis. It does so not only on the basis of simple
associations between findings and diagnoses, but also of
conditional dependencies existing between findings and
diagnoses. For instance, the network could learn that either
"insomnia and weight loss" or "hypersomnia and weight gain"
strongly support the diagnosis of depression, but that other
combinations of sleep disorder and weight change don't.

This crucial ability to discover and use conditional
dependencies requires intrmediate units. In contrast, a two
layer network associating fmdings and diagnoses would be
equivalent to a simple Bayesian system in which all findings
are conditionally independent. In such a network, biases
correspond to log of prior odds; weights are equal to the log of
likelihood ratios; and the graded activation is equivalent to
posterior probabilities. Conversely, Pearl [30, 31, 32] has
emphasized the correspondence between multi-layered
Bayesian and connectionist networks: they both use parallel
propagation of evidence, local updating mechanisms, and
intermediate hidden variables. Pearl has proposed to use these
networks as a computational architecture to model evidential
reasoning; he suggested that tracing of their links could be
responsible for the basic steps in querying and updating
predictive and diagnosticbeliefs. Obviously, far more research
is needed to formally defme the similarities and differences
between multi-layered connectionist and Bayesian networks.

In addition to these fundametal questions concerning the
adequacy of representations, training procedures, and
uncertainty management, several practical problems need to be
addressed if we want to use such networks as the core of a
decision support system

The medical problem we have tackled is only moderately
complex. It could probably be handled by a 200 rule expert
system. We need to study larger networks handling more
complex problems (e.g., concurrent multiple diagnoses). Large
networks are more difficult to train but they may actually
perform better than similar smaller networks: they can
generalize better and what is inapprprate for a small network
may be appropriate for a larger network. For instance, when
only 7 diagnoses are possible, some hypotheses may seem to
be erroneously generated given a cluster of findings; however,
the generation of the same set of hypotheses may be adequate
when the task is to discriminate among dozens of possible
diagnoses.

Obviously, to be used in a decision support system, such a
network would need to be embedded in an hybrid system: it
would accomplish only part of the task (e.g., hypothesis
generation or evaluation) while other necessary functions (e.g.,
data abstraction, explanation) would be provided using more
conventional Al techniques. For instance, given findings and a
concluded diagnostic formulation, explanations could be
provided by a mechanism constructing rational justifications
independently from the way at which the diagnosis was
actually arrived.

We have implemented, trained, and tested a connectionist
network that performs clinical diagnosis in the domain of
dementia. Despite obvious limitations, the results of this
experiment support the claim that connectionism provides
powerful mechanisms that can solve problems previously
intractable, including the ability to learn from experience and to

generalize appropriately; this is congruent with the results of
recently leported related studies [33, 341. Far more work is
necessary to demonstrate the practical usefulness of these
techniques to develop clinical decision support systems. The
limitations of this network suggest some directions for future
research, in particular the study of various network
architectures and training procedures, the comparison of
connectionist and Bayesian networks, and the integration of
connectionist networks in hybrid systems.
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