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Abstract: Vegetation monitoring and mapping based on multi-temporal imagery has 

recently received much attention due to the plethora of medium-high spatial resolution 

satellites and the improved classification accuracies attained compared to uni-temporal 

approaches. Efficient image processing strategies are needed to exploit the phenological 

information present in temporal image sequences and to limit data redundancy and 

computational complexity. Within this framework, we implement the theory of Hidden 

Markov Models in crop classification, based on the time-series analysis of phenological states, 

inferred by a sequence of remote sensing observations. More specifically, we model the 

dynamics of vegetation over an agricultural area of Greece, characterized by spatio-temporal 

heterogeneity and small-sized fields, using RapidEye and Landsat ETM+ imagery. In addition, 

the classification performance of image sequences with variable spatial and temporal 

characteristics is evaluated and compared. The classification model considering one RapidEye 

and four pan-sharpened Landsat ETM+ images was found superior, resulting in a conditional 

kappa from 0.77 to 0.94 per class and an overall accuracy of 89.7%. The results highlight the 

potential of the method for operational crop mapping in Euro-Mediterranean areas and provide 

some hints for optimal image acquisition windows regarding major crop types in Greece. 
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1. Introduction 

The problem of ensuring food security for an increasing population is currently one of the main 

concerns globally. To solve economic and social issues resulting from current and predicted food 

shortage, one billion hectares of new cropland would be required in order to meet the demand for food 

by 2050 [1]. However, taking into consideration environmental restrictions, the potential to expand 

cropland at the expense of other lands, such as forests or rangelands, is limited [2]. The challenge for 

agronomists, farmers and their allied partners is to produce humanity’s food in an ecologically 

sustainable manner, through socially accepted production systems [3]. These trends suggest an 

increasing demand for dependable and accurate agricultural monitoring to ensure sustainable crop 

production and investigation of land management practices [4]. 

Within this framework, spatially explicit cropland information, such as cropland extent and crop type, 

is crucial to sustain agriculture and preserve natural resources. A basic prerequisite for the 

implementation of a land-management strategy is the development of up-to-date Land Use/Land Cover 

(LULC) databases over agricultural landscapes. Indeed, LULC data, regarding the spatial distribution of 

crop types, is considered as key information from a geostrategic point of view. The research community 

is moving towards providing and timely agricultural maps at national or global level of detail [5]. 

Over the past decade satellite images offer a valuable source of information concerning the 

monitoring of the Earth’s surface in fine spectral and spatial scales. Satellite based earth observation has 

been used to map crop types under a variety of environmental conditions, providing synoptic coverage 

of fields in several spectral regions, smooth integration with existing geographical databases under a 

cost-effective and time-saving approach than traditional statistical surveys [6]. Through these studies, 

remote sensing techniques have proven to be cost-effective in widespread agricultural lands in Africa, 

America, Europe and Australia.  

Monitoring and mapping vegetation involves investigating vegetation dynamics, such as phenological 

states and the seasonal growth of crop types. Spectral behavior of agricultural parcels is constantly 

changing; different crop types may be at a certain instant in the same phenological state, depicting similar 

spectral attributes, but diverge remarkably in another instant. Classification of parcels based on single-date 

images, even if they are acquired at critical growth states, cannot offer reliable results in the case of crops 

with similar growing cycle. As a result, the significance of classification based on multi-temporal images 

has been well-recognized and especially regarding vegetation mapping, the usage of seasonal imagery 

is vital [5,7–12].  

Low resolution images with high revisit frequency have been processed on the continental and global 

scale, providing consistent information at high temporal resolution while covering large areas at low 

costs [13]. However, because of sub-pixel heterogeneity, the spatial resolution of the imagery may result 

in significant errors in the estimated crop areas [14,15] 
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At the regional level, crop area estimations have been significantly improved since the introduction 

of the MODIS sensor with 250 meter ground resolution [13]. MODIS offered unprecedented capabilities 

for large-area LULC mapping by providing global coverage, half-day revisit capacity and intermediate 

spatial resolution. Several studies have already demonstrated successfully the potential of these data for 

detailed LULC mapping in an agricultural setting [15], especially for areas where the typical field size 

is large [5,16]. 

Multi-spectral, medium-high resolution images, acquired mainly by Landsat Thematic 

Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), SPOT and RapidEye [17–20], have been used 

for regional to local scale crop mapping, either on mono-temporal basis or under a multi-temporal 

perspective, accounting for small sized fields or heterogeneous crop patterns. To solve the issue of high 

within-class variability originating from various agronomic practices, the synergy of multi-temporal optical 

and Synthetic Aperture Radar (SAR) data has also been proposed; the increased set of multi-temporal 

imagery enables the continuous monitoring of all stages of vegetation development [21]. While  

multi-temporal data of medium-to-high resolution offers high potential for crop discrimination in  

fine-structured agricultural landscapes, integration of the temporal information in the classification 

process is not trivial. Precise annual mapping of crops, through an approach that could be used routinely 

over large areas, remains challenging [22,23].  

Although a variety of algorithms has been employed in crop mapping studies, including among others, 

the minimum distance, Mahalanobis distance, maximum likelihood, spectral angle mapper and support 

vector machines, an approach integrating phenological models in the classification process has been 

given little attention so far. Through phenology, remote sensing observations and biophysical changes 

during vegetation’s growth can be linked statistically in order to discriminate crop types. A possible way 

of incorporating knowledge of phenology into the classification process lies on the adoption of the 

stochastic Hidden Markov Models (HMMs). HMMs allow the simulation of crop dynamics, exploiting 

the spectral information of their phenological states and their relations. In this regard, a common 

assumption is made that the vegetation signal and the different phenological states are considered 

random variables [24]. The correlation of phenological states is described by different transition state 

probabilities in each crop model. As far as the different cultivation practices, the algorithm reckons the 

possibility of temporal variation in the phenological cycle. Different growing states of the same crop 

type per image can be introduced instead of using a generalized crop model. These states correspond to 

different spectral attributes and are used jointly to define each model. This is the basic advantage of 

HMMs compared to other techniques that produce simulations of average seasonal phenology [25] and 

may fail to account for a restrained or accelerated phenological progress. 

Previous work has tested the application of HMMs in Landsat time series to classify mountain 

vegetation in Norway [26] and arable land in Brazil [27], in MODIS-NDVI time series covering cultivated 

areas of the United States [28] and NDVI data derived from the Advanced Very High Resolution 

Radiometer (AVHRR) over the West African savanna [24]. In all the aforementioned studies, the low and 

medium resolution images have been reported to be adequate for the classification of large-sized 

agricultural holdings. However, Mediterranean regions that are characterized by distinct environmental 

and climate settings, high spatio-temporal ecological heterogeneity [29,30], variety of crop types and 

high fragmentation of farming lands [23,31], require a different approach.  
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The main aim of this study is the development of a robust crop mapping technique adopting the theory 

of Markov chains and phenological models, over a Euro-Mediterranean agricultural area. Specifically, 

this work proposes a crop classification approach that integrates high and medium resolution remote 

sensing images in order to monitor constant variations in the ecological process of the cropping systems. 

A pixel-based methodology was selected, instead of using the segment-based approach proposed by [27], 

to avoid errors produced by segmentation algorithms. The per-segment approach applied to small-sized 

crop parcels, found over Euro-Mediterranean areas, may have the disadvantage of falsely including 

within field-crop objects small non-vegetated classes (i.e., roads, canals) leading to an overestimation of 

the total vegetated area [32]. 

In particular, the objectives of the study are: (1) the identification of different crop types using a 

sequence of four seasonal multispectral Landsat ETM+ and a RapidEye image, processed simultaneously 

through Hidden Markov Models, (2) the assessment of the impact on the accuracy of a pan-sharpening 

procedure applied to the lower resolution Landsat ETM+ imagery and (3) the investigation of the role of 

the temporal resolution and extent of the image sequence used, in relation to the phenological cycle of each 

crop type. The multi-sensor and multi- temporal approach is motivated by the acknowledgment of the 

potential of coarser spatial resolution data to cover large geographic extends, the demands of complex 

territories and the growing interest in exploiting multi-scale data synergistically [4]. Furthermore, the 

definition of optimal temporal acquisition windows is considered vital by several crop mapping  

studies [8,11,18,33] while it can improve classification accuracy significantly. 

2. Study Area 

The research site is an irrigated agricultural area, near the city of Thessaloniki, Greece. The study 

area is dominated by rice and cotton while maize, sugar beet, wheat and alfalfa are planted to a smaller 

extent. The cropping calendar (planting and harvesting dates) of the area’s crop types is presented in 

Figure 1.  

 

Figure 1. Idealized cropping calendar of the main crop types grown in the study area. 

Rice, cotton, maize and sugar beet are summer crops and those fields are characterized by dense 

vegetation during summer months. Wheat is harvested before June and is a spring crop. Rice, cotton, 

maize, sugar beet and wheat are considered annual crops and have a 12-months cycle. Alfalfa on the 

other hand can have 3–4 cuttings and flowerings per year, usually between May and September. Thus, 

the cropping pattern of the study area can be considered heterogeneous regarding the dates of planting, 
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emergence, and harvesting. The majority of the parcels are rectangular but small sized. Despite the 

applied land consolidation the size of the parcels ranges from 0.006 to 10 ha. The terrain across the study 

area is relatively flat. The average annual temperature of the study area is 15.8 °C. The area is 

characterized by modest annual rainfall, averaging 441 mm/y. 

3. Materials and Methods  

3.1. Outline of the Methodology 

Originally, the Landsat ETM+ images were registered to the higher resolution RapidEye image, 

which has been georeferenced using ground control points (GCPs) identified over VHR 

orthophotographs (Figure 2) in the same geodetic system with the vector dataset representing field 

entities of the area (Land Parcel Identification System-LPIS). LPIS was visually corrected for small 

inconsistencies. The multispectral ETM+ images were pan-sharpened using the panchromatic band and 

the High Pass Filter (HPF) algorithm. Four synthetic images were produced with a spatial resolution of  

15 meters. Nine different classifications experiments were applied on image sequences with variable 

spatial and temporal characteristics. A common set of training data, derived from the LPIS, was used to 

estimate the parameters of the crop models. For each HMM, we calculated the probability that the specific 

set of temporal observations corresponded to a class. Each pixel is assigned to the class whose crop-model 

emits the maximum probability. The results of the classification tests were evaluated in terms of overall 

accuracy and kappa coefficients.  

 

Figure 2. Overall process diagram of this research study. 

3.2. Satellite Data and Preprocessing 

Imagery acquired from sensors with different spectral, spatial and radiometric characteristics was 

used in the analysis. More specifically, the multispectral (excluding the thermal bands) and panchromatic 
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components of four Landsat ETM+ images (184/32) and one multispectral RapidEye image, all acquired 

on different dates of 2010 (Figures 3 and 4), were employed in this study (Table 1).  

Table 1. Description of the satellite data used in the study. *: blue; G: green; R: red; NIR: 

near-infrared; SWIR: shortwave-infrared bands. 

Time 

Step 
Sensor 

Date of 

Acquisition 

Spatial Resolution 

Multi/Pan 

Radiometric 

Resolution 
Spectral Bands * 

t1 Landsat ETM+ 07/05/2010 30/15 m 8-bit B, G, R, NIR, SWIR1, SWIR2 

t2 Landsat ETM+ 08/06/2010 30/15 m 8-bit B, G, R, NIR, SWIR1, SWIR2 

t3 RapidEye 05/08/2010 5 m 16-bit R, G, B, Red edge, NIR 

t4 Landsat ETM+ 27/08/2010 30/15 m 8-bit B, G, R, NIR, SWIR1, SWIR2 

t5 Landsat ETM+ 30/10/2010 30/15 m 8-bit B, G, R, NIR, SWIR1, SWIR2 

Landsat ETM + sensor launched in April 1999 has a spatial resolution of 30 meters for the six reflective 

bands, 60 meters for the thermal band, and 15 meters for the panchromatic (pan) band. On 31 May 2003, 

the ETM+ Scan Line Corrector (SLC) failed causing the scanning pattern to exhibit wedge‐shaped,  

scan-to-scan gaps, which are most pronounced along the edge of the scene. The scans give near-contiguous 

coverage of the surface scanned below the satellite in the center of the image (approximately 22 km wide). 

RapidEye is a constellation of 5 multispectral satellite sensors launched in August 2008 with a 

primary focus on agricultural applications. The RapidEye sensor has a multispectral push broom imager 

with a spatial resolution of 6.25 meters. It captures data in five spectral bands covering visible–infrared 

part of the electromagnetic spectrum: blue (440–550 nm), green (520–590 nm), red (630–685 nm), red 

edge (690–730 nm), and near infrared (760–850 nm). In our study, we used the RapidEye (Level 3A) in 

which radiometric, sensor, and geometric correction have been applied and resampled to a 5 meters 

spatial resolution. We georeferenced the RapidEye imagery to the Greek Geodetic Reference System 

1987, using ground control points, identified on natural color orthoimages with 50 cm spatial resolution 

acquired on 2007. Between 20 and 30 ground control points were used to co-register the Landsat scenes 

to the RapidEye imagery, with a Root Mean Square error (RMS) of less than a pixel. We did not apply 

any atmospheric correction or radiometric normalization since the adopted classification approach does 

not employ any direct comparison of pixel DN values between the temporal sequences of images. 

Instead, the classification scheme assigns pixels to crop classes, according to their similarity of states 

within each image separately and in a subsequent step the temporal images are linked using statistical 

relationships. In this context, atmospheric correction was not considered a prerequisite [32].  

The same geographic subset was identified on every Landsat imagery, with no effective clouds or 

sensor defects, such as the “SLC-off problem”, covering approximately 7500 ha of cultivated area (1760 

by 1710 RapidEye pixels). Additionally, regarding the Landsat images, the panchromatic images were 

merged with the multispectral ones, using the High Pass Filter (HPF) algorithm and four synthetic 

images were produced with a spatial resolution of 15 meters [21]. Finally, in order to achieve spatial 

correspondence for each pixel, all Landsat ETM+ images (original and pan-sharpened) were re-sampled 

to 5 meters, using a nearest-neighbor algorithm to match the spatial resolution the RapidEye image 

(Figure 3). 
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Figure 3. The set of images used included four Landsat ETM+ images (image t1, image t2, 

image t4, image t5) illustrated in false-color composite (R: NIR, G:Red, B:Green) and one 

Rapideye image (image t3) in false-color composite (R: NIR, G:Red, B:Green). 

 

Figure 4. The acquisition dates of the images used in the study. 

3.3. Reference Data 

The Land Parcel Identification System (LPIS) is a fundamental part of the Integrated Administration 

and Control system that has been developed and adopted in 1992 by the EU as the spatial component for 

the implementation and supporting of the Common Agricultural Policy (CAP) and land management 

across Europe [34]. The main functions of the LPIS are localization, identification and quantification of 

agricultural land via very detailed geospatial data, in order to spatially represent the activities of farmers 

on their land and facilitate the geographical identification of the agricultural parcels declared annually 

to receive funding [35]. 

Although the regulatory requirements for the LPIS are uniform across the EU sector, the particular 

implementations are subject to member states. The Greek GIS-based LPIS integrates information about 

the crop type, the acreage of a parcel, the identity of the farmer and relates it to a vector layer comprised 

of the declared parcels. Since the information of this database is gathered from the declaration of the 

farmers it cannot be considered flawless. In this respect, an expert from “Greek Payment Authority of 

Common Agricultural Policy Aid Schemes of the Ministry of Rural Development and Food” visually 

examined and corrected the parcels’ crop type and boundaries manually, taking into account the cropping 

calendar of the study area and the spectral- temporal profile of each parcel. The detailed delineation of 

the boundaries was guided mainly by the high resolution RapidEye image. In total, 3319 declared parcels 
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were found in the study area. A set of 55 parcels was used as training data and the rest was used during 

the accuracy assessment of the classification. 

3.4. Description of the Proposed HMMs Classification Algorithm 

The temporal evolution of vegetation can be described effectively by the state-oriented approach of 

Hidden Markov Models (HMMs). Each cultivated parcel has a dynamic behavior that depends on 

cropping phenology, climatic conditions, drought, water irrigation and chemical nutrients (Figure 5).  

 

Figure 5. Temporal sequence of images t1, t2 and t3 covering the same area containing parcels 

cultivated by various crop types (1 = maize, 2 = rice, 3 = wheat, 4 = alfalfa and  

5 = sugarcane). It is indicated that the different phenological states of crops at each time step 

impose significant variance in the between-class separability.  

 

Figure 6. Different subsets of satellite images t3 and t4 containing parcels with various crop 

types (1 = cotton, 2 = alfalfa and 3 = maize). In the left subset it can be observed that certain 

parcels of cotton and alfalfa may resemble according to their phenological state, while other 

parcels of the same crops can have distinct spectral properties. This can be also observed in 

the right subset referring to maize fields with different spectral characteristics.  
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Furthermore, neighboring parcels of the same crop type, over the same time step, may be at different 

states of growth due to varying agronomic practices; different planting or harvesting dates and fertilizers 

can accelerate or restrain the phenological progress (Figure 6).  

Given that each parcel changes constantly from state to state (Figure 5) and that each state cannot be 

directly linked to a remote sensing measurement but to a probability distribution of observations, an 

HMM can be used to simulate the cycle of vegetation based on statistical relations. In this case, an HMM 

is a doubly embedded stochastic process comprised by two chains: the external chain of the remote 

sensing observations and the internal chain of states, which are unknown [24] (Figure 7).  

 

Figure 7. Schematic description of the basic elements of the proposed HMMs.  

In this study, a crop classification algorithm, based on Markov-chain analysis, was designed and 

implemented using Matlab®. Accordingly, a model was built describing the phenological states during 

the dates of the study for each crop type. The sequence of observations consisted of a set of remote 

sensing measurements O = {Ot1 ,..., Otn}, where t = {t1 ,..., tn} are the acquisition dates of the images. 

The hidden states correspond to the different phenological states S = {S1 ,..., Sm} of each crop type and  

Q = {qt1,..., qtn} is the fixed sequence of hidden states. During the acquisition of the satellite data, the 

identified states of the parcels in the study area were: S1, no vegetation or beginning of emergence, S2, 

medium vegetation or growth state, S3, dense vegetation or flowering and S4, dry vegetation or 

harvesting state. 

An HMM is characterized by the following elements:  

I. The state transition probability matrix A, where ai,j(t) = P[qt = Sj |qt-1 = Si], denotes the transition 

probability from state Si to state Sj at time t. The emission probability matrix B, defines the 
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probability that Ot is emitted by state Sj, i.e., bj(Ot) = P[Ot | qt = Sj ]. In order to estimate the 

symbol probability distributions B, a multivariate Gaussian distribution is assumed for the 

observed spectral data. The mean vector μ୧ and the covariance matrix Σ୧ were calculated by the 

training data for each crop type, for each state and for every image by the equation, 

ܾሺܱ௧ሻ ൌ
1

ඥሺ2ߨሻௗ |Σ|
ݔ݁ ቆെ

ሺO୲ െ μ୧ሻΣ
ିଵሺO୲ െ μ୧ሻ

2
ቇ (1) 

II. The initial probability πi is the probability of being in state Si at time t1, i.e., πi = P[qt1 = Si]. 

The parameters A, B and πi were estimated by the set of training data. The set of training samples 

was selected and defined according to our knowledge of local agronomic practices and the 

cropping calendar of the district. To ensure classification success, all classes need to be described 

by representative training samples. The samples define the different states of crop types 

according to their different spectral attributes. The set of the training data was evenly distributed 

in the study area, located in homogenous fields and not in boundary mixed pixels. It should also 

be noted that in each image, fields of the same crop type may be in different states; usually a state 

before or a state after (Figure 6). Judging by the cropping calendar and the dates of the used 

images, not all transitions between states are possible in this case study. Once we have estimated 

the parameters A, B, πi of each model λ and given the sequence of observations O for each pixel, 

the probability that the sequence O was generated by these models λ is defined by:  

P൫qଵ ൌ S୧, … , q୲ ൌ S୨, Oଵ, … , O୲หλ൯ 	ൌ P൫Oଵ,… , O୲ หqଵ ൌ S୧, … , q୲ ൌ S୨൯ ൈ P൫qଵ ൌ S୧, … , q୲ ൌ S୨	หλ൯

ൌ π୯భ ൈෑ a୯౪షభ,୯౪ሺlሻ
୲

୪ୀଶ
ൈෑ b୯౪

୲

୪ୀଵ
ሺO୪ሻ 

(2) 

Detailed mathematical explanation of HMMs has been reported in previous studies [24,36] which 

propose the implementation of the Forward algorithm to simplify computations of Equation (2).  

In this study, five models were built (one for each crop class), and five measurements of probability 

were estimated for each pixel (Equation (2)). Let us consider a temporal spectral sequence of pixel x 

belonging to lm, the most probable crop, where L = {l1,..., lk} is the set of possible crop classes. For each 

pixel x, the most likely crop-class is determined by the following rule: 

	݄݊݁ݓ	ߣ߳ݔ ߣ ൌ argmax൫P൫qଵ ൌ S୧, … , q୲ ൌ S୨, Oଵ, … , O୲หߣ൯	൯ (3) 

Finally, nine different HMM models were developed in order to evaluate the role of the temporal 

resolution and extent of the image sequence used, in relation to the phenological cycle of each crop type, as 

well as to assess the utility of the pan-sharpening procedure in terms of classification accuracy (Table 2). 

Table 2. Selections of different images included in the evaluation of our proposed methodology. 

 Imagery Employed 
Rationale of the Classification 

Experiment   
t1 t2 t4 t5 t1 t2 t4 t5 t3 

Original ETM+ Pan-Sharpened ETM+ RapidEye

HMM-1 Χ Χ Χ Χ     Χ Assessment of the HMMs approach 

HMM-2     Χ Χ Χ Χ Χ Influence of pan-sharpening 

HMM-3     Χ Χ Χ Χ  Influence of spatial resolution-RapidEye  

HMM-4     Χ Χ   Χ Influence of temporal extent and resolution 

HMM-5      Χ  Χ Χ Influence of temporal extent and resolution 
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Table 2. Cont. 

 Imagery Employed 
Rationale of the Classification 

Experiment   
t1 t2 t4 t5 t1 t2 t4 t5 t3 

Original ETM+ Pan-Sharpened ETM+ RapidEye

HMM-6      Χ Χ  Χ Influence of temporal extent and resolution 

HMM-7     Χ    Χ Influence of temporal extent and resolution 

HMM-8     Χ  Χ   Influence of temporal extent and resolution 

HMM-9      Χ Χ   Influence of temporal extent and resolution 

3.5. Accuracy Assessment 

Each classification test was evaluated in terms of overall accuracy (OA) and Kappa coefficient, by 

comparing the reference data with the classified images, pixel by pixel. Overall accuracy represents the 

proportion of the correctly classified pixels relative to the total number of validation pixels. Kappa 

coefficient takes into account all the elements of the error matrix and is a measure of the proportional 

improvement by the classifier over a purely random assignment to classes [37]. Despite the fact that both 

the OA and Kappa coefficient measure the agreement between the classified map and the reference data, 

Kappa is often considered a better indicator of classification performance because it excludes chance 

agreement [38]. Finally, the conditional Kappa coefficient was used for assessing the agreement for the 

individual crop categories of the maps. 

4. Results and Discussion  

The results of the accuracy assessment of the classification tests are presented in Table 3 including 

overall accuracy, overall kappa coefficient and kappa coefficient of each class and are further discussed 

in the following sections.  

Table 3. Overall accuracy, overall kappa coefficient and the kappa coefficient of each class 

for all experiments according to the selected images.  

 HMM-1 HMM-2 HMM-3 HMM-4 HMM-5 HMM-6 HMM-7 HMM-8 HMM-9

Overall Accuracy 84.7% 89.7% 88.5% 87.5% 90.5% 92.5% 75.9% 76.0% 91.1% 

Overall Kappa coefficient 0.774 0.843 0.825 0.811 0.852 0.881 0.658 0.655 0.859 

Conditional 

Kappa 

Coefficient 

Cotton 0.662 0.770 0.743 0.722 0.823 0.894 0.504 0.570 0.871 

Rice 0.911 0.882 0.875 0.848 0.924 0.907 0.730 0.640 0.898 

Sugar beet 0.954 0.936 0.934 0.930 0.922 0.906 0.875 0.854 0.900 

Alfalfa 0.789 0.852 0.897 0.795 0.606 0.788 0.694 0.858 0.883 

Maize 0.742 0.861 0.831 0.859 0.867 0.805 0.834 0.641 0.702 

Wheat 0.930 0.916 0.869 0.953 0.659 0.690 0.895 0.705 0.681 

4.1. Multitemporal Classification Using the Original ETM+ and RapidEye Imagery 

It has been observed [6] that the spatial resolution of the imagery should be at or below the size of 

the fields. Nevertheless, detailed information provided by high resolution images does not meet the 

requirements for temporal availability and cost-effective processing framework. When lower resolution 
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sensors are selected, the accuracy of the classification is affected by the mixed pixel problem. For this 

reason, we explored the processing of time series of high and medium resolution images simultaneously. 

In the first classification experiment (HMM-1), considering one RapidEye and the original multispectral 

Landsat ETM+ images (Table 2), the classification model achieved an overall accuracy of 84.7% and an 

overall Kappa coefficient of 0.774. The conditional kappa coefficients ranging from 0.662 to 0.954, 

suggest that the spectral information was adequate for discriminating the majority of the crop types.  

4.2. Multitemporal Classification Using the Pan-Sharpened ETM+ and RapidEye Imagery 

In order to evaluate the contribution of the pan-sharpening of the Landsat ETM+ images in the 

improvement of the classification process, the developed HMM was tested using the synthetic ETM+ 

bands along with the multispectral RapidEye imagery (HMM-2). As the spatial resolution of the Landsat 

ETM+ images increased, the performance of the classification model improved, reaching 89.7% in 

overall accuracy and 0.843 in overall kappa coefficient (which corresponds to an increase of 5% and 

0.069 respectively).  

 

Figure 8. Visual assessment of the classification results obtained from experiment HMM-1 

considering the original ETM+ and RapidEye images (a) and from experiment HMM-2 

considering the pan-sharpened ETM+ and RapidEye images (b). HMM-1 experiment 

resulted to more extended classification errors along the parcel’s borderline (c) and the 

respective classification errors (d) compared to lower classification confidence (e) and 

confidence score (f) obtained from experiment HMM-2.  

Regarding the conditional kappa coefficients of individual crops, the highest increase of ~0.110 is 

observed for “cotton” and “maize” classes, which presented the lowest discrimination ability in the 

previous classification experiment (HMM-1). This sharp increase can be attributed to the shape of the 

respective crop fields, being more elongated and narrow compared to the other crop fields of the area. 
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The spatial explicit assessment of the classification errors distribution resulting from the HMM-1 and 

HMM-2 maps (Figure 8), verifies the contribution of the pan-sharpening procedure in the improvement 

of the classification result. Differences are observed along the boundaries of the different crop fields 

with a larger proportion of misclassified area found along the borderline of the fields in the case of the 

original dataset (HMM-1). In addition, the confidence score derived by the computed probabilities of 

the HMMs and the corresponding confidence images (Figure 8) prove that a larger proportion of each 

agriculture field is classified with higher confidence in the case of the HMM-2 model. 

4.3. Multitemporal Classification Using the Pan-Sharpened ETM+ Imagery 

To quantify the contribution of the RapidEye image in the classification scheme the third 

classification experiment (HMM-3) included only the pan-sharpened Landsat ETM+ images. The overall 

accuracy of this experiment was 88.5% while the overall kappa coefficient was 0.825. Compared to the 

results obtained from the previous experiment, integrating the RapidEye imagery, a decrease in both 

accuracy metrics is evident (1.2% in OA and 0.018 in Kappa values); this can be attributed to the 

information content inherent to the higher spatial resolution RapidEye imagery. 

Parcels not being wide enough to be mapped in a 15 meter resolution may be distinguished in a 

RapidEye image of 5 meters pixel size. Thus, the RapidEye image actually adds information involving 

narrow parcels and boundary pixels that cannot be viewed in a Landsat ETM+ scene. Comparison of the 

individual class results obtained by classification experiments HMM-2 and HMM-3 indicates that the 

lowest differences exist for the conditional kappa coefficient of class “sugar beet”. This relates to the fact 

that these crop fields within the study area, have a mean size of 1.28 ha. Their relatively large size allows 

satisfactory discrimination despite the coarse spatial resolution of the pan-sharpened ETM+ bands. 

4.4. Multitemporal Classification Considering Different Temporal Extents 

One of our objectives was to assess classification accuracy obtained by decreasing the number of 

images used in our classification model. Usually five images per year are used to perform multi- temporal 

classification in agriculture applications [12]. During classification experiments of HMM-4 to HMM-9, 

the number of images employed in the model decreases, but the resulting overall accuracy does not 

decrease proportionally. The selection of different temporal images affects the discrimination of certain 

crop types. By using three images (HMM-4, HMM-5 and HMM-6) instead of five, the conditional kappa 

coefficient of each summer crop remains relatively high (above 0.722). As a matter of fact, in HMM-6, 

where the three selected images were all acquired during summer, the corresponding summer crops attain 

the highest accuracy values ranging between 0.805 and 0.907. When using just three or two images 

neither the overall accuracy nor the overall kappa coefficient necessarily decrease, but certain individual 

crop accuracies fall below average. In the cases of the classification experiments HMM-5, HMM-6 and 

HMM-9, which do not incorporate the ETM+ image acquired on May (t1), the overall accuracy increases, 

ranging between 90.5% and 92.5% with an overall kappa coefficient between 0.852 and 0.881. However, 

these classification experiments perform poorly for class “wheat” because it is an “early crop”. This 

implies that only in the early May image (t1) “wheat” fields appear vegetated. In fact, the kappa 

coefficient of “wheat” drops at 0.659–0.690, while it reaches values of 0.869–0.953 in all other tests. As 

for class “alfalfa”, it has been already stated that it has a different phenological cycle, depending on the 
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varied dates of the cuttings. This crop type does not have a seasonal pattern like the other crops because 

the state of “emergence” can be repeated 3–4 times per year and even neighboring fields can differ 

spectrally. For this crop type at least 4 images are required to reach a stable classification result, as 

indicated by the classification results.  

Comparison of all the classification experiments, suggests that HMM-2 involving four pan-sharpened 

ETM+ and one RapidEye images, provided the best results, as far as crop-specific accuracies are 

concerned. It ranges between 0.770 and 0.936, whereas in other tests it falls below 0.60. The visual 

assessment of the classification errors and the confidence images, verifies the findings of the accuracy 

assessment, and highlights the importance of the spatial information inserted into this model through the 

pan-sharpening procedure for improving the classification of the borderline pixels. The pan-sharpening 

procedure also improved classification of pixels located within narrow fields by better preserving their 

spectral attributes. Even though, the computed measures of 89.7% in the overall accuracy and 0.843 in 

the overall kappa coefficient are not the highest, all accuracies per class reach satisfactory levels. Similar 

performance metrics were reached in [27] and [18], where five images were sufficient to reach an overall 

accuracy of 85%–89%. The further decrease in the number of images had a significant impact 

deteriorating the average accuracy per class. As far as the kappa coefficients are concerned, the highest 

values are observed on class “sugar beet” and class “wheat” (0.936 and 0.916 respectively). This is due 

to the size of the sugar beet parcels which can be monitored by the Landsat ETM+ scenes. The high 

accuracy of “wheat” is justified by its different phenology compared to the rest of the crop types. The 

poorest results were obtained for class “cotton” (0.77 in the kappa index), which was confused with the 

other “summer crops” due to its high internal spectral variability, resulting from the different farming 

practices applied. Apart from errors related to sub-pixel heterogeneity, classification errors related to 

whole field misallocation might arise (Figure 8). This kind of errors stem from various agronomic 

practices (i.e., different dates of planting and harvesting, usage of herbicides and fertilizers, etc.). This 

is a common problem in crop mapping studies [21] and could be resolved with the insertion of additional 

images representing more adequately high within-class variability. 

In conclusion, the results suggest optimal dates of scenes according to which crop types are to be 

examined. It should be noted that deciding on the optimal number and dates of scenes depends on the 

study area, the number of classes and the variety of cropping systems. In [11] it was proposed that four 

scenes were adequate for the classification of six crop classes in Japan, while in [32] 2–3 multi-date 

images were used to discriminate seven classes including “grassland” in the Netherlands. In this paper, 

by selecting 3–5 scenes the overall accuracy ranges between 87.5% and 92.5%, the overall kappa 

coefficient between 0.811 and 0.881 and the least conditional kappa coefficient is about 0.60. However, 

reducing the number of images to two, led to an overall accuracy and overall kappa coefficient of about 

75% and 0.65 respectively and a conditional kappa index of 0.50 which are considered moderate. Yet, 

if we need to constrain to using only two multi-date images we should choose a combination of May and 

August to account for both “winter” and “summer” cropping systems. 

5. Conclusions 

In this study, the classification approach was directed to meet the needs of a Mediterranean 

agricultural area. The approach integrated the following ideas: (a) the theory of HMMs to describe the 
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dynamics of vegetation, (b) the combination of multi-sensor data and (c) the implementation of image 

enhancement techniques.  

The challenge of crop mapping stems from the variety of cropping systems, distinct climate settings 

and cultivation practices. By using Hidden Markov Models we were able to set a dynamic model per 

crop type to represent the biophysical processes of agricultural land. Due to the high fragmentation of 

the land a multi-resolution approach was introduced. Experimental results demonstrated that the 

integration of even one very high resolution image and pan-sharpening of the set of Landsat images 

improved the overall classification accuracy by 1.2% and 5% respectively. Spatial explicit classification 

errors demonstrated that our methodology succeeded in mapping even small-sized fields enhancing 

classification even on the boundaries of different crop fields. It is worth mentioning that our approach 

can incorporate and process different satellite data without the implementation of atmospheric correction 

because the covariance matrix and the mean vector are computed by the samples for each  

image separately.  

However, an evident shortcoming is that models cannot be directly transferred to another year or a 

different region. This can be attributed to two factors: the inter-annual variation of climate conditions 

and the heterogeneity of cropping patterns of distinct territories. Even within similar agricultural areas, 

crops may grow in a different rate depending on the soil or irrigation system. To this end, the algorithm 

can be extended to integrate weather information and improve the estimation of the transition 

probabilities. Another drawback is that ground reference data are required each year and over the specific 

study area to train the classifier. In this paper, to avoid time consuming and costly on-the-field visits, we 

proposed the use of the ancillary crop maps. 

Depending on the application and the investigated crop types, different sets of temporal images may 

be used. If we are interested in mapping only “summer” or “winter” crops a set of only two images may 

provide adequate classification results. However, it has been shown that for more complex agricultural 

landscapes a robust classification scheme requires at least 4–5 images to achieve a kappa index per class 

above 0.70.  

The increased availability of imagery by recent and up-coming satellite missions (i.e., Landsat-8 and 

Sentinel-2) will offer a more dense set of observations and will broaden the mapping capabilities of the 

proposed technique. Additionally, further research may explore the integration of vegetation indices 

(VIs) to examine the impact on the classification performance. Considering the computational complexity 

of the algorithm, a reduction in the dimension of the input data by using VIs will improve the efficiency 

of the processing. In the future, classification errors could be eliminated by extending the model to 

incorporate contextual knowledge and accounting for possible interactions of neighboring pixels. 
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