
Practical polynomial factoring in polynomial time

William Hart
∗

University of Warwick
Mathematics Institute

Coventry CV4 7AL, UK
W.B.Hart@warwick.ac.uk

Mark van Hoeij
†

Florida State University
Tallahassee, FL 32306
hoeij@math.fsu.edu

Andrew Novocin
CNRS-INRIA-ENSL

46 Allée d’Italie
69364 Lyon Cedex 07, France

andy@novocin.com

ABSTRACT
There are several algorithms for factoring in Z[x] which have
a proven polynomial complexity bound such as Schönhage
of 1984, Belabas/Klüners/van Hoeij/Steel of 2004, and van-
Hoeij/Novocin of 2009. While several other algorithms can
claim to be comparable to the best algorithms in practice
such as Zassenhaus on restricted inputs, van Hoeij of 2002,
and Belabas of 2004. We present here the first algorithm for
factoring polynomials in Z[x] which is both comparable to
the best algorithms in practice and has a proven polynomial
complexity bound. We show that the algorithm has a com-
petitive runtime on many worst-case polynomials and can be
made significantly faster on a wide class of common polyno-
mials. Our algorithm makes its practical gains by requiring
less Hensel lifting.

1. INTRODUCTION
Most practical factoring algorithms in Z[x] use a structure
similar to [23]: factor modulo a small prime, Hensel lift this
factorization, and use some method of recombining these lo-
cal factors into integer factors. Zassenhaus performed the
recombination step by an exhaustive search which can be
made effective for as many as 40 local factors as is shown
in [1]. While quite fast for many cases, the exponential com-
plexity of this exhaustive technique is realized on many poly-
nomials. In 2002 [8] used lattice reduction, the famous LLL
algorithm of [12], to directly search for the right combina-
tions. Because this algorithm was so fast it quickly became
the standard in computer algebra systems. However, at-
tempts to prove a polynomial time complexity bound for [8]
and its efficient variants proved quite difficult. In 2004 [4]
proved a polynomial time bound for a variant which required
far too much Hensel lifting, and a far too large lattice re-
duction, to be considered practical (the same is true of the
algorithm in [9]). In [17] an algorithm, called the r3 algo-

∗Author was supported by EPSRC Grant number
EP/G004870/1
†Author was supported by NSF Grant number 0728853

rithm, was presented that made two claims which can only
be proved with a practical implementation:

Claim 1 The algorithm could be implemented in a practical
way while maintaining a polynomial complexity bound.

Claim 2 It gave theoretical evidence that a practical im-
provement could be made on a large class of common polyno-
mials while maintaining comparable behavior on worst-case
polynomials.

The primary task of this paper is to provide a report on
the first implementation of the r3 algorithm. We demon-
strate that this algorithm is indeed practical, making it the
first algorithm which is both comparable to the best practi-
cal algorithms and polynomial time. Our implementation is
done in FLINT, an open-source C library for number theory
(see [7]) and compared with the much more polished imple-
mentation in NTL, an open-source C++ library (see [20]).
We make this comparison because the two algorithms per-
form quite similar tasks (in a similar language) with the
primary differences being the differences between the r3 al-
gorithm and the van Hoeij algorithm. Merely comparable
times would be sufficient to demonstrate claim 1.

For claim 2, the class of polynomials for which we show prac-
tical savings over van Hoeij is any polynomial which would
require more CPU time for the Hensel lifting phase than the
recombination phase and has at least one factor of higher de-
gree than the rest. To the best of our knowledge, all of the
best practical algorithms for factoring use at least as much
Hensel lifting as the Zassenhaus algorithm (as this could
be required to reconstruct the integer factors). However, for
polynomials which have one factor of large degree and zero or
more small degree factors (including irreducible polynomi-
als), a lower Hensel lifting bound is often sufficient to prove
the irreducibility of the potential factors. In this case the
low degree factors (if there are any) can be reconstructed
at lower local precision than the large degree factors, and
the large factor can be constructed by dividing away the
smaller factors. Indeed, a large percentage of commonly
arising polynomials that are also difficult for the Zassen-
haus algorithm fall into this category. We demonstrate with
our implementation the reduced level of Hensel lifting which
is needed to solve several of these types of polynomials. The
theoretical work of [17] encourages this aggressive approach
to minimizing Hensel lifting, but only an implementation
can verify these claims. We also present the algorithm in



a more implementable format than [17] with every effort to
keep the algorithm simple to implement in any sufficiently
advanced computer algebra system.

Roadmap Necessary background information will be in-
cluded in section 2. The algorithm is laid out in an im-
plementable fashion in section 3. A brief assertion of the
polynomial complexity is laid out in section 4. Practical
notes, including running time and analysis are included in
section 5.

2. BACKGROUND
In this section we will outline necessary information from the
literature. The primary methods for factoring polynomials
which we address can all be said to share a basic structure
with the Zassenhaus algorithm of 1969 [23].

2.1 The Zassenhaus algorithm
In some ways this is the first algorithm for factoring polyno-
mials over Z which properly uses the power of a computer.
For background on the evolution of factoring algorithms see
the fine treatment in [10].

The algorithm utilizes the fact that the irreducible factors of
f over Z are also factors of f over the p-adic numbers Zp. So
if one has both a bound on the size of the coefficients of any
integral factors of f and an irreducible factorization in Zp[x]
of sufficient precision then one can find the integral factors
via simple tests (e.g. trial division). For coefficients of fac-
tors of f we can use the Landau-Mignotte bound (see [6, Bnd
6.33]). For the p-adic factorization it is common to choose a
small prime p to quickly find a factorization over Fp then use
the Hensel lifting method to increase the p-adic precision of
this factorization. Due to a comprehensive search of all com-
binations of local factors the algorithm has an exponential
complexity bound which is actually reached by application
to the Swinnerton-Dyer polynomials.

Algorithm 1. Description of Zassenhaus algorithm

Input: Square-free1 and monic2 polynomial f ∈ Z[x] of de-
gree N

Output: The irreducible factors of f over Z

1. Choose a prime, p, such that gcd(f, f ′) ≡ 1 modulo p.

2. Modular Factorization: Factor f modulo p ≡ f1 · · · fr.

3. Compute the Landau-Mignotte bound L ∈ R and a ∈ N
such that pa > 2L

4. Hensel Lifting: Hensel lift f1 · · · fr to precision pa.

5. Recombination: For each v ∈ {0, 1}r (and in an ap-

propriate order) decide if gv :=
Q
f
v[i]
i mods pa divides

f over Z.

1Assumed square-free for simplicity. A standard gcd-based
technique can be used to obtain a square-free factorization
(see [6])
2We have assumed the polynomial is monic for simplicity.
Each algorithm we present can be adapted to handle non-
monic polynomials as well.

It is common to perform steps 1 and 2 several times to at-
tempt to minimize, r, the number of local factors. Infor-
mation from these attempts can also be used in clever ways
to prove irreducibility or make the recombination in step 5
more efficient, see [1] for more details on these methods. Al-
gorithms for steps 2, 3, and 4 have been well studied and we
refer interested readers to a general treatment in [6]. Our
primary interests in this paper lie in the selection of a and
the recombination of the local factors in step 5.

2.2 Overview of the LLL algorithm
In 1982 Lenstra, Lenstra, and Lovasz devised an algorithm,
of a completely different nature, for factoring polynomials.
Their algorithm for factoring had a polynomial time com-
plexity bound but was not the algorithm of choice for most
computer algebra systems as Zassenhaus was more practical
for the majority of everyday tasks. At the heart of their
algorithm for factoring polynomials was method for finding
‘nice’ bases of lattices now known as the LLL algorithm.
The LLL algorithm for lattice reduction proved to be of
a great deal of practical interest in many areas of compu-
tational number theory and cryptography, as it (amongst
other things) gives an approximate solution to the shortest
vector problem, which is NP-hard [2], in polynomial time. In
fact, the van Hoeij algorithm for factoring polynomials can
be thought of as the application of the LLL lattice reduction
algorithm to the Zassenhaus recombination step. The pur-
pose of this section is to present some facts from [12] that
will be needed throughout the paper. For a more general
treatment of lattice reduction see [13].

A lattice, L, is a discrete subset of Rn that is also a Z-
module. Let b1, . . . ,bd ∈ L be a basis of L and denote
b∗1, . . . ,b

∗
d ∈ Rn as the Gram-Schmidt orthogonalization

over R of b1, . . . ,bd. Let δ ∈ (1/4, 1] and η ∈ [1/2,
√
δ).

Let li = log1/δ ‖ b∗i ‖2, and denote µi,j =
bi·b∗j
b∗j ·b

∗
j

. Note that

bi,b
∗
i , li, µi,j will change throughout the algorithm sketched

below.

Definition 1. b1, . . . ,bd is LLL-reduced if ‖ b∗i ‖2 ≤
1

δ−µ2
i+1,i
‖ b∗i+1 ‖2 for 1 ≤ i < d and |µi,j | ≤ η for 1 ≤

j < i ≤ d.

In the original algorithm the values for (δ, η) were chosen as
(3/4, 1/2) so that 1

δ−η2 would simply be 2.

Algorithm 2. Rough sketch of LLL-type algorithms

Input: A basis b1, . . . ,bd of a lattice L.

Output: An LLL-reduced basis of L.

1. κ := 2

2. while κ ≤ d do:

(a) (Gram-Schmidt over Z). By subtracting suitable
Z-linear combinations of b1, . . . ,bκ−1 from bκ
make sure that |µi,κ| ≤ η for i < κ.



(b) (LLL Switch). If interchanging bκ−1 and bκ will
decrease lκ−1 by at least 1 then do so.

(c) (Repeat). If not switched κ := κ + 1, if switched
κ = max(κ− 1, 2).

That the above algorithm terminates, and that the output is
LLL-reduced was shown in [12]. There are many variations
of this algorithm (such as [11, 18, 22, 15, 19]) and we make
every effort to use it as a black box for ease of implementa-
tion. What we do require is an algorithm which returns an
LLL-reduced basis and whose complexity is roughly linear in
the number of times step 2a (and thus 2b) is called. In fact
the central complexity result of [17] is that the r3 algorithm
has O(r3) switches throughout the entire algorithm, in spite
of many calls to LLL.

Intuitively the G-S lengths of an LLL-reduced basis do not
drop as fast as a generic basis (for more on generic bases and
LLL see [16]). In practice this property is used in factoring
algorithms to separate vectors of small norm from the rest.
The primary variations of the van Hoeij, Belabas, and r3

algorithms is how often they call LLL, the types of input,
and the timing of the calls.

2.3 Overview of the BHKS result
Let f ∈ Z[x] be a polynomial of degree N . Let H be a
bound on the absolute value of the coefficients of f . Let
p be a prime such that f ≡ lff1 · · · fr mod pa a separable
irreducible factorization of f in the p-adics lifted to precision
a, the fi are monic, and lf is the leading coefficient of f .

We will make some minor changes to the All-Coefficients
matrix defined in [4] to produce a matrix that looks like:

0BBBBBBB@

pa−bN

. .
.

pa−b1

1 c1,1 · · · c1,N
. . .

...
. . .

...
1 cr,1 · · · cr,N

1CCCCCCCA
Here ci,j represents a CLD (we’ll use this term often) that is
the jth coefficient of the ‘logarithmic derivative’ f ′i ·f/fi mods pa

divided by pbj and pbj represents
√
N times a bound on the

jth coefficient of g′ · f/g for any true factor g ∈ Z[x] of f .
In this way the targeted vectors in the span of the rows will
be quite small. An empty spot in this matrix represents
a zero entry. For large enough values of pa a reduction of
the rows of this matrix will solve the recombination prob-
lem by a similar argument to the one presented in [4] and
reformulated in [17, lemma 11].

Seeing this matrix helps to understand the objective of the
r3 algorithm. The r3 algorithm begins with the bottom left
corner of this matrix and grows in size until it has enough
data to solve the problem. The key difference is that not
every column will be used, but each column will be consid-
ered.

3. THE MAIN ALGORITHM
In this section it is our intention to lay out the central algo-
rithm as we have implemented it.

The following algorithm is the main wrapper of our factoring
method. It follows closely the pattern of Algorithm 1 with
the exception of computing a lower initial value for the p-
adic precision, the method of recombination, and increasing
the precision more frequently.

Algorithm 3. The main algorithm

Input: Square-free, monic, polynomial f ∈ Z[x] of degree N

Output: The irreducible factors of f over Z

1. Choose a prime, p, such that gcd(f, f ′) ≡ 1 modulo p.

2. Modular Factorization: Factor f modulo p ≡ f1 · · · fr.

3. if r ≤ 10 return Zassenhaus(f)

4. Compute first target precision a with Algorithm 4

5. until solved:

(a) Hensel Lifting: Hensel lift f1 · · · fr to precision
pa.

(b) Recombination: Algorithm 6(f, f1, . . . , fr, p
a)

(c) if not solved: a := 2a

Because step 5a is potentially repeated, care should be taken
not to recompute necessary information. Our implementa-
tion uses a balanced factor tree approach as seen in [6, Sect.
15.5]. To minimize overhead costs of Hensel lifting multiple
times our implementation stores the lifting tree, intermedi-
ate modular inverses computed by the extended gcd, and the
intermediate products of the lifting tree itself. This encour-
ages choosing an aggressively low value of a so that, with
some luck, the Hensel costs can be minimized, and without
luck, there is little harm.

We now outline our suggested heuristic for selecting an ini-
tial p-adic precision, a. This heuristic is designed so that
we lift only far enough to guarantee at least one useful call
to LLL in Algorithm 6 which is sometimes enough to solve
the problem. Provided the other parts of the algorithm are
careful, this heuristic minimizes the amount of Hensel lifting
performed in practice.

Algorithm 4. Heuristic for initial precision

Input: f ∈ Z[x], p

Output: Suggested target precision a

1. Use Algorithm 5 to find, b, the lower coefficient bound
of either x0 or xN−1.

2. return a :=
l

2.5r+log2 b+(log2 N)/2

log2 p

m



This heuristic is based on the observation that many polyno-
mials have their largest coefficients near the highest degree
terms, the lowest degree terms, or near the middle degree
terms. If this observation holds true then using only the
bounds for the highest and lowest terms will give a rough
estimate for when at least several coefficients will be usable.
In the worst case we still have one usable coefficient using
this method. As a sanity check, we recommend using the
minimum of this value for a and the value corresponding
with the Landau-Mignotte bound used by Algorithm 1.

The quality of Algorithm 4 relies heavily on the quality of
bounds for the CLDs. The following method (an analogous
bound for the bivariate case is given in [4, Lemma 5.8])
quickly gives fairly tight bounds in practice. The method is

based on the fact that g′f/g =
Y

α|g(α)=0

f

x− α summed over

all roots of the potential factor.

Algorithm 5. CLD bound

Input: f = a0 + · · ·+ aNx
N and c ∈ {0, . . . , N − 1}

Output: Xc, a bound for the absolute value of the coefficient
of xc in the polynomial fg′/g for any g ∈ Z[x] dividing f .

1. Let B1(r) := 1
rc+1 (|a0|+ · · ·+ |ac|rc)

2. Let B2(r) := 1
rc+1 (|ac+1|rc+1 + · · ·+ |aN |rN )

3. Find r ∈ R+ such that MAX{B1(r), B2(r)} is roughly
minimized

4. return Xc := N ·MAX{B1(r), B2(r)}

In this method, for any positive real number r, one of B1(r)
or B2(r) will be an upper bound for the coefficient of xc

in f
x−α for each possible complex root α (because of the

monotonicity of B1 and B2, if r ≤ |α| then B1(r) is the
upper bound and if r ≥ |α| then B2(r) will be). Thus the
maximum of B1(r) and B2(r) is an upper bound for every
root. The smaller one can make MAX{B1(r), B2(r)} the
better the bound you return. Since the CLD is summed
over every root of g we use N as a bound for the number of
roots of g (if you have extra information about the factors
then perhaps you can use that here).

We leave step 3 intentionally vague as many computer al-
gebra systems have fast solvers for such situations. Our
method was to begin with a value of r = 1, compute B1(r)
and B2(r), then replace r by either 2r or r/2. Repeat this
until the one bound overtakes the other then replace 2 by√

2 and continue like that. We did this because the bound
need not be optimal and it works well enough in practice. As
anecdotal evidence we note that our code had a bug which
caused overly large CLD bounds, once this bug was fixed
the running times in many cases were nearly cut in half.

The next several algorithms form the core of our approach.
While similar to the ‘fine-tuning’ of [8] found in [3], which

introduced the concept of gradually adding data to the lat-
tice, we have two primary differences. First we make use of
CLDs which tend to have tighter bounds than traces. This
allows us to attempt solving the problem with less Hensel
lifting, which is key to our improved running times. The
second crucial difference is the decision making process in
Algorithm 7, which decides if a given CLD has enough data
to justify a call to LLL. This step is important to the com-
plexity analysis in [17] as it guarantees that the work done
in the next call to LLL will help solve the problem more
than it might undo previous work. One of the important
contributions of this paper is demonstrating, via actual im-
plementation, that the added cost of this decision does not
impact the practicality of the algorithm. Another impor-
tant contribution is demonstrating that in many common
cases the reduced amount of Hensel lifting offers a practical
advantage.

The following algorithm is the wrapper of our recombination
process. It is designed to efficiently use all possible data from
the most recent round of Hensel lifting. In the algorithm we
take new CLD data from the local factors and decide if it is
worth calling LLL with this data. The rows of M form the
basis of our lattice and we gradually adjoin new columns of
data to M and occasionally new rows.

Algorithm 6. Attempt Reconstruction

Input: f , f1, . . . , fr the lifted factors, their precision pa,
and possibly M ∈ Zs×(r+c).

Output: If solved then the irreducible factors of f over Z
otherwise an updated M .

1. If this is the first call let M := Ir×r

2. Until solved or all data used do:

(a) Compute some new column vectors:

xj := (c1,j , . . . , cr,j)
T

Here ci,j is the coefficient of xj in f · f ′i/fi
(b) For each new vector xj until it is fully used:

i. Use Algorithm 5 to compute Xj

ii. Use Algorithm 7 to possibly update M with
xj

iii. If updated then run LLL(M)

iv. Compute G-S lengths of rows of M

v. Decrease the number of rows of M until
the final G-S length ≤

√
r + 1

vi. Use Algorithm 8 to test if solved

For the computation of new data in step 2a it should be
noted that to compute the top (or bottom) l coefficients of
ff ′i/fi modulo pa only the top (or bottom) l coefficients of
f and fi are needed. So in practice we compute 5-20 of the
top and bottom coefficients first as this is often enough to
either solve the problem or determine that more Hensel lift-
ing is needed. Indeed when all of these computed coefficients
are checked we use a heuristic to decide if computing more



CLDs would be worth it or if more Hensel lifting is needed.
It is often the case that the top coefficients or the bottom
coefficients have the lowest bounds and thus the most infor-
mation so computing middle terms might not be worth the
time. For a proven polynomial time complexity bound this
heuristic must always decide to compute more data when
the level of p-adic precision is large enough (see section 4 for
more details). Although, to the best of our knowledge, no
examples have ever been recorded which require that level
of p-adic precision to be solved.

The following algorithm outlines the decision making pro-
cess when deciding if a given CLD justifies a call to LLL.
Its function is mostly theoretical as it allows the complexity
work of [17] to work, although it does work well in practice
for keeping the number of columns in M low and quickly
handling the useless CLDs. The idea of the check is to see
what the new entries would be at full precision then to de-
termine if enough bits lie above the CLD bound to make the
vectors significantly larger than target vectors. There is also
a theoretical check to see if a vector of the form (0, . . . , 0, pa)
is needed to keep the entries reduced modulo pa (for detail
on the theory of this check see [17, Sect 3.12]). It should
be noted that each column could be used multiple times ad-
joining a new entry each time. In [17] this was handled in
a different way which complicated the algorithm and analy-
sis, here we see no difference between a CLD used multiple
times and multiple CLDs.

Algorithm 7. Decide if adjoining data

Input: M ∈ Zs×(r+c), data vector xj, p
a, Xj the CLD

bound for xj

Output: A potentially updated M

1. Let B := r + 1 and s be the number of rows of M

2. If pa < Xj ·B ·
√
N · 2(1.5)r then exit

3. Find U the first r columns of M

4. Compute yj := U · xj

5. If ‖ yj ‖∞< Xj ·B ·
√
N · 2(1.5)r then exit

6. If pa − Bpa/2(1.5)r >‖ yj ‖∞ ·(2(3/2)s−1 − 2) then
no vec :=True otherwise False

7. Find new column weight 2k roughly
‖yj‖∞

Xj ·B·
√
N·2(1.5)r if

no vec is True and pa

Xj ·B·
√
N·2(1.5)r if False

8. Embed xj and pa/2k into Z/2r by rounding or trun-

cating say x̃j and P̃

9. If no vec is True then augment M with new column
ỹj = U · x̃j
If no vec False then also adjoin a new row so

M :=

»
0 P̃
M ỹj

–

This algorithm is rather technical so we attempt to shed
some light now. Step 2 catches any CLD which is elim-
inated by insufficient p-adic precision, as a result this step
would likely be more practical when you choose which CLDs
to compute in Algorithm 6step 2a. Step 4 computes what
the new column would look like at full precision in our lat-
tice, so in the next step if these values are large enough to
give some interesting data we just skip this CLD. Step 6 is a
technical condition from [17, sect.3.12] that tests if the new
entries are so much smaller than pa that LLL would simply
move the potential vector (0, . . . , 0, pa) to the final spot and
then have it removed. In practice the condition is very ac-
curate for detecting the utility of this extra vector. Finally
one crucial difference between this algorithm and the r3 al-
gorithm in [17] is the fact that the new entries are not full
precision rational numbers. We allow r bits of decimals for
the sake of stability in LLL, but in practice we want to avoid
having huge decimal entries. Since some implementations of
LLL only allow integer entries we note that the embedding
of step 8 can be virtually accomplished by scaling up the en-
tries in U by 2r. Such a scaling requires replacing B = r+ 1
with 22r(r + 1) whenever needed.

Finally we briefly mention the new method in which we
check for true factors. One of the central novelties to the
algorithm is a reduced level of Hensel lifting when attempt-
ing to solve the problem. It has been observed that the
Landau-Mignotte bound is often too pessimistic and that
even Zassenhaus’ algorithm could potentially terminate at
a lower level of Hensel lifting. This is also true of our lat-
tice based attack, as we can often prove the irreducibility
of potential factor before we can fully reconstruct each of
its coefficients. This is seen most frequently in polynomials
which turn out to have one large degree factor and zero or
more smaller degree factors. In these cases we must check
for true factors in a way that will recover the large factor
by dividing away any small irreducible factors. Such cases
arise naturally and frequently, see section 5 for examples.

We will begin by using a short-cut for detecting a 0-1 basis
of our lattice. Such a basis, if it exists, could potentially
solve the recombination problem.

Algorithm 8. Check if solved

Input: M , f , f1, . . . , fr to precision pa

Output: If possible the irreducible factors of f in Z[x]

1. Attempt to partition the first r columns of M under
the equivalence relation =

2. If a partition exists and has less classes than there are
rows of M we have a potential solution otherwise exit

3. For each class multiply the polynomials matching the
columns in that class and reduce with symmetric re-
mainder modulo pa to find the potential factors

4. In order, from the lowest degree to the highest degree,
perform trial divisions of f

5. If any two polynomials fail to divide f then no solution



6. Otherwise we have a solution, if a single failed polyno-
mial then recover it by division of f by the successful
factors

If we have the correct lattice than a row reduced echelon
basis of M will have a single 1 in each column. So we detect
this basis by seeing which columns match, and if we can
achieve a basis with exactly one 1 in each column then we
move on. The symmetric remainder of step 3 is required
for polynomials with negative coefficients. By moving from
the lowest degree to the highest degree we maximize the
chances of solving the problem with less Hensel lifting than
the Landau-Mignotte bound used in Zassenhaus.

4. POLYNOMIAL COMPLEXITY BOUND
A precise complexity analysis would require an in-depth
treatment of lattice reduction in this setting such as [9]
and [17]. In this report we merely assert a polynomial time
complexity bound and reserve an in-depth treatment for fu-
ture work.

Assertion 1. Algorithm 3 has a polynomial-time com-
plexity bound.

We outline a simplistic, and non-rigorous, argument. Each
component of the algorithm (local factoring, hensel lifting,
LLL, and some additional matrix multiplications) has some
classical polynomial time complexity bound in the degree N ,
number of local factors r, and height of the input polynomial
H (for an introduction to any of these algorithms see [6]).

For each iteration of the main loop (step 5 of Algorithm 3
there are no more than O(Nlog(H)/r) calls to the primary
procedures, including LLL, making the cost of each loop
at most polynomial. So the central threat to a polynomial
time complexity bound for our algorithm is the number of
iterations of the main loop.

Each iteration of the main loop ends with a single call of
Hensel lifting to double the precision. We merely show that
the number of calls to Hensel lifting is polynomial thus the
number of calls to the main loop is polynomial and since the
cost of each loop is polynomial this is sufficient.

The complexity work in Theorem 4.3 of [4] and adapted to
our format in Lemma 11 of [17] can be used to prove that
the number of iterations of the main loop is only O(logN +
log logH). This was done there by showing that when a
lattice contains all target 0-1 vectors, does not solve the
factorization problem, but does not give any CLDs which
are usable by Algorithm 7 then there is one vector which
corresponds with a polynomial, h, with 0 <Res(h, f) ≤
2O(N2+N logH) and Res(h, f) ≡ 0 mod pa. Thus if pa is
larger than the upper bound on Res(h, f) then no such vec-
tor exists so at least one coefficient will be usable. In [17]
great care was taken to show that solving the problem on
O(r2) CLDs would be sufficient to solve the problem. In
our case, to show polynomial time complexity, it would be
sufficient to have each of the O(NlogH/r) CLDs included
at this largest Hensel lifting bound as in [4].

As the Hensel lifting begins at precision p1 and doubles the
exponent each time the number of times this can happen
(and thus a bound for the number of iterations of the main
loop) is bounded by O(logN + log logH). Of course a much
more enlightening bound is possible in an extended analysis.

5. RUNNING TIMES AND PRACTICAL OB-
SERVATIONS

In this section we assert the practicality of our algorithm.
We do this by providing running times of our implementa-
tion side by side with a more polished implementation in
NTL version 5.5.2. We provide timings on a collection of
polynomials made available on NTL’s website which was col-
lected by Paul Zimmerman and Mark van Hoeij, as well as
two other polynomials mentioned below. All but T1 and T2
were designed to test the recombination phase of knapsack-
based factoring techniques, so those can be considered worst-
case polynomials. The goal of these times is to show that our
algorithm is comparable on these worst case polynomials.

A highly polished factoring algorithm will include many tricks
for special cases, techniques, heuristics, and optimizations
which our code is still developing. We expect these times
to improve as some rather naive code is replaced and bet-
ter heuristics are developed. The central contribution of
these times is illustrating that this algorithm is indeed prac-
tical making it the first efficiently practical algorithm with
a provably polynomial complexity bound.

Poly r NTL H-bnd Alg 3 H-bnd
P1 60 .276 29311 .152 8933

P2 20 .424 11437 .196 1122∗

P3 28 1.08 11629 .444 1131∗

P4 42 2.048 13745 1.976 780∗

P5 32 .104 1951 .056 2326

P6 48 .340 19152 .220 2338∗

P7 76 1.188 3778 .956 1974

P8 54 3.472 13324 1.812 1184

M12 5 72 12.437 131171 4.856 11180

M12 6 84 21.697 131555 10.277 13190∗

S7 64 .428 2978 .512 4741

S8 128 3.856 47140 6.224 5379

T1 30 3.896 7495 1.636 740

T2 32 3.18 7200 1.676 743

These timings are measured in seconds and were made on
a 2400MHz AMD Quad-core Opteron processor, using gcc
version 4.4.1 with the -O2 optimization flag, although the
processes did not utilize all four cores. Our algorithm was
limited to values of r of around 150 or less as our float-
ing point LLL, using so-called double extended precision en-
tries, becomes numerically unstable around dimension 150
(for more details see [16, Sect. 6]). Also for the sake of
comparison NTL’s default ‘power hack’ strategy3 was deac-
tivated in these timings as we had not yet implemented our
own, we did not include timings for H1 and H2 without this
power hack.

The columns labelled ‘H-bnd’ give the p-adic precision at

3The power hack is an attempt to detect structure of the
form g(xk) in f so that smaller polynomials can be reduced
in some cases.



which both algorithms solved the combinatorial problem.
No matter what the current quality of our implementation
these Hensel bounds show the potential for faster times yet.
We expect that NTL’s bounds are similar to other imple-
mentations of van Hoeij and that our algorithm will, in gen-
eral, use less Hensel lifting than other versions as well. In
the case of the five polynomials which include a ∗, the level
of Hensel lifting shown was sufficient to solve the combinato-
rial problem but one more round of Hensel lifting was needed
before all of the factors could be successfully reconstructed.

The polynomials S7 and S8 are Swinnerton-Dyer polynomi-
als, and the factorization of such polynomials is dominated
by the LLL costs. We see that in those examples our aggres-
sive approach to Hensel lifting is of little significance and the
less strong parts of our code dominate. On the other end
of the spectrum the polynomials T1 and T2, which arose
from rather standard computations in Trager’s Algorithm,
can be solved with as little p-adic precision as 740 which is
significantly less than the Landau-Mignotte bound. While
our implementation is still young, such examples are plen-
tiful and arise naturally in many applications. In a later
implementation we hope to produce a highly optimized ver-
sion. The SAGE [21] computer algebra system (which also
uses FLINT) has a specially patched version of NTL which
can beat the generic version of NTL that we have used.
MAGMA [5] also has a highly optimized van Hoeij imple-
mentation which we believe performs very well. For exam-
ple, the MAGMA implementation of factorization over Z/pZ
is already more than twice as fast as our more naive imple-
mentation. As our code develops we will have more in-depth
and up-to-date timings, which we will make available online
at http://andy.novocin.com/timings.

Acknowledgements The authors would like to Damien
Stehlé for very generous assistance and many interesting
conversations.

6. REFERENCES
[1] J. Abbott, V. Shoup and P. Zimmermann,

Factorization in Z[x]: The Searching Phase,
ISSAC’2000 Proceedings, 1–7 (2000).

[2] M. Ajtai The shortest vector problem in L2 is NP-hard
for randomized reductions, STOC 1998, pp. 10–19.

[3] K. Belabas A relative van Hoeij algorithm over
number fields, J. Symb. Comp. 37 2004, pp. 641–668.

[4] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel,
Factoring polynomials over global fields, preprint
arXiv:math/0409510v1 (2004).

[5] J. J. Cannon, W. Bosma (Eds.) Handbook of Magma
Functions, Edition 2.13 (2006)

[6] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 1999.

[7] W. Hart FLINT, open-source C-library.
http://www.flintlib.org

[8] M. van Hoeij, Factoring polynomials and the knapsack
problem, J. Num. The., 95 2002, pp. 167–189.

[9] M. van Hoeij and A. Novocin, Gradual sub-lattice
reduction and a new complexity for factoring
polynomials, accepted for proceedings of LATIN 2010.

[10] E. Kaltofen, Polynomial factorization. In: Computer
Algebra, 2nd ed

”
editors B. Buchberger et all,

Springer Verlag, 95–113 (1982).

[11] E. Kaltofen,On the complexity of finding short vectors
in integer lattices,
EUROCAL’83,LNCSv.162,pp.235–244

[12] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász,
Factoring polynomials with rational coefficients, Math.
Ann. 261 1982, pp. 515–534.

[13] L. Lovász, An Algorithmic Theory of Numbers, Graphs
and Convexity, SIAM 1986

[14] I. Morel, D. Stehlé, and G. Villard, H-LLL: Using
Householder Inside LLL, ISSAC’09, pp. 271–278.

[15] P. Nguyen and D. Stehlé, Floating-point LLL revisited,
Eurocrypt 2005, v. 3494 LNCS, pp. 215–233.

[16] P. Nguyen and D. Stehlé, LLL on the Average, ANTS
VII 2006, v. 4076 LNCS, pp. 238–256.

[17] A. Novocin, Factoring Univariate Polynomials over
the Rationals, Ph.D. Flor. St. Univ. 2008.

[18] C. P. Schnorr, A more efficient algorithm for lattice
basis reduction, J. of Algo. 9 1988, pp. 47–62.

[19] A. Schönhage, Factorization of univariate integer
polynomials by Diophantine approximation and an
improved basis reduction algorithm, ICALP’84, LNCS
172, pp. 436–447.

[20] V. Shoup NTL, open-source C++ library.
http://www.shoup.net/ntl/

[21] W. Stein SAGE Mathematics Software.
http://www.sagemath.org

[22] A. Storjohann, Faster algorithms for integer lattice
basis reduction, Technical report 1996, ETH Zürich.

[23] H. Zassenhaus, On Hensel factorization I, Journal of
Number Theory (1969), pp. 291–311.


