Data BI LLC’s Post

11 Essential Python Libraries for Data Analysts! 📊 Make Data Work for You.... ↳ 𝐍𝐮𝐦𝐏𝐲 – 𝐓𝐡𝐞 𝐍𝐮𝐦𝐞𝐫𝐢𝐜𝐚𝐥 𝐏𝐨𝐰𝐞𝐫𝐡𝐨𝐮𝐬𝐞 Provides support for large, multi-dimensional arrays and matrices, along with functions to operate on them seamlessly. ↳ 𝐒𝐜𝐢𝐏𝐲 – 𝐄𝐱𝐭𝐞𝐧𝐝𝐢𝐧𝐠 𝐒𝐜𝐢𝐞𝐧𝐭𝐢𝐟𝐢𝐜 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 Built on NumPy, SciPy offers numerous scientific and engineering functions to enhance your analyses. ↳ 𝐏𝐚𝐧𝐝𝐚𝐬 – 𝐓𝐡𝐞 𝐃𝐚𝐭𝐚 𝐖𝐫𝐚𝐧𝐠𝐥𝐞𝐫’𝐬 𝐒𝐰𝐢𝐬𝐬 𝐀𝐫𝐦𝐲 𝐊𝐧𝐢𝐟𝐞 A must-have for structured data manipulation, cleaning, and preparation. ↳ 𝐌𝐚𝐭𝐩𝐥𝐨𝐭𝐥𝐢𝐛 – 𝐓𝐡𝐞 𝐅𝐨𝐮𝐧𝐝𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐏𝐲𝐭𝐡𝐨𝐧 𝐏𝐥𝐨𝐭𝐭𝐢𝐧𝐠 From static to interactive and animated, Matplotlib sets the stage for powerful visualizations. ↳ 𝐒𝐞𝐚𝐛𝐨𝐫𝐧 – 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐌𝐚𝐝𝐞 𝐄𝐥𝐞𝐠𝐚𝐧𝐭 Easily create attractive and informative statistical graphs. ↳ 𝐒𝐜𝐢𝐤𝐢𝐭-𝐋𝐞𝐚𝐫𝐧 – 𝐓𝐡𝐞 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐏𝐨𝐰𝐞𝐫𝐡𝐨𝐮𝐬𝐞 Simple, efficient tools for data mining and analysis, perfect for machine learning tasks. ↳ 𝐒𝐭𝐚𝐭𝐬𝐦𝐨𝐝𝐞𝐥𝐬 – 𝐄𝐦𝐩𝐨𝐰𝐞𝐫𝐢𝐧𝐠 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐚𝐥 𝐑𝐢𝐠𝐨𝐫 𝐢𝐧 𝐏𝐲𝐭𝐡𝐨𝐧 Provides classes and functions to conduct statistical tests and explore data. ↳ 𝐏𝐥𝐨𝐭𝐥𝐲 – 𝐈𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐯𝐞 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧𝐬 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐄𝐱𝐩𝐥𝐨𝐫𝐚𝐭𝐢𝐨𝐧 Supports various chart types, including statistical, financial, and geographic, making data exploration engaging. ↳ 𝐀𝐩𝐚𝐜𝐡𝐞 𝐒𝐮𝐩𝐞𝐫𝐬𝐞𝐭 – 𝐓𝐡𝐞 𝐃𝐚𝐭𝐚 𝐄𝐱𝐩𝐥𝐨𝐫𝐚𝐭𝐢𝐨𝐧 𝐏𝐨𝐰𝐞𝐫𝐡𝐨𝐮𝐬𝐞 A scalable, open-source platform for creating interactive dashboards and reports. ↳ 𝐃𝐚𝐬𝐤 – 𝐒𝐜𝐚𝐥𝐢𝐧𝐠 𝐏𝐲𝐭𝐡𝐨𝐧 𝐟𝐨𝐫 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚 Enables parallel and distributed computing, making handling large datasets easier. #datascience #visualization #python #data #powerbi #dataanalysis #businessintelligence #tableau #datavisualization

To view or add a comment, sign in

Explore topics