Kevin McKernan

Kevin McKernan

Greater Boston
7K followers 500+ connections

About

1)DREAMing of a patent-free human genome for clinical sequencing. Nat Biotech. 2013…

Articles by Kevin

Activity

Join now to see all activity

Experience

  • Medicinal Genomics

    Marblehead, MA

  • -

    Woburn, MA

  • -

  • -

  • -

  • -

Education

  • Massachusetts Institute of Technology Graphic

    MIT

    -

    Special Student

  • -

    Activities and Societies: Graduate and undergraduate coursework abroad

  • -

  • -

Publications

  • MicroRNAs and their isomiRs function cooperatively to target common biological pathways

    Genome Biology

    BACKGROUND:
    Variants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules.
    RESULTS:
    To assess the biological relevance of isomiRs, we have performed…

    BACKGROUND:
    Variants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules.
    RESULTS:
    To assess the biological relevance of isomiRs, we have performed ultra-deep miRNA-seq on ten adult human tissues, and created an analysis pipeline called miRNA-MATE to align, annotate, and analyze miRNAs and their isomiRs. We find that isomiRs share sequence and expression characteristics with canonical miRNAs, and are generally strongly correlated with canonical miRNA expression. A large proportion of isomiRs potentially derive from AGO2 cleavage independent of Dicer. We isolated polyribosome-associated mRNA, captured the mRNA-bound miRNAs, and found that isomiRs and canonical miRNAs are equally associated with translational machinery. Finally, we transfected cells with biotinylated RNA duplexes encoding isomiRs or their canonical counterparts and directly assayed their mRNA targets. These studies allow us to experimentally determine genome-wide mRNA targets, and these experiments showed substantial overlap in functional mRNA networks suppressed by both canonical miRNAs and their isomiRs.
    CONCLUSIONS:
    Together, these results find isomiRs to be biologically relevant and functionally cooperative partners of canonical miRNAs that act coordinately to target pathways of functionally related genes. This work exposes the complexity of the miRNA-transcriptome, and helps explain a major miRNA paradox: how specific regulation of biological processes can occur when the specificity of miRNA targeting is mediated by only 6 to 11 nucleotides.

    See publication
  • A map of human genome variation from population-scale sequencing

    Nature

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two…

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

    Other authors
    See publication
  • Rapid whole-genome mutational profiling using next-generation sequencing technologies

    Genome Research

    Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain. We studied a mutant strain of Pichia…

    Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain. We studied a mutant strain of Pichia stipitis, a yeast capable of converting xylose to ethanol. This unusually efficient mutant strain was developed through repeated rounds of chemical mutagenesis, strain selection, transformation, and genetic manipulation over a period of seven years. We resequenced this strain on three different sequencing platforms. Surprisingly, we found fewer than a dozen mutations in open reading frames. All three sequencing technologies were able to identify each single nucleotide mutation given at least 10–15-fold nominal sequence coverage. Our results show that detecting mutations in evolved and engineered organisms is rapid and cost-effective at the whole-genome level using new sequencing technologies. Identification of specific mutations in strains with altered phenotypes will add insight into specific gene functions and guide further metabolic engineering efforts.

    Other authors
    See publication
  • Rapid whole-genome mutational profiling using next-generation sequencing technologies

    Genome Research

    Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain. We studied a mutant strain of Pichia…

    Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain. We studied a mutant strain of Pichia stipitis, a yeast capable of converting xylose to ethanol. This unusually efficient mutant strain was developed through repeated rounds of chemical mutagenesis, strain selection, transformation, and genetic manipulation over a period of seven years. We resequenced this strain on three different sequencing platforms. Surprisingly, we found fewer than a dozen mutations in open reading frames. All three sequencing technologies were able to identify each single nucleotide mutation given at least 10–15-fold nominal sequence coverage. Our results show that detecting mutations in evolved and engineered organisms is rapid and cost-effective at the whole-genome level using new sequencing technologies. Identification of specific mutations in strains with altered phenotypes will add insight into specific gene functions and guide further metabolic engineering efforts.

    Other authors
    See publication
  • A small-cell lung cancer genome with complex signatures of tobacco exposure

    Nature

    Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the…

    Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3–8 of CHD7 in frame, and another two lines carrying PVT1–CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.

    Other authors
    See publication
  • Development of Personalized Tumor Biomarkers Using Massively Parallel Sequencing.

    Science Translational Medicine

    Other authors
  • Maternal Plasma DNA Analysis with Massively Parallel Sequencing by Ligation for Noninvasive Prenatal Diagnosis of Trisomy 21

    Clinical Chemistry

    Background: Noninvasive prenatal diagnosis of trisomy 21 (T21) has recently been shown to be achievable by massively parallel sequencing of maternal plasma on a sequencing-by-synthesis platform. The quantification of several other human chromosomes, including chromosomes 18 and 13, has been shown to be less precise, however, with quantitative biases related to the chromosomal GC content.

    Methods: Maternal plasma DNA from 10 euploid and 5 T21 pregnancies was sequenced with a…

    Background: Noninvasive prenatal diagnosis of trisomy 21 (T21) has recently been shown to be achievable by massively parallel sequencing of maternal plasma on a sequencing-by-synthesis platform. The quantification of several other human chromosomes, including chromosomes 18 and 13, has been shown to be less precise, however, with quantitative biases related to the chromosomal GC content.

    Methods: Maternal plasma DNA from 10 euploid and 5 T21 pregnancies was sequenced with a sequencing-by-ligation approach. We calculated the genomic representations (GRs) of sequenced reads from each chromosome and their associated measurement CVs and compared the GRs of chromosome 21 (chr21) for the euploid and T21 pregnancies.

    Results: We obtained a median of 12 × 106 unique reads (21% of the total reads) per sample. The GRs deviated from those expected for some chromosomes but in a manner different from that previously reported for the sequencing-by-synthesis approach. Measurements of the GRs for chromosomes 18 and 13 were less precise than for chr21. z Scores of the GR of chr21 were increased in the T21 pregnancies, compared with the euploid pregnancies.

    Conclusions: Massively parallel sequencing-by-ligation of maternal plasma DNA was effective in identifying T21 fetuses noninvasively. The quantitative biases observed among the GRs of certain chromosomes were more likely based on analytical factors than biological factors. Further research is needed to enhance the precision for measuring for the representations of chromosomes 18 and 13.

    Other authors
    See publication

Patents

  • Reagents, methods, and libraries for bead-based sequencing

    Issued US 8,431,691

    The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. The invention provides methods of determining information about a sequence using at least two…

    The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to immobilized beads. The invention further provides sets of labeled probes containing phosphorothiolate linkages. In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides.

    See patent
  • Solid phase technique for selectively isolating nucleic acids

    Issued US 6534262

    A method of isolating target nucleic acid molecules from a solution comprising a mixture of different size nucleic acid molecules, in the presence or absence of other biomolecules, by selectively facilitating the adsorption of a particular species of nucleic acid molecule to the functional group-coated surface of magnetically responsive paramagnetic microparticles is disclosed. Separation is accomplished by manipulating the ionic strength and polyalkylene glycol concentration of the solution to…

    A method of isolating target nucleic acid molecules from a solution comprising a mixture of different size nucleic acid molecules, in the presence or absence of other biomolecules, by selectively facilitating the adsorption of a particular species of nucleic acid molecule to the functional group-coated surface of magnetically responsive paramagnetic microparticles is disclosed. Separation is accomplished by manipulating the ionic strength and polyalkylene glycol concentration of the solution to selectively precipitate, and reversibly adsorb, the target species of nucleic acid molecule, characterized by a particular molecular size, to paramagnetic microparticles, the surfaces of which act as a bioaffinity adsorbent for the nucleic acids. The target nucleic acid is isolated from the starting mixture based on molecular size and through the removal of magnetic beads to which the target nucleic acid molecules have been adsorbed. The disclosed method provides a simple, robust and readily automatable means of nucleic acid isolation and purification which produces high quality nucleic acid molecules suitable for: capillary electrophoresis, nucleotide sequencing, reverse transcription cloning the transfection, transduction or microinjection of mammalian cells, gene therapy protocols, the in vitro synthesis of RNA probes, cDNA library construction and PCR amplification.

    See patent
  • Reagents, methods, and libraries for bead-based sequencing

    Issued US 8,329,404

    The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. The invention provides methods of determining information about a sequence using at least two…

    The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to immobilized beads. The invention further provides sets of labeled extension probes containing phosphorothiolate linkages. In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides.

    See patent
  • Methods of producing and sequencing modified polynucleotides

    Issued US 7645866

    The present invention encompasses methods for producing a modified polynucleotide sequence that comprises a (e.g., one or more) phosphorothiolate linkage, methods for determining a polynucleotide sequence comprising a (e.g., one or more) phosphorothiolate linkage, and methods for separating forward and reverse extension products that comprise a (e.g., one or more) phosphorothiolate linkage. The invention also encompasses kits for producing and/or determining the sequence of a modified…

    The present invention encompasses methods for producing a modified polynucleotide sequence that comprises a (e.g., one or more) phosphorothiolate linkage, methods for determining a polynucleotide sequence comprising a (e.g., one or more) phosphorothiolate linkage, and methods for separating forward and reverse extension products that comprise a (e.g., one or more) phosphorothiolate linkage. The invention also encompasses kits for producing and/or determining the sequence of a modified polynucleotide that comprises a (e.g., one or more) phosphorothiolate linkage.

    See patent
  • Directed enrichment of genomic DNA for high-throughput sequencing

    Issued US 7,993,842

    The present invention provides microarrays of oligonucleotide primer pairs, and in particular, microarrays of primers that comprise at least one cleavable linkage. Also provided are methods to capture oligonucleotide primer pairs from one or more microarrays, and methods to use the captured oligonucleotide primer pairs, such as for amplification of a target polynucleotide sequence. In addition, methods of using a microarray to isolate, purify and/or amplify a target polynucleotide are provided.

    See patent
  • Methods of isolating nucleic acids using multifunctional group-coated solid phase carriers

    Issued US 7,527,929

    Other inventors
  • Methods of producing and sequencing modified polynucleotides

    US 8,058,030

    The present invention encompasses methods for producing a modified polynucleotide sequence that comprises a (e.g., one or more) phosphorothiolate linkage, methods for determining a polynucleotide sequence comprising a (e.g., one or more) phosphorothiolate linkage, and methods for separating forward and reverse extension products that comprise a (e.g., one or more) phosphorothiolate linkage. The invention also encompasses kits for producing and/or determining the sequence of a modified…

    The present invention encompasses methods for producing a modified polynucleotide sequence that comprises a (e.g., one or more) phosphorothiolate linkage, methods for determining a polynucleotide sequence comprising a (e.g., one or more) phosphorothiolate linkage, and methods for separating forward and reverse extension products that comprise a (e.g., one or more) phosphorothiolate linkage. The invention also encompasses kits for producing and/or determining the sequence of a modified polynucleotide that comprises a (e.g., one or more) phosphorothiolate linkage.

    See patent

Honors & Awards

  • DASH Cryptocurrency Award

    DASH DAO

    https://www.dashcentral.org/p/MedicinalGenomics

  • Gold Award

    Life Technologies

    Lucite award for work other people likely did for reasons I will likely never understand.

  • Platinum Award

    Life Technologies

    Lucite awards from Life Tech for work which other people likely did but was awarded to me for reasons I will never understand

  • Genomic Medicine

    The House of Lords

    The House of Lords didn't believe sequencing would make the impact it has. Lord Winston doubted NIPT in 2008. Laughed at it actually stating 'People have been chasing that for years' 2013 it is now mainstream.

    http://www.publications.parliament.uk/pa/ld200809/ldselect/ldsctech/107/8110505.htm

  • Most Innovative Patent of the Year

    Life Technologies

    This patent described a method which enabled paired end reads where one of the reads was resistant to bisulfite conversion enabling easy mapping of paired end sequencing of bisulfite treated short reads.

  • Beckman Coulter Game Ball

    Beckman Coulter

    Scott Garrett awards a company prize each year for the most influential deal in the company. The SOLiD sale to Applied Biosystems also settled 3 large IP disputes between the companies. CE Polymer, Thermocycler lids and Taq polymerase patents.

  • Nominee -TR35

    MIT Technology Review

  • G35- 16 Most influential in Genomics under age 35

    Genome Technology

  • Human Genome Project Celebration

    The White House

  • Nominee- Aventis Innovator Investigator

    Aventis

More activity by Kevin

View Kevin’s full profile

  • See who you know in common
  • Get introduced
  • Contact Kevin directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Kevin McKernan in United States

Add new skills with these courses