

Last Revision Date: 11/14/12 Page 1

The OpenCL Specification

Version: 1.2

Document Revision: 19

Khronos OpenCL Working Group

Editor: Aaftab Munshi

Last Revision Date: 11/14/12 Page 2

1.	
 INTRODUCTION ... 12	

2.	
 GLOSSARY ... 14	

2.1	
 OpenCL Class Diagram ... 20	

3.	
 THE OPENCL ARCHITECTURE .. 22	

3.1	
 Platform Model ... 22	

3.1.1	
 Platform Mixed Version Support .. 23	

3.2	
 Execution Model ... 24	

3.2.1	
 Execution Model: Context and Command Queues ... 26	

3.2.2	
 Execution Model: Categories of Kernels .. 27	

3.3	
 Memory Model ... 27	

3.3.1	
 Memory Consistency .. 29	

3.4	
 Programming Model .. 29	

3.4.1	
 Data Parallel Programming Model ... 29	

3.4.2	
 Task Parallel Programming Model ... 30	

3.4.3	
 Synchronization .. 30	

3.5	
 Memory Objects ... 31	

3.6	
 The OpenCL Framework .. 31	

4.	
 THE OPENCL PLATFORM LAYER .. 33	

4.1	
 Querying Platform Info ... 33	

4.2	
 Querying Devices .. 35	

4.3	
 Partitioning a Device .. 50	

4.4	
 Contexts ... 55	

5.	
 THE OPENCL RUNTIME ... 62	

5.1	
 Command Queues .. 62	

5.2	
 Buffer Objects ... 67	

5.2.1	
 Creating Buffer Objects .. 67	

5.2.2	
 Reading, Writing and Copying Buffer Objects ... 73	

5.2.3	
 Filling Buffer Objects ... 85	

5.2.4	
 Mapping Buffer Objects .. 87	

5.3	
 Image Objects ... 91	

Last Revision Date: 11/14/12 Page 3

5.3.1	
 Creating Image Objects ... 91	

5.3.1.1	
 Image Format Descriptor ... 93	

5.3.1.2	
 Image Descriptor .. 96	

5.3.2	
 Querying List of Supported Image Formats ... 97	

5.3.2.1	
 Minimum List of Supported Image Formats .. 99	

5.3.3	
 Reading, Writing and Copying Image Objects ... 99	

5.3.4	
 Filling Image Objects .. 106	

5.3.5	
 Copying between Image and Buffer Objects .. 108	

5.3.6	
 Mapping Image Objects .. 113	

5.3.7	
 Image Object Queries .. 116	

5.4	
 Querying, Unmapping, Migrating, Retaining and Releasing Memory Objects 119	

5.4.1	
 Retaining and Releasing Memory Objects .. 119	

5.4.2	
 Unmapping Mapped Memory Objects .. 121	

5.4.3	
 Accessing mapped regions of a memory object .. 123	

5.4.4	
 Migrating Memory Objects ... 124	

5.4.5	
 Memory Object Queries .. 126	

5.5	
 Sampler Objects ... 129	

5.5.1	
 Creating Sampler Objects ... 129	

5.5.2	
 Sampler Object Queries .. 131	

5.6	
 Program Objects .. 133	

5.6.1	
 Creating Program Objects ... 133	

5.6.2	
 Building Program Executables .. 138	

5.6.3	
 Separate Compilation and Linking of Programs ... 140	

5.6.4	
 Compiler Options .. 146	

5.6.4.1	
 Preprocessor options .. 146	

5.6.4.2	
 Math Intrinsics Options .. 146	

5.6.4.3	
 Optimization Options ... 147	

5.6.4.4	
 Options to Request or Suppress Warnings ... 148	

5.6.4.5	
 Options Controlling the OpenCL C version ... 148	

5.6.4.6	
 Options for Querying Kernel Argument Information .. 149	

5.6.5	
 Linker Options .. 149	

5.6.5.1	
 Library Linking Options ... 149	

5.6.5.2	
 Program Linking Options ... 150	

5.6.6	
 Unloading the OpenCL Compiler ... 150	

5.6.7	
 Program Object Queries .. 151	

5.7	
 Kernel Objects .. 158	

5.7.1	
 Creating Kernel Objects .. 158	

5.7.2	
 Setting Kernel Arguments ... 161	

5.7.3	
 Kernel Object Queries ... 163	

5.8	
 Executing Kernels .. 171	

5.9	
 Event Objects .. 179	

5.10	
 Markers, Barriers and Waiting for Events .. 188	

5.11	
 Out-of-order Execution of Kernels and Memory Object Commands 191	

5.12	
 Profiling Operations on Memory Objects and Kernels .. 192	

5.13	
 Flush and Finish ... 195	

Last Revision Date: 11/14/12 Page 4

6.	
 THE OPENCL C PROGRAMMING LANGUAGE .. 197	

6.1	
 Supported Data Types ... 197	

6.1.1	
 Built-in Scalar Data Types .. 197	

6.1.1.1	
 The half data type ... 199	

6.1.2	
 Built-in Vector Data Types ... 200	

6.1.3	
 Other Built-in Data Types ... 201	

6.1.4	
 Reserved Data Types .. 202	

6.1.5	
 Alignment of Types .. 203	

6.1.6	
 Vector Literals ... 203	

6.1.7	
 Vector Components ... 204	

6.1.8	
 Aliasing Rules ... 208	

6.1.9	
 Keywords .. 208	

6.2	
 Conversions and Type Casting ... 209	

6.2.1	
 Implicit Conversions ... 209	

6.2.2	
 Explicit Casts .. 209	

6.2.3	
 Explicit Conversions ... 210	

6.2.3.1	
 Data Types .. 211	

6.2.3.2	
 Rounding Modes .. 211	

6.2.3.3	
 Out-of-Range Behavior and Saturated Conversions .. 212	

6.2.3.4	
 Explicit Conversion Examples ... 212	

6.2.4	
 Reinterpreting Data As Another Type .. 213	

6.2.4.1	
 Reinterpreting Types Using Unions ... 213	

6.2.4.2	
 Reinterpreting Types Using as_type() and as_typen() ... 214	

6.2.5	
 Pointer Casting .. 215	

6.2.6	
 Usual Arithmetic Conversions .. 216	

6.3	
 Operators .. 217	

6.4	
 Vector Operations .. 223	

6.5	
 Address Space Qualifiers ... 224	

6.5.1	
 __global (or global) ... 225	

6.5.2	
 __local (or local) ... 225	

6.5.3	
 __constant (or constant) .. 226	

6.5.4	
 __private (or private) .. 227	

6.6	
 Access Qualifiers .. 228	

6.7	
 Function Qualifiers .. 229	

6.7.1	
 __kernel (or kernel) ... 229	

6.7.2	
 Optional Attribute Qualifiers .. 229	

6.8	
 Storage-Class Specifiers ... 232	

6.9	
 Restrictions ... 233	

6.10	
 Preprocessor Directives and Macros .. 236	

6.11	
 Attribute Qualifiers .. 238	

6.11.1	
 Specifying Attributes of Types ... 239	

6.11.2	
 Specifying Attributes of Functions ... 241	

6.11.3	
 Specifying Attributes of Variables .. 241	

6.11.4	
 Specifying Attributes of Blocks and Control-Flow-Statements ... 243	

Last Revision Date: 11/14/12 Page 5

6.11.5	
 Extending Attribute Qualifiers .. 243	

6.12	
 Built-in Functions ... 244	

6.12.1	
 Work-Item Functions .. 244	

6.12.2	
 Math Functions ... 246	

6.12.2.1	
 Floating-point macros and pragmas ... 254	

6.12.3	
 Integer Functions ... 258	

6.12.4	
 Common Functions ... 262	

6.12.5	
 Geometric Functions ... 264	

6.12.6	
 Relational Functions ... 266	

6.12.7	
 Vector Data Load and Store Functions ... 269	

6.12.8	
 Synchronization Functions .. 276	

6.12.9	
 Explicit Memory Fence Functions .. 277	

6.12.10	
 Async Copies from Global to Local Memory, Local to Global Memory, and Prefetch 278	

6.12.11	
 Atomic Functions .. 281	

6.12.12	
 Miscellaneous Vector Functions ... 284	

6.12.13	
 printf .. 286	

6.12.13.1	
 printf output synchronization ... 286	

6.12.13.2	
 printf format string ... 286	

6.12.13.3	
 Differences between OpenCL C and C99 printf .. 292	

6.12.14	
 Image Read and Write Functions .. 294	

6.12.14.1	
 Samplers ... 294	

6.12.14.2	
 Built-in Image Read Functions .. 297	

6.12.14.3	
 Built-in Image Sampler-less Read Functions ... 305	

6.12.14.4	
 Built-in Image Write Functions .. 311	

6.12.14.5	
 Built-in Image Query Functions ... 314	

6.12.14.6	
 Mapping image channels to color values returned by read_image and color values passed to write_image to
image channels ... 316	

7.	
 OPENCL NUMERICAL COMPLIANCE .. 318	

7.1	
 Rounding Modes ... 318	

7.2	
 INF, NaN and Denormalized Numbers .. 318	

7.3	
 Floating-Point Exceptions ... 319	

7.4	
 Relative Error as ULPs .. 319	

7.5	
 Edge Case Behavior ... 324	

7.5.1	
 Additional Requirements Beyond C99 TC2 ... 324	

7.5.2	
 Changes to C99 TC2 Behavior ... 327	

7.5.3	
 Edge Case Behavior in Flush To Zero Mode .. 328	

8.	
 IMAGE ADDRESSING AND FILTERING ... 329	

8.1	
 Image Coordinates ... 329	

8.2	
 Addressing and Filter Modes .. 329	

8.3	
 Conversion Rules .. 336	

8.3.1	
 Conversion rules for normalized integer channel data types ... 336	

8.3.1.1	
 Converting normalized integer channel data types to floating-point values .. 336	

8.3.1.2	
 Converting floating-point values to normalized integer channel data types .. 337	

Last Revision Date: 11/14/12 Page 6

8.3.2	
 Conversion rules for half precision floating-point channel data type ... 339	

8.3.3	
 Conversion rules for floating-point channel data type .. 339	

8.3.4	
 Conversion rules for signed and unsigned 8-bit, 16-bit and 32-bit integer channel data types 340	

8.4	
 Selecting an Image from an Image Array .. 341	

9.	
 OPTIONAL EXTENSIONS ... 342	

10.	
 OPENCL EMBEDDED PROFILE .. 343	

11.	
 REFERENCES ... 358	

APPENDIX A .. 359	

A.1	
 Shared OpenCL Objects ... 359	

A.2	
 Multiple Host Threads .. 360	

APPENDIX B — PORTABILITY .. 361	

APPENDIX C — APPLICATION DATA TYPES .. 366	

C.1	
 Shared Application Scalar Data Types ... 366	

C.2	
 Supported Application Vector Data Types ... 366	

C.3	
 Alignment of Application Data Types ... 367	

C.4	
 Vector Literals ... 367	

C.5	
 Vector Components ... 367	

C.5.1 Named vector components notation ... 368	

C.5.2 High/Low vector component notation .. 368	

C.5.3 Native vector type notation .. 369	

C.6	
 Implicit Conversions ... 369	

C.7	
 Explicit Casts ... 369	

C.8	
 Other operators and functions ... 370	

C.9	
 Application constant definitions .. 370	

APPENDIX D — OPENCL C++ WRAPPER API .. 372	

APPENDIX E — CL_MEM_COPY_OVERLAP.. 373	

Last Revision Date: 11/14/12 Page 7

APPENDIX F – CHANGES ... 376	

F.1	
 Summary of changes from OpenCL 1.0 .. 376	

F.2	
 Summary of changes from OpenCL 1.1 .. 378	

INDEX - APIS ... 380	

Last Revision Date: 11/14/12 Page 8

Copyright (c) 2008-2011 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished, distributed,
transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior
written permission of Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or other notice from
the specification, but the receipt or possession of this specification does not convey any rights to
reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may
describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter
member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any
fashion, provided that NO CHARGE is made for the specification and the latest available update
of the specification for any version of the API is used whenever possible. Such distributed
specification may be re-formatted AS LONG AS the contents of the specification are not
changed in any way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link to the
current version of this specification on the Khronos Group web-site should be included whenever
possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or
implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual
property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos, StreamInput, WebGL, COLLADA, OpenKODE, OpenVG, OpenWF, OpenSL ES,
OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX DL are trademarks and WebCL is a
certification mark of the Khronos Group Inc. OpenCL is a trademark of Apple Inc. and OpenGL
and OpenML are registered trademarks and the OpenGL ES and OpenGL SC logos are
trademarks of Silicon Graphics International used under license by Khronos. All other product
names, trademarks, and/or company names are used solely for identification and belong to their
respective owners.

Last Revision Date: 11/14/12 Page 9

Acknowledgements

The OpenCL specification is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is a partial list of
the contributors, including the company that they represented at the time of their contribution:

David Neto, Altera
Benedict Gaster, AMD
Bill Licea Kane, AMD
Ed Buckingham, AMD
Jan Civlin, AMD
Laurent Morichetti, AMD
Mark Fowler, AMD
Michael Houston, AMD
Michael Mantor, AMD
Norm Rubin, AMD
Ofer Rosenberg, AMD
Victor Odintsov, AMD
Aaftab Munshi, Apple
Alexandre Namaan, Apple
Anna Tikhonova, Apple
Abe Stephens, Apple
Bob Beretta, Apple
Chendi Zhang, Apple
David Hayward, Apple
Geoff Stahl, Apple
Giridhar Murthy, Apple
Ian Ollmann, Apple
Inam Rahman, Apple
James Shearer, Apple
Jeremy Sandmel, Apple
John Stauffer, Apple
Kathleen Danielson, Apple
Michael Larson, Apple
MonPing Wang, Apple
Nate Begeman, Apple
Tanya Lattner, Apple
Travis Brown, Apple
Anton Lokhmotov, ARM
Dave Shreiner, ARM
Hedley Francis, ARM
Robert Elliott, ARM
Scott Moyers, ARM
Tom Olson, ARM

Last Revision Date: 11/14/12 Page 10

Alastair Donaldson, Codeplay
Andrew Richards, Codeplay
Stephen Frye, Electronic Arts
Eric Schenk, Electronic Arts
Brian Murray, Freescale
Brian Horton, IBM
Brian Watt, IBM
Dan Brokenshire, IBM
Gordon Fossum, IBM
Greg Bellows, IBM
Joaquin Madruga, IBM
Mark Nutter, IBM
Joe Molleson, Imagination Technologies
Jon Parr, Imagination Technologies
Robert Quill, Imagination Technologies
James McCarthy, Imagination Technologies
Aaron Lefohn, Intel
Adam Lake, Intel
Andrew Brownsword, Intel
Andrew Lauritzen, Intel
Craig Kolb, Intel
Geoff Berry, Intel
John Kessenich, Intel
Josh Fryman, Intel
Hong Jiang, Intel
Larry Seiler, Intel
Matt Pharr, Intel
Michael McCool, Intel
Murali Sundaresan, Intel
Paul Lalonde, Intel
Stefanus Du Toit, Intel
Stephen Junkins, Intel
Tim Foley, Intel
Timothy Mattson, Intel
Yariv Aridor, Intel
Bill Bush, Kestrel Institute
Lindsay Errington, Kestrel Institute
Jon Leech, Khronos
Benjamin Bergen, Los Alamos National Laboratory
Marcus Daniels, Los Alamos National Laboratory
Michael Bourges Sevenier, Motorola
Jyrki Leskelä, Nokia
Jari Nikara, Nokia
Amit Rao, NVIDIA

Last Revision Date: 11/14/12 Page 11

Ashish Srivastava, NVIDIA
Bastiaan Aarts, NVIDIA
Chris Cameron, NVIDIA
Christopher Lamb, NVIDIA
Dibyapran Sanyal, NVIDIA
Guatam Chakrabarti, NVIDIA
Ian Buck, NVIDIA
Jason Sanders, NVIDIA
Jaydeep Marathe, NVIDIA
Jian-Zhong Wang, NVIDIA
Karthik Raghavan Ravi, NVIDIA
Kedar Patil, NVIDIA
Manjunath Kudlur, NVIDIA
Mark Harris, NVIDIA
Michael Gold, NVIDIA
Neil Trevett, NVIDIA
Rahul Joshi, NVIDIA
Richard Johnson, NVIDIA
Sean Lee, NVIDIA
Tushar Kashalikar, NVIDIA
Vinod Grover, NVIDIA
Xiangyun Kong, NVIDIA
Yogesh Kini, NVIDIA
Yuan Lin, NVIDIA
Alex Bourd, QUALCOMM
Andrzej Mamona, QUALCOMM
Chihong Zhang, QUALCOMM
David Garcia, QUALCOMM
David Ligon, QUALCOMM
Robert Simpson, QUALCOMM
Yanjun Zhang, S3 Graphics
Tasneem Brutch, Samsung
Thierry Lepley, STMicroelectronics
Alan Ward, Texas Instruments
Madhukar Budagavi, Texas Instruments
Brian Hutsell Vivante
Mike Cai, Vivante
Sumeet Kumar, Vivante
Henry Styles, Xilinx

Last Revision Date: 11/14/12 Page 12

1. Introduction

Modern processor architectures have embraced parallelism as an important pathway to increased
performance. Facing technical challenges with higher clock speeds in a fixed power envelope,
Central Processing Units (CPUs) now improve performance by adding multiple cores. Graphics
Processing Units (GPUs) have also evolved from fixed function rendering devices into
programmable parallel processors. As today’s computer systems often include highly parallel
CPUs, GPUs and other types of processors, it is important to enable software developers to take
full advantage of these heterogeneous processing platforms.

Creating applications for heterogeneous parallel processing platforms is challenging as
traditional programming approaches for multi-core CPUs and GPUs are very different. CPU-
based parallel programming models are typically based on standards but usually assume a shared
address space and do not encompass vector operations. General purpose GPU programming
models address complex memory hierarchies and vector operations but are traditionally
platform-, vendor- or hardware-specific. These limitations make it difficult for a developer to
access the compute power of heterogeneous CPUs, GPUs and other types of processors from a
single, multi-platform source code base. More than ever, there is a need to enable software
developers to effectively take full advantage of heterogeneous processing platforms – from high
performance compute servers, through desktop computer systems to handheld devices - that
include a diverse mix of parallel CPUs, GPUs and other processors such as DSPs and the
Cell/B.E. processor.

OpenCL (Open Computing Language) is an open royalty-free standard for general purpose
parallel programming across CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heterogeneous processing platforms.

OpenCL supports a wide range of applications, ranging from embedded and consumer software
to HPC solutions, through a low-level, high-performance, portable abstraction. By creating an
efficient, close-to-the-metal programming interface, OpenCL will form the foundation layer of a
parallel computing ecosystem of platform-independent tools, middleware and applications.
OpenCL is particularly suited to play an increasingly significant role in emerging interactive
graphics applications that combine general parallel compute algorithms with graphics rendering
pipelines.

OpenCL consists of an API for coordinating parallel computation across
heterogeneous processors; and a cross-platform programming language with a well-
specified computation environment. The OpenCL standard:

 Supports both data- and task-based parallel programming models
 Utilizes a subset of ISO C99 with extensions for parallelism
 Defines consistent numerical requirements based on IEEE 754
 Defines a configuration profile for handheld and embedded devices
 Efficiently interoperates with OpenGL, OpenGL ES and other graphics APIs

Last Revision Date: 11/14/12 Page 13

This document begins with an overview of basic concepts and the architecture of OpenCL,
followed by a detailed description of its execution model, memory model and synchronization
support. It then discusses the OpenCL platform and runtime API and is followed by a detailed
description of the OpenCL C programming language. Some examples are given that describe
sample compute use-cases and how they would be written in OpenCL. The specification is
divided into a core specification that any OpenCL compliant implementation must support; a
handheld/embedded profile which relaxes the OpenCL compliance requirements for handheld
and embedded devices; and a set of optional extensions that are likely to move into the core
specification in later revisions of the OpenCL specification.

Last Revision Date: 11/14/12 Page 14

2. Glossary

Application: The combination of the program running on the host and OpenCL devices.

Blocking and Non-Blocking Enqueue API calls: A non-blocking enqueue API call places a
command on a command-queue and returns immediately to the host. The blocking-mode
enqueue API calls do not return to the host until the command has completed.

Barrier: There are two types of barriers – a command-queue barrier and a work-group barrier.

 The OpenCL API provides a function to enqueue a command-queue barrier command.
This barrier command ensures that all previously enqueued commands to a command-
queue have finished execution before any following commands enqueued in the
command-queue can begin execution.

 The OpenCL C programming language provides a built-in work-group barrier function.
This barrier built-in function can be used by a kernel executing on a device to perform
synchronization between work-items in a work-group executing the kernel. All the work-
items of a work-group must execute the barrier construct before any are allowed to
continue execution beyond the barrier.

Buffer Object: A memory object that stores a linear collection of bytes. Buffer objects are
accessible using a pointer in a kernel executing on a device. Buffer objects can be manipulated
by the host using OpenCL API calls. A buffer object encapsulates the following information:

 Size in bytes.
 Properties that describe usage information and which region to allocate from.
 Buffer data.

Built-in Kernel: A built-in kernel is a kernel that is executed on an OpenCL device or custom
device by fixed-function hardware or in firmware. Applications can query the built-in kernels
supported by a device or custom device. A program object can only contain kernels written in
OpenCL C or built-in kernels but not both. See also Kernel and Program.

Command: The OpenCL operations that are submitted to a command-queue for execution. For
example, OpenCL commands issue kernels for execution on a compute device, manipulate
memory objects, etc.

Command-queue: An object that holds commands that will be executed on a specific device.
The command-queue is created on a specific device in a context. Commands to a command-
queue are queued in-order but may be executed in-order or out-of-order. Refer to In-order
Execution and Out-of-order Execution.

Last Revision Date: 11/14/12 Page 15

Command-queue Barrier. See Barrier.

Compute Device Memory: This refers to one or more memories attached to
the compute device.

Compute Unit: An OpenCL device has one or more compute units. A work-group executes on a
single compute unit. A compute unit is composed of one or more processing elements and local
memory. A compute unit may also include dedicated texture filter units that can be accessed by
its processing elements.

Concurrency: A property of a system in which a set of tasks in a system can remain active and
make progress at the same time. To utilize concurrent execution when running a program, a
programmer must identify the concurrency in their problem, expose it within the source code,
and then exploit it using a notation that supports concurrency.

Constant Memory: A region of global memory that remains constant during the execution of a
kernel. The host allocates and initializes memory objects placed into constant memory.

Context: The environment within which the kernels execute and the domain in which
synchronization and memory management is defined. The context includes a set of devices, the
memory accessible to those devices, the corresponding memory properties and one or more
command-queues used to schedule execution of a kernel(s) or operations on memory objects.

Custom Device: An OpenCL device that fully implements the OpenCL Runtime but does not
support programs written in OpenCL C. A custom device may be specialized non-
programmable hardware that is very power efficient and performant for directed tasks or
hardware with limited programmable capabilities such as specialized DSPs. Custom devices are
not OpenCL conformant. Custom devices may support an online compiler. Programs for
custom devices can be created using the OpenCL runtime APIs that allow OpenCL programs to
be created from source (if an online compiler is supported) and/or binary, or from built-in kernels
supported by the device. See also Device.

Data Parallel Programming Model: Traditionally, this term refers to a programming model
where concurrency is expressed as instructions from a single program applied to multiple
elements within a set of data structures. The term has been generalized in OpenCL to refer to a
model wherein a set of instructions from a single program are applied concurrently to each point
within an abstract domain of indices.

Device: A device is a collection of compute units. A command-queue is used to queue
commands to a device. Examples of commands include executing kernels, or reading and writing
memory objects. OpenCL devices typically correspond to a GPU, a multi-core CPU, and other
processors such as DSPs and the Cell/B.E. processor.

Event Object: An event object encapsulates the status of an operation such as a command. It
can be used to synchronize operations in a context.

Last Revision Date: 11/14/12 Page 16

Event Wait List: An event wait list is a list of event objects that can be used to control when a
particular command begins execution.

Framework: A software system that contains the set of components to support software
development and execution. A framework typically includes libraries, APIs, runtime systems,
compilers, etc.

Global ID: A global ID is used to uniquely identify a work-item and is derived from the number
of global work-items specified when executing a kernel. The global ID is a N-dimensional value
that starts at (0, 0, … 0). See also Local ID.

Global Memory: A memory region accessible to all work-items executing in a context. It is
accessible to the host using commands such as read, write and map.

GL share group: A GL share group object manages shared OpenGL or OpenGL ES resources
such as textures, buffers, framebuffers, and renderbuffers and is associated with one or more GL
context objects. The GL share group is typically an opaque object and not directly accessible.

Handle: An opaque type that references an object allocated by OpenCL. Any operation on an
object occurs by reference to that object’s handle.

Host: The host interacts with the context using the OpenCL API.

Host pointer: A pointer to memory that is in the virtual address space on the host.

Illegal: Behavior of a system that is explicitly not allowed and will be reported as an error when
encountered by OpenCL.

Image Object: A memory object that stores a two- or three- dimensional structured array.
Image data can only be accessed with read and write functions. The read functions use a
sampler.

The image object encapsulates the following information:

 Dimensions of the image.
 Description of each element in the image.
 Properties that describe usage information and which region to allocate from.
 Image data.

The elements of an image are selected from a list of predefined image formats.

Implementation Defined: Behavior that is explicitly allowed to vary between conforming
implementations of OpenCL. An OpenCL implementor is required to document the
implementation-defined behavior.

Last Revision Date: 11/14/12 Page 17

In-order Execution: A model of execution in OpenCL where the commands in a command-
queue are executed in order of submission with each command running to completion before the
next one begins. See Out-of-order Execution.

Kernel: A kernel is a function declared in a program and executed on an OpenCL device. A
kernel is identified by the __kernel or kernel qualifier applied to any function defined in a
program.

Kernel Object: A kernel object encapsulates a specific __kernel function declared in a
program and the argument values to be used when executing this __kernel function.

Local ID: A local ID specifies a unique work-item ID within a given work-group that is
executing a kernel. The local ID is a N-dimensional value that starts at (0, 0, … 0). See also
Global ID.

Local Memory: A memory region associated with a work-group and accessible only by work-
items in that work-group.

Marker: A command queued in a command-queue that can be used to tag all commands queued
before the marker in the command-queue. The marker command returns an event which can be
used by the application to queue a wait on the marker event i.e. wait for all commands queued
before the marker command to complete.

Memory Objects: A memory object is a handle to a reference counted region of global memory.
Also see Buffer Object and Image Object.

Memory Regions (or Pools): A distinct address space in OpenCL. Memory regions may
overlap in physical memory though OpenCL will treat them as logically distinct. The memory
regions are denoted as private, local, constant, and global.

Object: Objects are abstract representation of the resources that can be manipulated by the
OpenCL API. Examples include program objects, kernel objects, and memory objects.

Out-of-Order Execution: A model of execution in which commands placed in the work queue
may begin and complete execution in any order consistent with constraints imposed by event
wait lists and command-queue barrier. See In-order Execution.

Parent device: The OpenCL device which is partitioned to create sub-devices. Not all parent
devices are root devices. A root device might be partitioned and the sub-devices partitioned
again. In this case, the first set of sub-devices would be parent devices of the second set, but not
the root devices. Also see device, parent device and root device.

Platform: The host plus a collection of devices managed by the OpenCL framework that allow
an application to share resources and execute kernels on devices in the platform.

Last Revision Date: 11/14/12 Page 18

Private Memory: A region of memory private to a work-item. Variables defined in one work-
item’s private memory are not visible to another work-item.

Processing Element: A virtual scalar processor. A work-item may execute on one or more
processing elements.

Program: An OpenCL program consists of a set of kernels. Programs may also contain
auxiliary functions called by the __kernel functions and constant data.

Program Object: A program object encapsulates the following information:

 A reference to an associated context.
 A program source or binary.
 The latest successfully built program executable, the list of devices for which the program

executable is built, the build options used and a build log.
 The number of kernel objects currently attached.

Reference Count: The life span of an OpenCL object is determined by its reference count—an
internal count of the number of references to the object. When you create an object in OpenCL,
its reference count is set to one. Subsequent calls to the appropriate retain API (such as
clRetainContext, clRetainCommandQueue) increment the reference count. Calls to
the appropriate release API (such as clReleaseContext, clReleaseCommandQueue)
decrement the reference count. After the reference count reaches zero, the object’s resources are
deallocated by OpenCL.

Relaxed Consistency: A memory consistency model in which the contents of memory visible to
different work-items or commands may be different except at a barrier or other explicit
synchronization points.

Resource: A class of objects defined by OpenCL. An instance of a resource is an object. The
most common resources are the context, command-queue, program objects, kernel objects, and
memory objects. Computational resources are hardware elements that participate in the action
of advancing a program counter. Examples include the host, devices, compute units and
processing elements.

Retain, Release: The action of incrementing (retain) and decrementing (release) the reference
count using an OpenCL object. This is a book keeping functionality to make sure the system
doesn’t remove an object before all instances that use this object have finished. Refer to
Reference Count.

Root device: A root device is an OpenCL device that has not been partitioned. Also see device,
parent device and root device.

Sampler: An object that describes how to sample an image when the image is read in the kernel.
The image read functions take a sampler as an argument. The sampler specifies the image

Last Revision Date: 11/14/12 Page 19

addressing-mode i.e. how out-of-range image coordinates are handled, the filter mode, and
whether the input image coordinate is a normalized or unnormalized value.

SIMD: Single Instruction Multiple Data. A programming model where a kernel is executed
concurrently on multiple processing elements each with its own data and a shared program
counter. All processing elements execute a strictly identical set of instructions.

SPMD: Single Program Multiple Data. A programming model where a kernel is executed
concurrently on multiple processing elements each with its own data and its own program
counter. Hence, while all computational resources run the same kernel they maintain their own
instruction counter and due to branches in a kernel, the actual sequence of instructions can be
quite different across the set of processing elements.

Sub-device: An OpenCL device can be partitioned into multiple sub-devices. The new sub-
devices alias specific collections of compute units within the parent device, according to a
partition scheme. The sub-devices may be used in any situation that their parent device may be
used. Partitioning a device does not destroy the parent device, which may continue to be used
along side and intermingled with its child sub-devices. Also see device, parent device and root
device.

Task Parallel Programming Model: A programming model in which computations are
expressed in terms of multiple concurrent tasks where a task is a kernel executing in a single
work-group of size one. The concurrent tasks can be running different kernels.

Thread-safe: An OpenCL API call is considered to be thread-safe if the internal state as
managed by OpenCL remains consistent when called simultaneously by multiple host threads.
OpenCL API calls that are thread-safe allow an application to call these functions in multiple
host threads without having to implement mutual exclusion across these host threads i.e. they are
also re-entrant-safe.

Undefined: The behavior of an OpenCL API call, built-in function used inside a kernel or
execution of a kernel that is explicitly not defined by OpenCL. A conforming implementation is
not required to specify what occurs when an undefined construct is encountered in OpenCL.

Work-group: A collection of related work-items that execute on a single compute unit. The
work-items in the group execute the same kernel and share local memory and work-group
barriers.

Work-group Barrier. See Barrier.

Work-item: One of a collection of parallel executions of a kernel invoked on a device by a
command. A work-item is executed by one or more processing elements as part of a work-group
executing on a compute unit. A work-item is distinguished from other executions within the
collection by its global ID and local ID.

Last Revision Date: 11/14/12 Page 20

2.1 OpenCL Class Diagram

Figure 2.1 describes the OpenCL specification as a class diagram using the Unified Modeling
Language1 (UML) notation. The diagram shows both nodes and edges which are classes and
their relationships. As a simplification it shows only classes, and no attributes or operations.
Abstract classes are annotated with “{abstract}”. As for relationships it shows aggregations
(annotated with a solid diamond), associations (no annotation), and inheritance (annotated with
an open arrowhead). The cardinality of a relationship is shown on each end of it. A cardinality
of “*” represents “many”, a cardinality of “1” represents “one and only one”, a cardinality of
“0..1” represents “optionally one”, and a cardinality of “1..*” represents “one or more”. The
navigability of a relationship is shown using a regular arrowhead.

1 Unified Modeling Language (http://www.uml.org/) is a trademark of Object Management Group (OMG).

Last Revision Date: 11/14/12 Page 21

1

1

1

1

*
0..1

*

*

Image

Context

1

1Platform

*
1..*

*

1

DeviceID

*MemObject
{abstract}

*

1 Buffer

*

Sampler

*

Kernel

*

1

*Program

*

0..1* CommandQueue * Event

*

Figure 2.1 - OpenCL UML Class Diagram

Last Revision Date: 11/14/12 Page 22

3. The OpenCL Architecture

OpenCL is an open industry standard for programming a heterogeneous collection of CPUs,
GPUs and other discrete computing devices organized into a single platform. It is more than a
language. OpenCL is a framework for parallel programming and includes a language, API,
libraries and a runtime system to support software development. Using OpenCL, for example, a
programmer can write general purpose programs that execute on GPUs without the need to map
their algorithms onto a 3D graphics API such as OpenGL or DirectX.

The target of OpenCL is expert programmers wanting to write portable yet efficient code. This
includes library writers, middleware vendors, and performance oriented application
programmers. Therefore OpenCL provides a low-level hardware abstraction plus a framework to
support programming and many details of the underlying hardware are exposed.

To describe the core ideas behind OpenCL, we will use a hierarchy of models:

 Platform Model
 Memory Model
 Execution Model
 Programming Model

3.1 Platform Model
The Platform model for OpenCL is defined in figure 3.1. The model consists of a host
connected to one or more OpenCL devices. An OpenCL device is divided into one or more
compute units (CUs) which are further divided into one or more processing elements (PEs).
Computations on a device occur within the processing elements.

An OpenCL application runs on a host according to the models native to the host platform. The
OpenCL application submits commands from the host to execute computations on the
processing elements within a device. The processing elements within a compute unit execute a
single stream of instructions as SIMD units (execute in lockstep with a single stream of
instructions) or as SPMD units (each PE maintains its own program counter).

Last Revision Date: 11/14/12 Page 23

3.1.1 Platform Mixed Version Support

OpenCL is designed to support devices with different capabilities under a single platform. This
includes devices which conform to different versions of the OpenCL specification. There are
three important version identifiers to consider for an OpenCL system: the platform version, the
version of a device, and the version(s) of the OpenCL C language supported on a device.

The platform version indicates the version of the OpenCL runtime supported. This includes all
of the APIs that the host can use to interact with the OpenCL runtime, such as contexts, memory
objects, devices, and command queues.

The device version is an indication of the devices capabilities, separate from the runtime and
compiler, as represented by the device info returned by clGetDeviceInfo. Examples of attributes
associated with the device version are resource limits and extended functionality. The version
returned corresponds to the highest version of the OpenCL spec for which the device is
conformant, but is not higher than the platform version.

The language version for a device represents the OpenCL programming language features a
developer can assume are supported on a given device. The version reported is the highest
version of the language supported.

OpenCL C is designed to be backwards compatible, so a device is not required to support more
than a single language version to be considered conformant. If multiple language versions are
supported, the compiler defaults to using the highest language version supported for the device.
The language version is not higher than the platform version, but may exceed the device version
(see section 5.6.4.5).

Figure 3.1: Platform model … one host plus one or more compute devices each
with one or more compute units each with one or more processing elements.

Last Revision Date: 11/14/12 Page 24

3.2 Execution Model
Execution of an OpenCL program occurs in two parts: kernels that execute on one or more
OpenCL devices and a host program that executes on the host. The host program defines the
context for the kernels and manages their execution.

The core of the OpenCL execution model is defined by how the kernels execute. When a kernel
is submitted for execution by the host, an index space is defined. An instance of the kernel
executes for each point in this index space. This kernel instance is called a work-item and is
identified by its point in the index space, which provides a global ID for the work-item. Each
work-item executes the same code but the specific execution pathway through the code and the
data operated upon can vary per work-item.

Work-items are organized into work-groups. The work-groups provide a more coarse-grained
decomposition of the index space. Work-groups are assigned a unique work-group ID with the
same dimensionality as the index space used for the work-items. Work-items are assigned a
unique local ID within a work-group so that a single work-item can be uniquely identified by its
global ID or by a combination of its local ID and work-group ID. The work-items in a given
work-group execute concurrently on the processing elements of a single compute unit.

The index space supported in OpenCL is called an NDRange. An NDRange is an N-dimensional
index space, where N is one, two or three. An NDRange is defined by an integer array of length
N specifying the extent of the index space in each dimension starting at an offset index F (zero
by default). Each work-item’s global ID and local ID are N-dimensional tuples. The global ID
components are values in the range from F, to F plus the number of elements in that dimension
minus one.

Work-groups are assigned IDs using a similar approach to that used for work-item global IDs.
An array of length N defines the number of work-groups in each dimension. Work-items are
assigned to a work-group and given a local ID with components in the range from zero to the
size of the work-group in that dimension minus one. Hence, the combination of a work-group ID
and the local-ID within a work-group uniquely defines a work-item. Each work-item is
identifiable in two ways; in terms of a global index, and in terms of a work-group index plus a
local index within a work group.

For example, consider the 2-dimensional index space in figure 3.2. We input the index space for
the work-items (Gx, Gy), the size of each work-group (Sx, Sy) and the global ID offset (Fx, Fy).
The global indices define an Gx by Gy index space where the total number of work-items is the
product of Gx and Gy. The local indices define a Sx by Sy index space where the number of
work-items in a single work-group is the product of Sx and Sy. Given the size of each work-
group and the total number of work-items we can compute the number of work-groups. A 2-
dimensional index space is used to uniquely identify a work-group. Each work-item is identified
by its global ID (gx, gy) or by the combination of the work-group ID (wx, wy), the size of each
work-group (Sx, Sy) and the local ID (sx, sy) inside the work-group such that

 (gx , gy) = (wx * Sx + sx + Fx, wy * Sy + sy + Fy)

Last Revision Date: 11/14/12 Page 25

The number of work-groups can be computed as:

 (Wx, Wy) = (Gx / Sx, Gy / Sy)

Given a global ID and the work-group size, the work-group ID for a work-item is computed as:

 (wx, wy) = ((gx – sx – Fx) / Sx, (gy – sy – Fy) / Sy)

Figure 3.2 An example of an NDRange index space showing work-items, their global
IDs and their mapping onto the pair of work-group and local IDs.

A wide range of programming models can be mapped onto this execution model. We explicitly
support two of these models within OpenCL; the data parallel programming model and the
task parallel programming model.

Last Revision Date: 11/14/12 Page 26

3.2.1 Execution Model: Context and Command Queues

The host defines a context for the execution of the kernels. The context includes the following
resources:

1. Devices: The collection of OpenCL devices to be used by the host.

2. Kernels: The OpenCL functions that run on OpenCL devices.

3. Program Objects: The program source and executable that implement the kernels.

4. Memory Objects: A set of memory objects visible to the host and the OpenCL devices.
Memory objects contain values that can be operated on by instances of a kernel.

The context is created and manipulated by the host using functions from the OpenCL API. The
host creates a data structure called a command-queue to coordinate execution of the kernels on
the devices. The host places commands into the command-queue which are then scheduled onto
the devices within the context. These include:

 Kernel execution commands: Execute a kernel on the processing elements of a device.

 Memory commands: Transfer data to, from, or between memory objects, or map and unmap
memory objects from the host address space.

 Synchronization commands: Constrain the order of execution of commands.

The command-queue schedules commands for execution on a device. These execute
asynchronously between the host and the device. Commands execute relative to each other in
one of two modes:

 In-order Execution: Commands are launched in the order they appear in the command-
queue and complete in order. In other words, a prior command on the queue completes
before the following command begins. This serializes the execution order of commands in a
queue.

 Out-of-order Execution: Commands are issued in order, but do not wait to complete before
following commands execute. Any order constraints are enforced by the programmer
through explicit synchronization commands.

Kernel execution and memory commands submitted to a queue generate event objects. These
are used to control execution between commands and to coordinate execution between the host
and devices.

It is possible to associate multiple queues with a single context. These queues run concurrently
and independently with no explicit mechanisms within OpenCL to synchronize between them.

Last Revision Date: 11/14/12 Page 27

3.2.2 Execution Model: Categories of Kernels

The OpenCL execution model supports two categories of kernels:

 OpenCL kernels are written with the OpenCL C programming language and compiled
with the OpenCL compiler. All OpenCL implementations support OpenCL kernels.
Implementations may provide other mechanisms for creating OpenCL kernels.

 Native kernels are accessed through a host function pointer. Native kernels are queued
for execution along with OpenCL kernels on a device and share memory objects with
OpenCL kernels. For example, these native kernels could be functions defined in
application code or exported from a library. Note that the ability to execute native kernels
is an optional functionality within OpenCL and the semantics of native kernels are
implementation-defined. The OpenCL API includes functions to query capabilities of a
device(s) and determine if this capability is supported.

3.3 Memory Model

Work-item(s) executing a kernel have access to four distinct memory regions:

 Global Memory. This memory region permits read/write access to all work-items in all
work-groups. Work-items can read from or write to any element of a memory object.
Reads and writes to global memory may be cached depending on the capabilities of the
device.

 Constant Memory: A region of global memory that remains constant during the

execution of a kernel. The host allocates and initializes memory objects placed into
constant memory.

 Local Memory: A memory region local to a work-group. This memory region can be

used to allocate variables that are shared by all work-items in that work-group. It may be
implemented as dedicated regions of memory on the OpenCL device. Alternatively, the
local memory region may be mapped onto sections of the global memory.

 Private Memory: A region of memory private to a work-item. Variables defined in one

work-item’s private memory are not visible to another work-item.

Table 3.1 describes whether the kernel or the host can allocate from a memory region, the type of
allocation (static i.e. compile time vs dynamic i.e. runtime) and the type of access allowed i.e.
whether the kernel or the host can read and/or write to a memory region.

Last Revision Date: 11/14/12 Page 28

 Global Constant Local Private

Host Dynamic
allocation

Read / Write
access

Dynamic
allocation

Read / Write
access

Dynamic
allocation

No access

No allocation

No access

Kernel No allocation

Read / Write
access

Static allocation

Read-only
access

Static allocation

Read / Write
access

Static allocation

Read / Write
access

Table 3.1 Memory Region - Allocation and Memory Access Capabilities

The memory regions and how they relate to the platform model are described in figure 3.3.

The application running on the host uses the OpenCL API to create memory objects in global
memory, and to enqueue memory commands (described in section 3.2.1) that operate on these
memory objects.

The host and OpenCL device memory models are, for the most part, independent of each other.
This is by a necessity given that the host is defined outside of OpenCL. They do, however, at
times need to interact. This interaction occurs in one of two ways: by explicitly copying data or
by mapping and unmapping regions of a memory object.

Figure 3.3: Conceptual OpenCL device architecture with processing elements (PE),
compute units and devices. The host is not shown.

Last Revision Date: 11/14/12 Page 29

To copy data explicitly, the host enqueues commands to transfer data between the memory
object and host memory. These memory transfer commands may be blocking or non-blocking.
The OpenCL function call for a blocking memory transfer returns once the associated memory
resources on the host can be safely reused. For a non-blocking memory transfer, the OpenCL
function call returns as soon as the command is enqueued regardless of whether host memory is
safe to use.

The mapping/unmapping method of interaction between the host and OpenCL memory objects
allows the host to map a region from the memory object into its address space. The memory
map command may be blocking or non-blocking. Once a region from the memory object has
been mapped, the host can read or write to this region. The host unmaps the region when
accesses (reads and/or writes) to this mapped region by the host are complete.

3.3.1 Memory Consistency

OpenCL uses a relaxed consistency memory model; i.e. the state of memory visible to a work-
item is not guaranteed to be consistent across the collection of work-items at all times.

Within a work-item memory has load / store consistency. Local memory is consistent across
work-items in a single work-group at a work-group barrier. Global memory is consistent across
work-items in a single work-group at a work-group barrier, but there are no guarantees of
memory consistency between different work-groups executing a kernel.

Memory consistency for memory objects shared between enqueued commands is enforced at a
synchronization point.

3.4 Programming Model
The OpenCL execution model supports data parallel and task parallel programming models, as
well as supporting hybrids of these two models. The primary model driving the design of
OpenCL is data parallel.

3.4.1 Data Parallel Programming Model

A data parallel programming model defines a computation in terms of a sequence of instructions
applied to multiple elements of a memory object. The index space associated with the OpenCL
execution model defines the work-items and how the data maps onto the work-items. In a
strictly data parallel model, there is a one-to-one mapping between the work-item and the
element in a memory object over which a kernel can be executed in parallel. OpenCL
implements a relaxed version of the data parallel programming model where a strict one-to-one
mapping is not a requirement.

Last Revision Date: 11/14/12 Page 30

OpenCL provides a hierarchical data parallel programming model. There are two ways to
specify the hierarchical subdivision. In the explicit model a programmer defines the total
number of work-items to execute in parallel and also how the work-items are divided among
work-groups. In the implicit model, a programmer specifies only the total number of work-items
to execute in parallel, and the division into work-groups is managed by the OpenCL
implementation.

3.4.2 Task Parallel Programming Model

The OpenCL task parallel programming model defines a model in which a single instance of a
kernel is executed independent of any index space. It is logically equivalent to executing a
kernel on a compute unit with a work-group containing a single work-item. Under this model,
users express parallelism by:

- using vector data types implemented by the device,
- enqueuing multiple tasks, and/or
- enqueing native kernels developed using a programming model orthogonal to OpenCL.

3.4.3 Synchronization

There are two domains of synchronization in OpenCL:

- Work-items in a single work-group
- Commands enqueued to command-queue(s) in a single context

Synchronization between work-items in a single work-group is done using a work-group barrier.
All the work-items of a work-group must execute the barrier before any are allowed to continue
execution beyond the barrier. Note that the work-group barrier must be encountered by all work-
items of a work-group executing the kernel or by none at all. There is no mechanism for
synchronization between work-groups.

The synchronization points between commands in command-queues are:

- Command-queue barrier. The command-queue barrier ensures that all previously queued
commands have finished execution and any resulting updates to memory objects are
visible to subsequently enqueued commands before they begin execution. This barrier
can only be used to synchronize between commands in a single command-queue.

- Waiting on an event. All OpenCL API functions that enqueue commands return an event

that identifies the command and memory objects it updates. A subsequent command
waiting on that event is guaranteed that updates to those memory objects are visible
before the command begins execution.

Last Revision Date: 11/14/12 Page 31

3.5 Memory Objects

Memory objects are categorized into two types: buffer objects, and image objects. A buffer
object stores a one-dimensional collection of elements whereas an image object is used to store a
two- or three- dimensional texture, frame-buffer or image.

Elements of a buffer object can be a scalar data type (such as an int, float), vector data type, or a
user-defined structure. An image object is used to represent a buffer that can be used as a texture
or a frame-buffer. The elements of an image object are selected from a list of predefined image
formats. The minimum number of elements in a memory object is one.

The fundamental differences between a buffer and an image object are:

 Elements in a buffer are stored in sequential fashion and can be accessed using a pointer
by a kernel executing on a device. Elements of an image are stored in a format that is
opaque to the user and cannot be directly accessed using a pointer. Built-in functions are
provided by the OpenCL C programming language to allow a kernel to read from or write
to an image.

 For a buffer object, the data is stored in the same format as it is accessed by the kernel,

but in the case of an image object the data format used to store the image elements may
not be the same as the data format used inside the kernel. Image elements are always a 4-
component vector (each component can be a float or signed/unsigned integer) in a kernel.
The built-in function to read from an image converts image element from the format it is
stored into a 4-component vector. Similarly, the built-in function to write to an image
converts the image element from a 4-component vector to the appropriate image format
specified such as 4 8-bit elements, for example.

Memory objects are described by a cl_mem object. Kernels take memory objects as input, and
output to one or more memory objects.

3.6 The OpenCL Framework
The OpenCL framework allows applications to use a host and one or more OpenCL devices as a
single heterogeneous parallel computer system. The framework contains the following
components:

 OpenCL Platform layer: The platform layer allows the host program to discover OpenCL
devices and their capabilities and to create contexts.

Last Revision Date: 11/14/12 Page 32

 OpenCL Runtime: The runtime allows the host program to manipulate contexts once they
have been created.

 OpenCL Compiler: The OpenCL compiler creates program executables that contain
OpenCL kernels. The OpenCL C programming language implemented by the compiler
supports a subset of the ISO C99 language with extensions for parallelism.

Last Revision Date: 11/14/12 Page 33

4. The OpenCL Platform Layer

This section describes the OpenCL platform layer which implements platform-specific features
that allow applications to query OpenCL devices, device configuration information, and to create
OpenCL contexts using one or more devices.

4.1 Querying Platform Info

The list of platforms available can be obtained using the following function.

cl_int clGetPlatformIDs (cl_uint num_entries,
 cl_platform_id *platforms,
 cl_uint *num_platforms)

num_entries is the number of cl_platform_id entries that can be added to platforms. If platforms
is not NULL, the num_entries must be greater than zero.

platforms returns a list of OpenCL platforms found. The cl_platform_id values returned in
platforms can be used to identify a specific OpenCL platform. If platforms argument is NULL,
this argument is ignored. The number of OpenCL platforms returned is the minimum of the
value specified by num_entries or the number of OpenCL platforms available.

num_platforms returns the number of OpenCL platforms available. If num_platforms is NULL,
this argument is ignored.

clGetPlatformIDs returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if num_entries is equal to zero and platforms is not NULL or if
both num_platforms and platforms are NULL.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

cl_int clGetPlatformInfo (cl_platform_id platform,
 cl_platform_info param_name,

 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

Last Revision Date: 11/14/12 Page 34

gets specific information about the OpenCL platform. The information that can be queried
using clGetPlatformInfo is specified in table 4.1.

platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform
is NULL, the behavior is implementation-defined.

param_name is an enumeration constant that identifies the platform information being queried.
It can be one of the following values as specified in table 4.1.

param_value is a pointer to memory location where appropriate values for a given param_name
as specified in table 4.1 will be returned. If param_value is NULL, it is ignored.

param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be >= size of return type specified in table 4.1.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

cl_platform_info Return Type Description
CL_PLATFORM_PROFILE char[]2 OpenCL profile string. Returns the

profile name supported by the
implementation. The profile name
returned can be one of the following
strings:

FULL_PROFILE – if the implementation
supports the OpenCL specification
(functionality defined as part of the core
specification and does not require any
extensions to be supported).

EMBEDDED_PROFILE - if the
implementation supports the OpenCL
embedded profile. The embedded profile
is defined to be a subset for each version
of OpenCL. The embedded profile for
OpenCL 1.2 is described in section 10.

CL_PLATFORM_VERSION char[] OpenCL version string. Returns the
OpenCL version supported by the
implementation. This version string has
the following format:

2 A null terminated string is returned by OpenCL query function calls if the return type of the information being
queried is a char[].

Last Revision Date: 11/14/12 Page 35

OpenCL<space><major_version.minor_
version><space><platform-specific
information>

The major_version.minor_version value
returned will be 1.2.

CL_PLATFORM_NAME char[] Platform name string.
CL_PLATFORM_VENDOR char[] Platform vendor string.
CL_PLATFORM_EXTENSIONS char[] Returns a space separated list of extension

names (the extension names themselves
do not contain any spaces) supported by
the platform. Extensions defined here
must be supported by all devices
associated with this platform.

Table 4.1. OpenCL Platform Queries

clGetPlatformInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors3:

 CL_INVALID_PLATFORM if platform is not a valid platform.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 4.1 and
param_value is not a NULL value.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

4.2 Querying Devices

The list of devices available on a platform can be obtained using the following function.

 cl_int clGetDeviceIDs4 (cl_platform_id platform,

 cl_device_type device_type,
 cl_uint num_entries,
 cl_device_id *devices,

 cl_uint *num_devices)

3 The OpenCL specification does not describe the order of precedence for error codes returned by API calls.
4 clGetDeviceIDs may return all or a subset of the actual physical devices present in the platform and that match
device_type.

Last Revision Date: 11/14/12 Page 36

platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform
is NULL, the behavior is implementation-defined.

device_type is a bitfield that identifies the type of OpenCL device. The device_type can be used
to query specific OpenCL devices or all OpenCL devices available. The valid values for
device_type are specified in table 4.2.

cl_device_type Description

CL_DEVICE_TYPE_CPU An OpenCL device that is the host processor. The
host processor runs the OpenCL implementations
and is a single or multi-core CPU.

CL_DEVICE_TYPE_GPU An OpenCL device that is a GPU. By this we mean
that the device can also be used to accelerate a 3D
API such as OpenGL or DirectX.

CL_DEVICE_TYPE_ACCELERATOR Dedicated OpenCL accelerators (for example the
IBM CELL Blade). These devices communicate
with the host processor using a peripheral
interconnect such as PCIe.

CL_DEVICE_TYPE_CUSTOM Dedicated accelerators that do not support programs
written in OpenCL C.

CL_DEVICE_TYPE_DEFAULT The default OpenCL device in the system. The
default device cannot be a
CL_DEVICE_TYPE_CUSTOM device.

CL_DEVICE_TYPE_ALL All OpenCL devices available in the system except
CL_DEVICE_TYPE_CUSTOM devices..

 Table 4.2. List of OpenCL Device Categories

num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL, the num_entries must be greater than zero.

devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices argument is NULL, this argument is
ignored. The number of OpenCL devices returned is the minimum of the value specified by
num_entries or the number of OpenCL devices whose type matches device_type.

num_devices returns the number of OpenCL devices available that match device_type. If
num_devices is NULL, this argument is ignored.

clGetDeviceIDs returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PLATFORM if platform is not a valid platform.

Last Revision Date: 11/14/12 Page 37

 CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

 CL_INVALID_VALUE if num_entries is equal to zero and devices is not NULL or if both
num_devices and devices are NULL.

 CL_DEVICE_NOT_FOUND if no OpenCL devices that matched device_type were found.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The application can query specific capabilities of the OpenCL device(s) returned by
clGetDeviceIDs. This can be used by the application to determine which device(s) to use.

The function

 cl_int clGetDeviceInfo (cl_device_id device,

 cl_device_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

gets specific information about an OpenCL device. device may be a device returned by
clGetDeviceIDs or a sub-device created by clCreateSubDevices. If device is a sub-device, the
specific information for the sub-device will be returned. The information that can be queried
using clGetDeviceInfo is specified in table 4.3.

device is a device returned by clGetDeviceIDs.

param_name is an enumeration constant that identifies the device information being queried. It
can be one of the following values as specified in table 4.3.

param_value is a pointer to memory location where appropriate values for a given param_name
as specified in table 4.3 will be returned. If param_value is NULL, it is ignored.

param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be >= size of return type specified in table 4.3.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

Last Revision Date: 11/14/12 Page 38

cl_device_info Return Type Description
CL_DEVICE_TYPE cl_device_type The OpenCL device type. Currently

supported values are:

CL_DEVICE_TYPE_CPU,
CL_DEVICE_TYPE_GPU,
CL_DEVICE_TYPE_ACCELERATOR,
CL_DEVICE_TYPE_DEFAULT, a combination
of the above types or
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_VENDOR_ID cl_uint A unique device vendor identifier. An
example of a unique device identifier could
be the PCIe ID.

CL_DEVICE_MAX_COMPUTE_UNITS cl_uint The number of parallel compute units on
the OpenCL device. A work-group
executes on a single compute unit. The
minimum value is 1.

CL_DEVICE_MAX_WORK_ITEM_
DIMENSIONS

cl_uint Maximum dimensions that specify the
global and local work-item IDs used by the
data parallel execution model. (Refer to
clEnqueueNDRangeKernel). The minimum
value is 3 for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_WORK_ITEM_SIZES size_t [] Maximum number of work-items that can
be specified in each dimension of the
work-group to
clEnqueueNDRangeKernel.

Returns n size_t entries, where n is the
value returned by the query for
CL_DEVICE_MAX_WORK_ITEM_DIMEN
SIONS.

The minimum value is (1, 1, 1) for devices
that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_WORK_GROUP_SIZE size_t Maximum number of work-items in a
work-group executing a kernel on a single
compute unit, using the data parallel
execution model. (Refer to
clEnqueueNDRangeKernel).
The minimum value is 1.

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_CHAR

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_SHORT

cl_uint Preferred native vector width size for built-
in scalar types that can be put into vectors.
The vector width is defined as the number
of scalar elements that can be stored in the

Last Revision Date: 11/14/12 Page 39

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_INT

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_LONG

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_FLOAT

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_DOUBLE

 CL_DEVICE_PREFERRED_
VECTOR_WIDTH_HALF

vector.

If double precision is not supported,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_
DOUBLE must return 0.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_
HALF must return 0.

CL_DEVICE_NATIVE_
VECTOR_WIDTH_CHAR

CL_DEVICE_NATIVE_
VECTOR_WIDTH_SHORT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_INT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_LONG

CL_DEVICE_NATIVE_
VECTOR_WIDTH_FLOAT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_DOUBLE

CL_DEVICE_NATIVE_
VECTOR_WIDTH_HALF

cl_uint Returns the native ISA vector width. The
vector width is defined as the number of
scalar elements that can be stored in the
vector.

If double precision is not supported,
CL_DEVICE_NATIVE_VECTOR_WIDTH_DOU
BLE must return 0.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE_NATIVE_VECTOR_WIDTH_HAL
F must return 0.

CL_DEVICE_MAX_CLOCK_FREQUENCY cl_uint Maximum configured clock frequency of
the device in MHz.

CL_DEVICE_ADDRESS_BITS cl_uint The default compute device address space
size specified as an unsigned integer value
in bits. Currently supported values are 32
or 64 bits.

CL_DEVICE_MAX_MEM_ALLOC_SIZE cl_ulong Max size of memory object allocation in

bytes. The minimum value is max (1/4th of
CL_DEVICE_GLOBAL_MEM_SIZE ,
128*1024*1024) for devices that are not of
type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_IMAGE_SUPPORT cl_bool Is CL_TRUE if images are supported by the

OpenCL device and CL_FALSE otherwise.
CL_DEVICE_MAX_READ_IMAGE_ARGS cl_uint Max number of simultaneous image

objects that can be read by a kernel. The
minimum value is 128 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

Last Revision Date: 11/14/12 Page 40

CL_DEVICE_MAX_WRITE_IMAGE_ARGS cl_uint Max number of simultaneous image
objects that can be written to by a kernel.
The minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_WIDTH size_t Max width of 2D image or 1D image not
created from a buffer object in pixels.

The minimum value is 8192 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_HEIGHT size_t Max height of 2D image in pixels.

The minimum value is 8192 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_WIDTH size_t Max width of 3D image in pixels.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_HEIGHT size_t Max height of 3D image in pixels.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_DEPTH size_t Max depth of 3D image in pixels.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE_MAX_BUFFER_SIZE size_t Max number of pixels for a 1D image
created from a buffer object.

The minimum value is 65536 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE_MAX_ARRAY_SIZE size_t Max number of images in a 1D or 2D
image array.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_SAMPLERS cl_uint Maximum number of samplers that can be
used in a kernel. Refer to section 6.12.14
for a detailed description on samplers.

Last Revision Date: 11/14/12 Page 41

The minimum value is 16 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_PARAMETER_SIZE size_t Max size in bytes of the arguments that can

be passed to a kernel.

The minimum value is 1024 for devices
that are not of type
CL_DEVICE_TYPE_CUSTOM. For this
minimum value, only a maximum of 128
arguments can be passed to a kernel.

CL_DEVICE_MEM_BASE_ADDR_ALIGN cl_uint The minimum value is the size (in bits) of

the largest OpenCL built-in data
type supported by the device (long16 in
FULL profile, long16 or int16 in
EMBEDDED profile) for devices that are
not of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_SINGLE_FP_CONFIG cl_device_

fp_config
Describes single precision floating-point
capability of the device. This is a bit-field
that describes one or more of the following
values:

CL_FP_DENORM – denorms are supported

CL_FP_INF_NAN – INF and quiet NaNs are
supported.

CL_FP_ROUND_TO_NEAREST– round to
nearest even rounding mode supported

CL_FP_ROUND_TO_ZERO – round to zero
rounding mode supported

CL_FP_ROUND_TO_INF – round to positive
and negative infinity rounding modes
supported

CL_FP_FMA – IEEE754-2008 fused multiply-
add is supported.

CL_FP_CORRECTLY_ROUNDED_DIVIDE
_SQRT – divide and sqrt are correctly rounded
as defined by the IEEE754 specification.

Last Revision Date: 11/14/12 Page 42

CL_FP_SOFT_FLOAT – Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

The mandated minimum floating-point
capability for devices that are not of type
CL_DEVICE_TYPE_CUSTOM is:
CL_FP_ROUND_TO_NEAREST |
CL_FP_INF_NAN.

CL_DEVICE_DOUBLE_FP_CONFIG cl_device_
fp_config

Describes double precision floating-point
capability of the OpenCL device. This is a
bit-field that describes one or more of the
following values:

CL_FP_DENORM – denorms are supported

CL_FP_INF_NAN – INF and NaNs are
supported.

CL_FP_ROUND_TO_NEAREST – round to
nearest even rounding mode supported.

CL_FP_ROUND_TO_ZERO – round to zero
rounding mode supported.

CL_FP_ROUND_TO_INF – round to
positive and negative infinity rounding
modes supported.

CP_FP_FMA – IEEE754-2008 fused
multiply-add is supported.

CL_FP_SOFT_FLOAT – Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

Double precision is an optional feature so
the mandated minimum double precision
floating-point capability is 0.

If double precision is supported by the
device, then the minimum double precision
floating-point capability must be:
CL_FP_FMA |
CL_FP_ROUND_TO_NEAREST |
CL_FP_ROUND_TO_ZERO |
CL_FP_ROUND_TO_INF |

Last Revision Date: 11/14/12 Page 43

CL_FP_INF_NAN |
CL_FP_DENORM.

CL_DEVICE_GLOBAL_MEM_CACHE_
TYPE

cl_device_mem_
cache_type

Type of global memory cache supported.
Valid values are:
CL_NONE,
CL_READ_ONLY_CACHE and
CL_READ_WRITE_CACHE.

CL_DEVICE_GLOBAL_MEM_CACHELINE
_SIZE

cl_uint Size of global memory cache line in bytes.
CL_DEVICE_GLOBAL_MEM_CACHE_
SIZE

cl_ulong Size of global memory cache in bytes.
CL_DEVICE_GLOBAL_MEM_SIZE cl_ulong Size of global device memory in bytes.

CL_DEVICE_MAX_CONSTANT_
BUFFER_SIZE

cl_ulong Max size in bytes of a constant buffer
allocation. The minimum value is 64 KB
for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_ARGS cl_uint Max number of arguments declared with
the __constant qualifier in a kernel. The
minimum value is 8 for devices that are not
of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_LOCAL_MEM_TYPE cl_device_local_

mem_type
Type of local memory supported. This can
be set to CL_LOCAL implying dedicated
local memory storage such as SRAM, or
CL_GLOBAL.

For custom devices, CL_NONE can also be
returned indicating no local memory
support.

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong Size of local memory arena in bytes. The
minimum value is 32 KB for devices that
are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_ERROR_CORRECTION_
SUPPORT

cl_bool Is CL_TRUE if the device implements error
correction for all accesses to compute
device memory (global and constant). Is
CL_FALSE if the device does not
implement such error correction.

CL_DEVICE_HOST_UNIFIED_
MEMORY

cl_bool Is CL_TRUE if the device and the host have
a unified memory subsystem and is
CL_FALSE otherwise.

CL_DEVICE_PROFILING_TIMER_
RESOLUTION

size_t Describes the resolution of device timer.
This is measured in nanoseconds. Refer to

Last Revision Date: 11/14/12 Page 44

section 5.12 for details.

CL_DEVICE_ENDIAN_LITTLE cl_bool Is CL_TRUE if the OpenCL device is a

little endian device and CL_FALSE
otherwise.

CL_DEVICE_AVAILABLE cl_bool Is CL_TRUE if the device is available and
CL_FALSE if the device is not available.

CL_DEVICE_COMPILER_AVAILABLE cl_bool Is CL_FALSE if the implementation does

not have a compiler available to compile
the program source.
Is CL_TRUE if the compiler is available.

This can be CL_FALSE for the embedded
platform profile only.

CL_DEVICE_LINKER_AVAILABLE cl_bool Is CL_FALSE if the implementation does
not have a linker available.
Is CL_TRUE if the linker is available.

This can be CL_FALSE for the embedded
platform profile only.

This must be CL_TRUE if
CL_DEVICE_COMPILER_AVAILABLE is
CL_TRUE.

CL_DEVICE_EXECUTION_CAPABILITIES cl_device_exec_

capabilities
Describes the execution capabilities of the
device. This is a bit-field that describes
one or more of the following values:

CL_EXEC_KERNEL – The OpenCL device
can execute OpenCL kernels.

CL_EXEC_NATIVE_KERNEL – The OpenCL
device can execute native kernels.

The mandated minimum capability is:
CL_EXEC_KERNEL.

CL_DEVICE_QUEUE_PROPERTIES cl_command_

queue_properties
Describes the command-queue properties
supported by the device. This is a bit-field
that describes one or more of the following
values:

CL_QUEUE_OUT_OF_ORDER_EXEC_
MODE_ENABLE

Last Revision Date: 11/14/12 Page 45

CL_QUEUE_PROFILING_ENABLE

These properties are described in table 5.1.

The mandated minimum capability is:
CL_QUEUE_PROFILING_ENABLE.

CL_DEVICE_BUILT_IN_KERNELS char[] A semi-colon separated list of built-in

kernels supported by the device. An empty
string is returned if no built-in kernels are
supported by the device.

CL_DEVICE_PLATFORM cl_platform_id The platform associated with this device.

CL_DEVICE_NAME char[] Device name string.
CL_DEVICE_VENDOR char[] Vendor name string.
CL_DRIVER_VERSION char[] OpenCL software driver version string in

the form
major_number.minor_number

CL_DEVICE_PROFILE5 char[] OpenCL profile string. Returns the profile
name supported by the device. The profile
name returned can be one of the following
strings:

FULL_PROFILE – if the device supports
the OpenCL specification (functionality
defined as part of the core specification and
does not require any extensions to be
supported).

EMBEDDED_PROFILE - if the device
supports the OpenCL embedded profile.

CL_DEVICE_VERSION char[] OpenCL version string. Returns the
OpenCL version supported by the device.
This version string has the following
format:

OpenCL<space><major_version.minor_v
ersion><space><vendor-specific
information>

5 The platform profile returns the profile that is implemented by the OpenCL framework. If the platform profile
returned is FULL_PROFILE, the OpenCL framework will support devices that are FULL_PROFILE and may also
support devices that are EMBEDDED_PROFILE. The compiler must be available for all devices i.e.
CL_DEVICE_COMPILER_AVAILABLE is CL_TRUE. If the platform profile returned is
EMBEDDED_PROFILE, then devices that are only EMBEDDED_PROFILE are supported.

Last Revision Date: 11/14/12 Page 46

The major_version.minor_version value
returned will be 1.2.

CL_DEVICE_OPENCL_C_VERSION char[] OpenCL C version string. Returns the
highest OpenCL C version supported by
the compiler for this device that is not of
type CL_DEVICE_TYPE_CUSTOM. This
version string has the following format:

OpenCL<space>C<space><major_versio
n.minor_version><space><vendor-
specific information>

The major_version.minor_version value
returned must be 1.2 if
CL_DEVICE_VERSION is OpenCL 1.2.

The major_version.minor_version value
returned must be 1.1 if
CL_DEVICE_VERSION is OpenCL 1.1.

The major_version.minor_version value
returned can be 1.0 or 1.1 if
CL_DEVICE_VERSION is OpenCL 1.0.

CL_DEVICE_EXTENSIONS char[] Returns a space separated list of extension
names (the extension names themselves do
not contain any spaces) supported by the
device. The list of extension names
returned can be vendor supported extension
names and one or more of the following
Khronos approved extension names:

cl_khr_int64_base_atomics
cl_khr_int64_extended_atomics
cl_khr_3d_image_writes
cl_khr_fp16
cl_khr_gl_sharing
cl_khr_gl_event
cl_khr_d3d10_sharing
cl_khr_dx9_media_sharing
cl_khr_d3d11_sharing
cl_khr_depth_images
cl_khr_gl_depth_images
cl_khr_gl_msaa_sharing
cl_khr_image2d_from_buffer
cl_khr_initialize_memory
cl_khr_context_abort
cl_khr_spir

Last Revision Date: 11/14/12 Page 47

The following approved Khronos extension
names must be returned by all device that
support OpenCL C 1.2:

cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics
cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics
cl_khr_byte_addressable_store
cl_khr_fp64 (for backward compatibility if
double precision is supported)

Please refer to the OpenCL 1.2 Extension
Specification for a detailed description of
these extensions.

CL_DEVICE_PRINTF_BUFFER_SIZE size_t Maximum size of the internal buffer that

holds the output of printf calls from a
kernel. The minimum value for the FULL
profile is 1 MB.

CL_DEVICE_PREFERRED_INTEROP_
USER_SYNC

cl_bool Is CL_TRUE if the device’s preference is
for the user to be responsible for
synchronization, when sharing memory
objects between OpenCL and other APIs
such as DirectX, CL_FALSE if the device /
implementation has a performant path for
performing synchronization of memory
object shared between OpenCL and other
APIs such as DirectX.

CL_DEVICE_PARENT_DEVICE cl_device_id Returns the cl_device_id of the parent

device to which this sub-device belongs. If
device is a root-level device, a NULL value
is returned.

CL_DEVICE_PARTITION_MAX_SUB_DEVI
CES

cl_uint Returns the maximum number of sub-
devices that can be created when a device
is partitioned.

The value returned cannot exceed
CL_DEVICE_MAX_COMPUTE_UNITS.

CL_DEVICE_PARTITION_
PROPERTIES

cl_device_
partition_
property[]

Returns the list of partition types supported
by device. The is an array of
cl_device_partition_property values drawn
from the following list:

Last Revision Date: 11/14/12 Page 48

CL_DEVICE_PARTITION_EQUALLY
CL_DEVICE_PARTITION_BY_COUNTS
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN

If the device cannot be partitioned (i.e.
there is no partitioning scheme supported
by the device that will return at least two
subdevices), a value of 0 will be returned.

CL_DEVICE_PARTITION_AFFINITY_
DOMAIN

cl_device_
affinity_domain

Returns the list of supported affinity
domains for partitioning the device using
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN.
This is a bit-field that describes one or
more of the following values:

CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE
CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITI
ONABLE

If the device does not support any affinity
domains, a value of 0 will be returned.

CL_DEVICE_PARTITION_TYPE cl_device_
partition_
property[]

Returns the properties argument specified
in clCreateSubDevices if device is a sub-
device. In the case where the properties
argument to clCreateSubDevices is
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN,
CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITI
ONABLE, the affinity domain used to
perform the partition will be returned. This
can be one of the following values:

CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE

Otherwise the implementation may either
return a param_value_size_ret of 0 i.e.
there is no partition type associated with
device or can return a property value of 0
(where 0 is used to terminate the partition
property list) in the memory that
param_value points to.

CL_DEVICE_REFERENCE_COUNT cl_uint Returns the device reference count. If the

device is a root-level device, a reference

Last Revision Date: 11/14/12 Page 49

count of one is returned.

Table 4.3. OpenCL Device Queries

The device queries described in table 4.3 should return the same information for a root-level
device i.e. a device returned by clGetDeviceIDs and any sub-devices created from this device
except for the following queries:

 CL_DEVICE_GLOBAL_MEM_CACHE_SIZE
 CL_DEVICE_BUILT_IN_KERNELS
 CL_DEVICE_PARENT_DEVICE
 CL_DEVICE_PARTITION_TYPE
 CL_DEVICE_REFERENCE_COUNT

clGetDeviceInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_DEVICE if device is not valid.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 4.3 and
param_value is not a NULL value or if param_name is a value that is available as an
extension and the corresponding extension is not supported by the device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 50

4.3 Partitioning a Device

The function

 cl_int clCreateSubDevices (cl_device_id in_device,

const cl_device_partition_property *properties,
cl_uint num_devices,
cl_device_id *out_devices,

 cl_uint *num_devices_ret)

creates an array of sub-devices that each reference a non-intersecting set of compute units within
in_device, according to a partition scheme given by properties. The output sub-devices may be
used in every way that the root (or parent) device can be used, including creating contexts,
building programs, further calls to clCreateSubDevices and creating command-queues. When a
command-queue is created against a sub-device, the commands enqueued on the queue are
executed only on the sub-device.

in_device is the device to be partitioned.

properties specifies how in_device is to be partition described by a partition name and its
corresponding value. Each partition name is immediately followed by the corresponding desired
value. The list is terminated with 0. The list of supported partitioning schemes is described in
table 4.4. Only one of the listed partitioning schemes can be specified in properties.

cl_device_partition
_property enum

Partition
value

Description

CL_DEVICE_PARTITION
_EQUALLY

unsigned int Split the aggregate device into as many smaller
aggregate devices as can be created, each containing
n compute units. The value n is passed as the value
accompanying this property. If n does not divide
evenly into
CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS,
then the remaining compute units are not used.

CL_DEVICE_PARTITION
_BY_COUNTS

unsigned int This property is followed by a
CL_DEVICE_PARTITION_BY_COUNTS_LIST_END
terminated list of compute unit counts. For each non-
zero count m in the list, a sub-device is created with
m compute units in it.
CL_DEVICE_PARTITION_BY_COUNTS_LIST_END
is defined to be 0.

The number of non-zero count entries in the list may
not exceed
CL_DEVICE_PARTITION_MAX_SUB_DEVICES.

Last Revision Date: 11/14/12 Page 51

The total number of compute units specified may not
exceed
CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS.

CL_DEVICE_PARTITION
_BY_AFFINITY_DOMAIN

cl_device_
affinity_domain

Split the device into smaller aggregate devices
containing one or more compute units that all share
part of a cache hierarchy. The value accompanying
this property may be drawn from the following list:

CL_DEVICE_AFFINITY_DOMAIN_NUMA – Split the
device into sub-devices comprised of compute units
that share a NUMA node.

CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 4 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 3 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 2 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE –
Split the device into sub-devices comprised of
compute units that share a level 1 data cache.

CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIO
NABLE – Split the device along the next partitionable
affinity domain. The implementation shall find the
first level along which the device or sub-device may
be further subdivided in the order NUMA, L4, L3,
L2, L1, and partition the device into sub-devices
comprised of compute units that share memory
subsystems at this level.

The user may determine what happened by calling
clGetDeviceInfo(CL_DEVICE_PARTITION_TYPE)
on the sub-devices.

 Table 4.4 List of supported partition schemes by clCreateSubDevices

Last Revision Date: 11/14/12 Page 52

num_devices is the size of memory pointed to by out_devices specified as the number of
cl_device_id entries.

out_devices is the buffer where the OpenCL sub-devices will be returned. If out_devices is
NULL, this argument is ignored. If out_devices is not NULL, num_devices must be greater than
or equal to the number of sub-devices that device may be partitioned into according to the
partitioning scheme specified in properties.

num_devices_ret returns the number of sub-devices that device may be partitioned into according
to the partitioning scheme specified in properties. If num_devices_ret is NULL, it is ignored.

clCreateSubDevices returns CL_SUCCESS if the partition is created successfully. Otherwise, it
returns a NULL value with the following error values returned in errcode_ret:

 CL_INVALID_DEVICE if in_device is not valid.

 CL_INVALID_VALUE if values specified in properties are not valid or if values specified
in properties are valid but not supported by the device.

 CL_INVALID_VALUE if out_devices is not NULL and num_devices is less than the

number of sub-devices created by the partition scheme.

 CL_DEVICE_PARTITION_FAILED if the partition name is supported by the
implementation but in_device could not be further partitioned.

 CL_INVALID_DEVICE_PARTITION_COUNT if the partition name specified in properties

is CL_DEVICE_PARTITION_BY_COUNTS and the number of sub-devices requested
exceeds CL_DEVICE_PARTITION_MAX_SUB_DEVICES or the total number of compute
units requested exceeds CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS for
in_device, or the number of compute units requested for one or more sub-devices is less
than zero or the number of sub-devices requested exceeds
CL_DEVICE_PARTITION_MAX_COMPUTE_UNITS for in_device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

A few examples that describe how to specify partition properties in properties argument to
clCreateSubDevices are given below:

To partition a device containing 16 compute units into two sub-devices, each containing 8
compute units, pass the following in properties:

Last Revision Date: 11/14/12 Page 53

{ CL_DEVICE_PARTITION_EQUALLY, 8, 0 }

To partition a device with four compute units into two sub-devices with one sub-device
containing 3 compute units and the other sub-device 1 compute unit, pass the following in
properties argument:

{ CL_DEVICE_PARTITION_BY_COUNTS,
 3, 1, CL_DEVICE_PARTITION_BY_COUNTS_LIST_END, 0 }

To split a device along the outermost cache line (if any), pass the following in properties
argument:

{ CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN,
 CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE,
 0 }

The function

 cl_int clRetainDevice (cl_device_id device)

increments the device reference count if device is a valid sub-device created by a call to
clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDeviceIDs, the device reference count remains unchanged. clRetainDevice returns
CL_SUCCESS if the function is executed successfully or the device is a root-level device.
Otherwise, it returns one of the following errors:

 CL_INVALID_DEVICE if device is not a valid sub-device created by a call to
clCreateSubDevices.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clReleaseDevice (cl_device_id device)

decrements the device reference count if device is a valid sub-device created by a call to
clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDeviceIDs, the device reference count remains unchanged. clReleaseDevice returns
CL_SUCCESS if the function is executed successfully. Otherwise, it returns one of the following
errors:

Last Revision Date: 11/14/12 Page 54

 CL_INVALID_DEVICE if device is not a valid sub-device created by a call to
clCreateSubDevices.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

After the device reference count becomes zero and all the objects attached to device (such as
command-queues) are released, the device object is deleted.

Last Revision Date: 11/14/12 Page 55

4.4 Contexts

The function

 cl_context clCreateContext (const cl_context_properties *properties,
 cl_uint num_devices,
 const cl_device_id *devices,
 void (CL_CALLBACK *pfn_notify)(const char *errinfo,
 const void *private_info, size_t cb,
 void *user_data),
 void *user_data,
 cl_int *errcode_ret)

creates an OpenCL context. An OpenCL context is created with one or more devices. Contexts
are used by the OpenCL runtime for managing objects such as command-queues, memory,
program and kernel objects and for executing kernels on one or more devices specified in the
context.

properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list is terminated
with 0. The list of supported properties is described in table 4.5. properties can be NULL in
which case the platform that is selected is implementation-defined.

cl_context_properties enum Property value Description
CL_CONTEXT_PLATFORM cl_platform_id Specifies the platform to use.
CL_CONTEXT_INTEROP_USER
_SYNC

cl_bool Specifies whether the user is
responsible for synchronization
between OpenCL and other APIs.
Please refer to the specific sections
in the OpenCL 1.2 extension
specification that describe sharing
with other APIs for restrictions on
using this flag.

If CL_CONTEXT_INTEROP_USER_
SYNC is not specified, a default of
CL_FALSE is assumed.

 Table 4.5 List of supported properties by clCreateContext

num_devices is the number of devices specified in the devices argument.

Last Revision Date: 11/14/12 Page 56

devices is a pointer to a list of unique devices6 returned by clGetDeviceIDs or sub-devices
created by clCreateSubDevices for a platform.

pfn_notify is a callback function that can be registered by the application. This callback function
will be used by the OpenCL implementation to report information on errors during context
creation as well as errors that occur at runtime in this context. This callback function may be
called asynchronously by the OpenCL implementation. It is the application’s responsibility to
ensure that the callback function is thread-safe. The parameters to this callback function are:

 errinfo is a pointer to an error string.
 private_info and cb represent a pointer to binary data that is returned by the OpenCL

implementation that can be used to log additional information helpful in debugging
the error.

 user_data is a pointer to user supplied data.

If pfn_notify is NULL, no callback function is registered.

NOTE: There are a number of cases where error notifications need to be delivered due to an
error that occurs outside a context. Such notifications may not be delivered through the
pfn_notify callback. Where these notifications go is implementation-defined.

user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateContext returns a valid non-zero context and errcode_ret is set to CL_SUCCESS if the
context is created successfully. Otherwise, it returns a NULL value with the following error
values returned in errcode_ret:

 CL_INVALID_PLATFORM if properties is NULL and no platform could be selected or if
platform value specified in properties is not a valid platform.

 CL_INVALID_PROPERTY if context property name in properties is not a supported

property name, if the value specified for a supported property name is not valid, or if the
same property name is specified more than once.

 CL_INVALID_VALUE if devices is NULL.

 CL_INVALID_VALUE if num_devices is equal to zero.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if devices contains an invalid device.

6 Duplicate devices specified in devices are ignored.

Last Revision Date: 11/14/12 Page 57

 CL_DEVICE_NOT_AVAILABLE if a device in devices is currently not available even

though the device was returned by clGetDeviceIDs.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

cl_context
clCreateContextFromType7 (const cl_context_properties *properties,

 cl_device_type device_type,
 void (CL_CALLBACK *pfn_notify)(const char *errinfo,
 const void *private_info, size_t cb,
 void *user_data),
 void *user_data,

 cl_int *errcode_ret)

creates an OpenCL context from a device type that identifies the specific device(s) to use. Only
devices that are returned by clGetDeviceIDs for device_type are used to create the context. The
context does not reference any sub-devices that may have been created from these devices.

properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list of
supported properties is described in table 4.5. properties can also be NULL in which case the
platform that is selected is implementation-defined.

device_type is a bit-field that identifies the type of device and is described in table 4.2 in section
4.2.

pfn_notify and user_data are described in clCreateContext.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateContextFromType returns a valid non-zero context and errcode_ret is set to
CL_SUCCESS if the context is created successfully. Otherwise, it returns a NULL value with the
following error values returned in errcode_ret:

 CL_INVALID_PLATFORM if properties is NULL and no platform could be selected or if

7 clCreateContextfromType may return all or a subset of the actual physical devices present in the platform and
that match device_type.

Last Revision Date: 11/14/12 Page 58

platform value specified in properties is not a valid platform.

 CL_INVALID_PROPERTY if context property name in properties is not a supported
property name, if the value specified for a supported property name is not valid, or if the
same property name is specified more than once.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

 CL_DEVICE_NOT_AVAILABLE if no devices that match device_type and property values

specified in properties are currently available.

 CL_DEVICE_NOT_FOUND if no devices that match device_type and property values
specified in properties were found.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clRetainContext (cl_context context)

increments the context reference count. clRetainContext returns CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if context is not a valid OpenCL context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

clCreateContext and clCreateContextFromType perform an implicit retain. This is very
helpful for 3rd party libraries, which typically get a context passed to them by the application.
However, it is possible that the application may delete the context without informing the library.
Allowing functions to attach to (i.e. retain) and release a context solves the problem of a context
being used by a library no longer being valid.

The function

 cl_int clReleaseContext (cl_context context)

Last Revision Date: 11/14/12 Page 59

decrements the context reference count. clReleaseContext returns CL_SUCCESS if the function
is executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if context is not a valid OpenCL context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

After the context reference count becomes zero and all the objects attached to context (such as
memory objects, command-queues) are released, the context is deleted.

The function

 cl_int clGetContextInfo (cl_context context,

 cl_context_info param_name,
 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

can be used to query information about a context.

context specifies the OpenCL context being queried.

param_name is an enumeration constant that specifies the information to query.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size specifies the size in bytes of memory pointed to by param_value. This size
must be greater than or equal to the size of return type as described in table 4.6.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetContextInfo is described in table 4.6.

Last Revision Date: 11/14/12 Page 60

cl_context_info Return Type Information returned in
param_value

CL_CONTEXT_REFERENCE_
COUNT8

cl_uint Return the context reference count.

CL_CONTEXT_NUM_
DEVICES

cl_uint Return the number of devices in
context.

CL_CONTEXT_DEVICES cl_device_id[] Return the list of devices in context.
CL_CONTEXT_PROPERTIES cl_context_properties[] Return the properties argument

specified in clCreateContext or
clCreateContextFromType.

If the properties argument specified
in clCreateContext or
clCreateContextFromType used
to create context is not NULL, the
implementation must return the
values specified in the properties
argument.

If the properties argument specified
in clCreateContext or
clCreateContextFromType used
to create context is NULL, the
implementation may return either a
param_value_size_ret of 0 i.e. there
is no context property value to be
returned or can return a context
property value of 0 (where 0 is used
to terminate the context properties
list) in the memory that
param_value points to.

 Table 4.6 List of supported param_names by clGetContextInfo

clGetContextInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 4.6 and
param_value is not a NULL value.

8 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 11/14/12 Page 61

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 62

5. The OpenCL Runtime

In this section we describe the API calls that manage OpenCL objects such as command-queues,
memory objects, program objects, kernel objects for __kernel functions in a program and
calls that allow you to enqueue commands to a command-queue such as executing a kernel,
reading, or writing a memory object.

5.1 Command Queues

OpenCL objects such as memory, program and kernel objects are created using a context.
Operations on these objects are performed using a command-queue. The command-queue can be
used to queue a set of operations (referred to as commands) in order. Having multiple
command-queues allows applications to queue multiple independent commands without
requiring synchronization. Note that this should work as long as these objects are not being
shared. Sharing of objects across multiple command-queues will require the application to
perform appropriate synchronization. This is described in Appendix A.

The function

 cl_command_queue clCreateCommandQueue (cl_context context,
 cl_device_id device,

 cl_command_queue_properties properties,
 cl_int *errcode_ret)

creates a command-queue on a specific device.

context must be a valid OpenCL context.

Command-Queue Properties Description
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_
ENABLE

Determines whether the commands queued
in the command-queue are executed in-order
or out-of-order. If set, the commands in the
command-queue are executed out-of-order.
Otherwise, commands are executed in-order.

For a detailed description about
CL_QUEUE_OUT_OF_ORDER_EXEC_
MODE_ENABLE, refer to section 5.11.

CL_QUEUE_PROFILING_ENABLE Enable or disable profiling of commands in
the command-queue. If set, the profiling of
commands is enabled. Otherwise profiling
of commands is disabled.

Last Revision Date: 11/14/12 Page 63

For a detailed description, refer to section
5.12.

 Table 5.1 List of supported cl_command_queue_property values and description.

device must be a device associated with context. It can either be in the list of devices specified
when context is created using clCreateContext or have the same device type as device type
specified when context is created using clCreateContextFromType.

properties specifies a list of properties for the command-queue. This is a bit-field and is
described in table 5.1. Only command-queue properties specified in table 5.1 can be set in
properties; otherwise the value specified in properties is considered to be not valid..

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateCommandQueue returns a valid non-zero command-queue and errcode_ret is set to
CL_SUCCESS if the command-queue is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_DEVICE if device is not a valid device or is not associated with context.

 CL_INVALID_VALUE if values specified in properties are not valid.

 CL_INVALID_QUEUE_PROPERTIES if values specified in properties are valid but are
not supported by the device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clRetainCommandQueue (cl_command_queue command_queue)

increments the command_queue reference count. clRetainCommandQueue returns
CL_SUCCESS if the function is executed successfully. Otherwise, it returns one of the following
errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

Last Revision Date: 11/14/12 Page 64

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

clCreateCommandQueue performs an implicit retain. This is very helpful for 3rd party
libraries, which typically get a command-queue passed to them by the application. However, it
is possible that the application may delete the command-queue without informing the library.
Allowing functions to attach to (i.e. retain) and release a command-queue solves the problem of
a command-queue being used by a library no longer being valid.

The function

 cl_int clReleaseCommandQueue (cl_command_queue command_queue)

decrements the command_queue reference count. clReleaseCommandQueue returns
CL_SUCCESS if the function is executed successfully. Otherwise, it returns one of the following
errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

After the command_queue reference count becomes zero and all commands queued to
command_queue have finished (eg. kernel executions, memory object updates etc.), the
command-queue is deleted.

clReleaseCommandQueue performs an implicit flush to issue any previously queued OpenCL
commands in command_queue.

The function

 cl_int clGetCommandQueueInfo (cl_command_queue command_queue,

 cl_command_queue_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

can be used to query information about a command-queue.

Last Revision Date: 11/14/12 Page 65

command_queue specifies the command-queue being queried.

param_name specifies the information to query.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.2. If param_value is NULL, it is
ignored.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetCommandQueueInfo is described in table 5.2.

cl_command_queue_info Return Type Information returned in
param_value

CL_QUEUE_CONTEXT cl_context Return the context specified when the
command-queue is created.

CL_QUEUE_DEVICE cl_device_id Return the device specified when the
command-queue is created.

CL_QUEUE_REFERENCE_COUNT9 cl_uint Return the command-queue reference
count.

CL_QUEUE_PROPERTIES cl_command_
queue_properties

Return the currently specified
properties for the command-queue.
These properties are specified by the
properties argument in
clCreateCommandQueue.

 Table 5.2 List of supported param_names by clGetCommandQueueInfo

clGetCommandQueueInfo returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_VALUE if param_name is not one of the supported values or if size in
bytes specified by param_value_size is < size of return type as specified in table 5.2 and
param_value is not a NULL value.

9 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 11/14/12 Page 66

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

NOTE

It is possible that a device(s) becomes unavailable after a context and command-queues that use
this device(s) have been created and commands have been queued to command-queues. In this
case the behavior of OpenCL API calls that use this context (and command-queues) are
considered to be implementation-defined. The user callback function, if specified, when the
context is created can be used to record appropriate information in the errinfo, private_info
arguments passed to the callback function when the device becomes unavailable.

Last Revision Date: 11/14/12 Page 67

5.2 Buffer Objects

A buffer object stores a one-dimensional collection of elements. Elements of a buffer object can
be a scalar data type (such as an int, float), vector data type, or a user-defined structure.

5.2.1 Creating Buffer Objects

A buffer object is created using the following function

 cl_mem clCreateBuffer (cl_context context,
 cl_mem_flags flags,
 size_t size,

 void *host_ptr,
 cl_int *errcode_ret)

context is a valid OpenCL context used to create the buffer object.

flags is a bit-field that is used to specify allocation and usage information such as the memory
arena that should be used to allocate the buffer object and how it will be used. Table 5.3
describes the possible values for flags. If value specified for flags is 0, the default is used which
is CL_MEM_READ_WRITE.

cl_mem_flags Description
CL_MEM_READ_WRITE This flag specifies that the memory object will be read

and written by a kernel. This is the default.

CL_MEM_WRITE_ONLY This flag specifies that the memory object will be
written but not read by a kernel.

Reading from a buffer or image object created with
CL_MEM_WRITE_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE and
CL_MEM_WRITE_ONLY are mutually exclusive.

CL_MEM_READ_ONLY This flag specifies that the memory object is a read-
only memory object when used inside a kernel.

Writing to a buffer or image object created with
CL_MEM_READ_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY
and CL_MEM_READ_ONLY are mutually exclusive.

CL_MEM_USE_HOST_PTR This flag is valid only if host_ptr is not NULL. If

Last Revision Date: 11/14/12 Page 68

specified, it indicates that the application wants the
OpenCL implementation to use memory referenced by
host_ptr as the storage bits for the memory object.

OpenCL implementations are allowed to cache the
buffer contents pointed to by host_ptr in device
memory. This cached copy can be used when kernels
are executed on a device.

The result of OpenCL commands that operate on
multiple buffer objects created with the same host_ptr
or overlapping host regions is considered to be
undefined.

Also refer to section C.3 for a description of the
alignment rules for host_ptr for memory objects
(buffer and images) created using
CL_MEM_USE_HOST_PTR.

CL_MEM_ALLOC_HOST_PTR

This flag specifies that the application wants the
OpenCL implementation to allocate memory from
host accessible memory.

CL_MEM_ALLOC_HOST_PTR and
CL_MEM_USE_HOST_PTR are mutually exclusive.

CL_MEM_COPY_HOST_PTR

This flag is valid only if host_ptr is not NULL. If
specified, it indicates that the application wants the
OpenCL implementation to allocate memory for the
memory object and copy the data from memory
referenced by host_ptr.

CL_MEM_COPY_HOST_PTR and
CL_MEM_USE_HOST_PTR are mutually exclusive.

CL_MEM_COPY_HOST_PTR can be used with
CL_MEM_ALLOC_HOST_PTR to initialize the
contents of the cl_mem object allocated using host-
accessible (e.g. PCIe) memory.

CL_MEM_HOST_WRITE_ONLY This flag specifies that the host will only write to the
memory object (using OpenCL APIs that enqueue a
write or a map for write). This can be used to
optimize write access from the host (e.g. enable write-
combined allocations for memory objects for devices
that communicate with the host over a system bus
such as PCIe).

Last Revision Date: 11/14/12 Page 69

CL_MEM_HOST_READ_ONLY This flag specifies that the host will only read the
memory object (using OpenCL APIs that enqueue a
read or a map for read).

CL_MEM_HOST_WRITE_ONLY and
CL_MEM_HOST_READ_ONLY are mutually
exclusive.

CL_MEM_HOST_NO_ACCESS This flag specifies that the host will not read or write
the memory object.

CL_MEM_HOST_WRITE_ONLY or
CL_MEM_HOST_READ_ONLY and
CL_MEM_HOST_NO_ACCESS are mutually
exclusive.

 Table 5.3 List of supported cl_mem_flags values

size is the size in bytes of the buffer memory object to be allocated.

host_ptr is a pointer to the buffer data that may already be allocated by the application. The size
of the buffer that host_ptr points to must be >= size bytes.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateBuffer returns a valid non-zero buffer object and errcode_ret is set to CL_SUCCESS if
the buffer object is created successfully. Otherwise, it returns a NULL value with one of the
following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid as defined in table 5.3.

 CL_INVALID_BUFFER_SIZE if size is 010.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or
CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but
CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

buffer object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

10 Implementations may return CL_INVALID_BUFFER_SIZE if size is greater than
CL_DEVICE_MAX_MEM_ALLOC_SIZE value specified in table 4.3 for all devices in context.

Last Revision Date: 11/14/12 Page 70

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_mem clCreateSubBuffer (cl_mem buffer,
 cl_mem_flags flags,

 cl_buffer_create_type buffer_create_type,
 const void *buffer_create_info,
 cl_int *errcode_ret)

can be used to create a new buffer object (referred to as a sub-buffer object) from an existing
buffer object.

buffer must be a valid buffer object and cannot be a sub-buffer object.

flags is a bit-field that is used to specify allocation and usage information about the sub-buffer
memory object being created and is described in table 5.3. If the CL_MEM_READ_WRITE,
CL_MEM_READ_ONLY or CL_MEM_WRITE_ONLY values are not specified in flags, they are
inherited from the corresponding memory access qualifers associated with buffer. The
CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR
values cannot be specified in flags but are inherited from the corresponding memory access
qualifiers associated with buffer. If CL_MEM_COPY_HOST_PTR is specified in the memory
access qualifier values associated with buffer it does not imply any additional copies when the
sub-buffer is created from buffer. If the CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS values are not specified in
flags, they are inherited from the corresponding memory access qualifiers associated with buffer.

buffer_create_type and buffer_create_info describe the type of buffer object to be created. The
list of supported values for buffer_create_type and corresponding descriptor that
buffer_create_info points to is described in table 5.4.

cl_buffer_create_type Description
CL_BUFFER_CREATE_TYPE_REGION Create a buffer object that represents a specific

region in buffer.

buffer_create_info is a pointer to the following
structure:

typedef struct _cl_buffer_region {
 size_t origin;
 size_t size;
} cl_buffer_region;

Last Revision Date: 11/14/12 Page 71

(origin, size) defines the offset and size in bytes in
buffer.

If buffer is created with
CL_MEM_USE_HOST_PTR, the host_ptr
associated with the buffer object returned is
host_ptr + origin.

The buffer object returned references the data store
allocated for buffer and points to a specific region
given by (origin, size) in this data store.

CL_INVALID_VALUE is returned in errcode_ret if
the region specified by (origin, size) is out of
bounds in buffer.

CL_INVALID_BUFFER_SIZE if size is 0.

CL_MISALIGNED_SUB_BUFFER_OFFSET is
returned in errcode_ret if there are no devices in
context associated with buffer for which the origin
value is aligned to the
CL_DEVICE_MEM_BASE_ADDR_ALIGN value.

 Table 5.4 List of supported names and values in clCreateSubBuffer.

clCreateSubBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors in errcode_ret:

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object or is a sub-buffer
object.

 CL_INVALID_VALUE if buffer was created with CL_MEM_WRITE_ONLY and flags
specifies CL_MEM_READ_WRITE or CL_MEM_READ_ONLY, or if buffer was created
with CL_MEM_READ_ONLY and flags specifies CL_MEM_READ_WRITE or
CL_MEM_WRITE_ONLY, or if flags specifies CL_MEM_USE_HOST_PTR or
CL_MEM_ALLOC_HOST_PTR or CL_MEM_COPY_HOST_PTR.

 CL_INVALID_VALUE if buffer was created with CL_MEM_HOST_WRITE_ONLY and

flags specify CL_MEM_HOST_READ_ONLY, or if buffer was created with
CL_MEM_HOST_READ_ONLY and flags specify CL_MEM_HOST_WRITE_ONLY, or if
buffer was created with CL_MEM_HOST_NO_ACCESS and flags specify
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.

Last Revision Date: 11/14/12 Page 72

 CL_INVALID_VALUE if value specified in buffer_create_type is not valid.

 CL_INVALID_VALUE if value(s) specified in buffer_create_info (for a given
buffer_create_type) is not valid or if buffer_create_info is NULL.

 CL_INVALID_BUFFER_SIZE if size is 0.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

sub-buffer object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

NOTE:

Concurrent reading from, writing to and copying between both a buffer object and its sub-buffer
object(s) is undefined. Concurrent reading from, writing to and copying between overlapping
sub-buffer objects created with the same buffer object is undefined. Only reading from both a
buffer object and its sub-buffer objects or reading from multiple overlapping sub-buffer objects
is defined.

Last Revision Date: 11/14/12 Page 73

5.2.2 Reading, Writing and Copying Buffer Objects

The following functions enqueue commands to read from a buffer object to host memory or
write to a buffer object from host memory.

 cl_int clEnqueueReadBuffer (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_read,
 size_t offset,
 size_t size,
 void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

 cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_write,
 size_t offset,
 size_t size,
 const void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

command_queue refers to the command-queue in which the read / write command will be
queued. command_queue and buffer must be created with the same OpenCL context.

buffer refers to a valid buffer object.

blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBuffer does
not return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadBuffer
queues a non-blocking read command and returns. The contents of the buffer that ptr points to
cannot be used until the read command has completed. The event argument returns an event
object which can be used to query the execution status of the read command. When the read
command has completed, the contents of the buffer that ptr points to can be used by the
application.

Last Revision Date: 11/14/12 Page 74

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr
and enqueues the write operation in the command-queue. The memory pointed to by ptr can be
reused by the application after the clEnqueueWriteBuffer call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-
blocking write. As the write is non-blocking the implementation can return immediately. The
memory pointed to by ptr cannot be reused by the application after the call returns. The event
argument returns an event object which can be used to query the execution status of the write
command. When the write command has completed, the memory pointed to by ptr can then be
reused by the application.

offset is the offset in bytes in the buffer object to read from or write to.

size is the size in bytes of data being read or written.

ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueReadBuffer and clEnqueueWriteBuffer return CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and buffer are
not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out

of bounds or if ptr is a NULL value or if size is 0.

Last Revision Date: 11/14/12 Page 75

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write

operations are blocking and the execution status of any of the events in event_wait_list is
a negative integer value.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer.

 CL_INVALID_OPERATION if clEnqueueReadBuffer is called on buffer which has been
created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_INVALID_OPERATION if clEnqueueWriteBuffer is called on buffer which has been

created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The following functions enqueue commands to read a 2D or 3D rectangular region from a buffer
object to host memory or write a 2D or 3D rectangular region to a buffer object from host
memory.

 cl_int clEnqueueReadBufferRect (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_read,

 const size_t *buffer_origin,
 const size_t *host_origin,

 const size_t *region,
 size_t buffer_row_pitch,
 size_t buffer_slice_pitch,
 size_t host_row_pitch,
 size_t host_slice_pitch,
 void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

Last Revision Date: 11/14/12 Page 76

 cl_int clEnqueueWriteBufferRect (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_write,

 const size_t *buffer_origin,
 const size_t *host_origin,
 const size_t *region,

 size_t buffer_row_pitch,
 size_t buffer_slice_pitch,
 size_t host_row_pitch,
 size_t host_slice_pitch,
 const void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

command_queue refers to the command-queue in which the read / write command will be
queued. command_queue and buffer must be created with the same OpenCL context.

buffer refers to a valid buffer object.

blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBufferRect
does not return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking,
clEnqueueReadBufferRect queues a non-blocking read command and returns. The contents of
the buffer that ptr points to cannot be used until the read command has completed. The event
argument returns an event object which can be used to query the execution status of the read
command. When the read command has completed, the contents of the buffer that ptr points to
can be used by the application.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr
and enqueues the write operation in the command-queue. The memory pointed to by ptr can be
reused by the application after the clEnqueueWriteBufferRect call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-
blocking write. As the write is non-blocking the implementation can return immediately. The
memory pointed to by ptr cannot be reused by the application after the call returns. The event
argument returns an event object which can be used to query the execution status of the write
command. When the write command has completed, the memory pointed to by ptr can then be
reused by the application.

Last Revision Date: 11/14/12 Page 77

buffer_origin defines the (x, y, z) offset in the memory region associated with buffer. For a 2D
rectangle region, the z value given by buffer_origin[2] should be 0. The offset in bytes is
computed as buffer_origin[2] * buffer_slice_pitch + buffer_origin[1] * buffer_row_pitch +
buffer_origin[0].

host_origin defines the (x, y, z) offset in the memory region pointed to by ptr. For a 2D rectangle
region, the z value given by host_origin[2] should be 0. The offset in bytes is computed as
host_origin[2] * host_slice_pitch + host_origin[1] * host_row_pitch + host_origin[0].

region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle
being read or written. For a 2D rectangle copy, the depth value given by region[2] should be 1.
The values in region cannot be 0.

buffer_row_pitch is the length of each row in bytes to be used for the memory region associated
with buffer. If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].

buffer_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with buffer. If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] *
buffer_row_pitch.

host_row_pitch is the length of each row in bytes to be used for the memory region pointed to by
ptr. If host_row_pitch is 0, host_row_pitch is computed as region[0].

host_slice_pitch is the length of each 2D slice in bytes to be used for the memory region pointed
to by ptr. If host_slice_pitch is 0, host_slice_pitch is computed as region[1] * host_row_pitch.

ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueReadBufferRect and clEnqueueWriteBufferRect return CL_SUCCESS if the
function is executed successfully. Otherwise, it returns one of the following errors:

Last Revision Date: 11/14/12 Page 78

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and buffer are
not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if the region being read or written specified by (buffer_origin,

region, buffer_row_pitch, buffer_slice_pitch) is out of bounds.

 CL_INVALID_VALUE if ptr is a NULL value.

 CL_INVALID_VALUE if any region array element is 0.

 CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].

 CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].

 CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] *
buffer_row_pitch and not a multiple of buffer_row_pitch.

 CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] *

host_row_pitch and not a multiple of host_row_pitch.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write

operations are blocking and the execution status of any of the events in event_wait_list is
a negative integer value.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer.

 CL_INVALID_OPERATION if clEnqueueReadBufferRect is called on buffer which has
been created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_INVALID_OPERATION if clEnqueueWriteBufferRect is called on buffer which has

been created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

Last Revision Date: 11/14/12 Page 79

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE:

Calling clEnqueueReadBuffer to read a region of the buffer object with the ptr argument value
set to host_ptr + offset, where host_ptr is a pointer to the memory region specified when the
buffer object being read is created with CL_MEM_USE_HOST_PTR, must meet the following
requirements in order to avoid undefined behavior:

• All commands that use this buffer object or a memory object (buffer or image) created
from this buffer object have finished execution before the read command begins
execution.

• The buffer object or memory objects created from this buffer object are not mapped.

• The buffer object or memory objects created from this buffer object are not used by any
command-queue until the read command has finished execution.

Calling clEnqueueReadBufferRect to read a region of the buffer object with the ptr argument
value set to host_ptr and host_origin, buffer_origin values are the same, where host_ptr is a
pointer to the memory region specified when the buffer object being read is created with
CL_MEM_USE_HOST_PTR, must meet the same requirements given above for
clEnqueueReadBuffer.

Calling clEnqueueWriteBuffer to update the latest bits in a region of the buffer object with the
ptr argument value set to host_ptr + offset, where host_ptr is a pointer to the memory region
specified when the buffer object being written is created with CL_MEM_USE_HOST_PTR, must
meet the following requirements in order to avoid undefined behavior:

• The host memory region given by (host_ptr + offset, cb) contains the latest bits when the
enqueued write command begins execution.

• The buffer object or memory objects created from this buffer object are not mapped.

• The buffer object or memory objects created from this buffer object are not used by any
command-queue until the write command has finished execution.

Calling clEnqueueWriteBufferRect to update the latest bits in a region of the buffer object with
the ptr argument value set to host_ptr and host_origin, buffer_origin values are the same, where
host_ptr is a pointer to the memory region specified when the buffer object being written is
created with CL_MEM_USE_HOST_PTR, must meet the following requirements in order to avoid
undefined behavior:

Last Revision Date: 11/14/12 Page 80

• The host memory region given by (buffer_origin region) contains the latest bits when the

enqueued write command begins execution.

• The buffer object or memory objects created from this buffer object are not mapped.

• The buffer object or memory objects created from this buffer object are not used by any
command-queue until the write command has finished execution.

The function

 cl_int clEnqueueCopyBuffer (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_buffer,
 size_t src_offset,
 size_t dst_offset,
 size_t size,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to copy a buffer object identified by src_buffer to another buffer object
identified by dst_buffer.

command_queue refers to the command-queue in which the copy command will be queued. The
OpenCL context associated with command_queue, src_buffer and dst_buffer must be the same.

src_offset refers to the offset where to begin copying data from src_buffer.

dst_offset refers to the offset where to begin copying data into dst_buffer.

size refers to the size in bytes to copy.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a

Last Revision Date: 11/14/12 Page 81

wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyBuffer returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and
dst_buffer are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

 CL_INVALID_VALUE if src_offset, dst_offset, size, src_offset + size or dst_offset + size

require accessing elements outside the src_buffer and dst_buffer buffer objects
respectively.

 CL_INVALID_VALUE if size is 0.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-

buffer object and the source and destination regions overlap or if src_buffer and
dst_buffer are different sub-buffers of the same associated buffer object and they overlap.
The regions overlap if src_offset <= dst_offset <= src_offset + size – 1 or if dst_offset <=
src_offset <= dst_offset + size – 1.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with src_buffer or dst_buffer.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 82

The function

 cl_int clEnqueueCopyBufferRect (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_buffer,
 const size_t *src_origin,
 const size_t *dst_origin,
 const size_t *region,

 size_t src_row_pitch,
 size_t src_slice_pitch,
 size_t dst_row_pitch,
 size_t dst_slice_pitch,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to copy a 2D or 3D rectangular region from the buffer object identified by
src_buffer to a 2D or 3D region in the buffer object identified by dst_buffer. Copying begins at
the source offset and destination offset which are computed as described below in the description
for src_origin and dst_origin. Each byte of the region's width is copied from the source offset to
the destination offset. After copying each width, the source and destination offsets are
incremented by their respective source and destination row pitches. After copying each 2D
rectangle, the source and destination offsets are incremented by their respective source and
destination slice pitches.

NOTE: If src_buffer and dst_buffer are the same buffer object, src_row_pitch must equal
dst_row_pitch and src_slice_pitch must equal dst_slice_pitch.

command_queue refers to the command-queue in which the copy command will be queued. The
OpenCL context associated with command_queue, src_buffer and dst_buffer must be the same.

src_origin defines the (x, y, z) offset in the memory region associated with src_buffer. For a 2D
rectangle region, the z value given by src_origin[2] should be 0. The offset in bytes is computed
as src_origin[2] * src_slice_pitch + src_origin[1] * src_row_pitch + src_origin[0].

dst_origin defines the (x, y, z) offset in the memory region associated with dst_buffer. For a 2D
rectangle region, the z value given by dst_origin[2] should be 0. The offset in bytes is computed
as dst_origin[2] * dst_slice_pitch + dst_origin[1] * dst_row_pitch + dst_origin[0].

region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle
being copied. For a 2D rectangle, the depth value given by region[2] should be 1. The values in
region cannot be 0.

src_row_pitch is the length of each row in bytes to be used for the memory region associated
with src_buffer. If src_row_pitch is 0, src_row_pitch is computed as region[0].

Last Revision Date: 11/14/12 Page 83

src_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with src_buffer. If src_slice_pitch is 0, src_slice_pitch is computed as region[1] *
src_row_pitch.

dst_row_pitch is the length of each row in bytes to be used for the memory region associated
with dst_buffer. If dst_row_pitch is 0, dst_row_pitch is computed as region[0].

dst_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with dst_buffer. If dst_slice_pitch is 0, dst_slice_pitch is computed as region[1] *
dst_row_pitch.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyBufferRect returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and
dst_buffer are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

 CL_INVALID_VALUE if (src_origin, region, src_row_pitch, src_slice_pitch) or

(dst_origin, region, dst_row_pitch, dst_slice_pitch) require accessing elements outside
the src_buffer and dst_buffer buffer objects respectively.

 CL_INVALID_VALUE if any region array element is 0.

 CL_INVALID_VALUE if src_row_pitch is not 0 and is less than region[0].

Last Revision Date: 11/14/12 Page 84

 CL_INVALID_VALUE if dst_row_pitch is not 0 and is less than region[0].

 CL_INVALID_VALUE if src_slice_pitch is not 0 and is less than region[1] *
src_row_pitch or if src_slice_pitch is not 0 and is not a multiple of src_row_pitch.

 CL_INVALID_VALUE if dst_slice_pitch is not 0 and is less than region[1] *

dst_row_pitch or if dst_slice_pitch is not 0 and is not a multiple of dst_row_pitch.

 CL_INVALID_VALUE if src_buffer and dst_buffer are the same buffer object and
src_slice_pitch is not equal to dst_slice_pitch and src_row_pitch is not equal to
dst_row_pitch.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-

buffer object and the source and destination regions overlap or if src_buffer and
dst_buffer are different sub-buffers of the same associated buffer object and they overlap.
Refer to Appendix E for details on how to determine if source and destination regions
overlap.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with src_buffer or dst_buffer.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 85

5.2.3 Filling Buffer Objects

The function

 cl_int clEnqueueFillBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 const void *pattern,
 size_t pattern_size,
 size_t offset,
 size_t size,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to fill a buffer object with a pattern of a given pattern size. The usage
information which indicates whether the memory object can be read or written by a kernel and/or
the host and is given by the cl_mem_flags argument value specified when buffer is created is
ignored by clEnqueueFillBuffer.

command_queue refers to the command-queue in which the fill command will be queued. The
OpenCL context associated with command_queue and buffer must be the same.

buffer is a valid buffer object.

pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at offset and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL as described in sections 6.1.1 and
6.1.2. For example, if buffer is to be filled with a pattern of float4 values, then pattern will be
a pointer to a cl_float4 value and pattern_size will be sizeof(cl_float4). The
maximum value of pattern_size is the size of the largest integer or floating-point vector data type
supported by the OpenCL device. The memory associated with pattern can be reused or freed
after the function returns.

offset is the location in bytes of the region being filled in buffer and must be a multiple of
pattern_size.

size is the size in bytes of region being filled in buffer and must be a multiple of pattern_size.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

Last Revision Date: 11/14/12 Page 86

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueFillBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and buffer are
not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if offset or offset + size require accessing elements outside the

buffer buffer object respectively.

 CL_INVALID_VALUE if pattern is NULL or if pattern_size is 0 or if pattern_size is not
one of {1, 2, 4, 8, 16, 32, 64, 128}.

 CL_INVALID_VALUE if offset and size are not a multiple of pattern_size.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 87

5.2.4 Mapping Buffer Objects

The function

 void * clEnqueueMapBuffer (cl_command_queue command_queue,

 cl_mem buffer,
 cl_bool blocking_map,

 cl_map_flags map_flags,
 size_t offset,

 size_t size,
 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,
 cl_event *event,

 cl_int *errcode_ret)

enqueues a command to map a region of the buffer object given by buffer into the host address
space and returns a pointer to this mapped region.

command_queue must be a valid command-queue.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, clEnqueueMapBuffer does not return until the specified region
in buffer is mapped into the host address space and the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapBuffer.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped
region returned by clEnqueueMapBuffer cannot be used until the map command has
completed. The event argument returns an event object which can be used to query the execution
status of the map command. When the map command is completed, the application can access
the contents of the mapped region using the pointer returned by clEnqueueMapBuffer.

map_flags is a bit-field and is described in table 5.5.

buffer is a valid buffer object. The OpenCL context associated with command_queue and buffer
must be the same.

offset and size are the offset in bytes and the size of the region in the buffer object that is being
mapped.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must

Last Revision Date: 11/14/12 Page 88

be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clEnqueueMapBuffer will return a pointer to the mapped region. The errcode_ret is set to
CL_SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in
errcode_ret:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue and buffer are not
the same or if the context associated with command_queue and events in event_wait_list
are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if region being mapped given by (offset, size) is out of bounds or if

size is 0 or if values specified in map_flags are not valid.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_MAP_FAILURE if there is a failure to map the requested region into the host address

space. This error cannot occur for buffer objects created with CL_MEM_USE_HOST_PTR
or CL_MEM_ALLOC_HOST_PTR.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is

blocking and the execution status of any of the events in event_wait_list is a negative
integer value.

Last Revision Date: 11/14/12 Page 89

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with buffer.

 CL_INVALID_OPERATION if buffer has been created with

CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_READ
is set in map_flags or if buffer has been created with CL_MEM_HOST_READ_ONLY or
CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or
CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The pointer returned maps a region starting at offset and is at least size bytes in size. The result
of a memory access outside this region is undefined.

NOTE:

If the buffer object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following
will be true:

 The host_ptr specified in clCreateBuffer is guaranteed to contain the latest bits in the
region being mapped when the clEnqueueMapBuffer command has completed.

 The pointer value returned by clEnqueueMapBuffer will be derived from the host_ptr
specified when the buffer object is created.

Mapped buffer objects are unmapped using clEnqueueUnmapMemObject. This is described in
section 5.4.2.

cl_map_flags Description
CL_MAP_READ This flag specifies that the region being mapped

in the memory object is being mapped for
reading.

The pointer returned by
clEnqueueMap{Buffer | Image} is guaranteed
to contain the latest bits in the region being
mapped when the clEnqueueMap{Buffer |
Image} command has completed

CL_MAP_WRITE This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

Last Revision Date: 11/14/12 Page 90

The pointer returned by
clEnqueueMap{Buffer | Image} is guaranteed
to contain the latest bits in the region being
mapped when the clEnqueueMap{Buffer |
Image} command has completed

CL_MAP_WRITE_INVALIDATE_REGION This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

The contents of the region being mapped are to
be discarded. This is typically the case when
the region being mapped is overwritten by the
host. This flag allows the implementation to no
longer guarantee that the pointer returned by
clEnqueueMap{Buffer | Image} contains the
latest bits in the region being mapped which can
be a significant performance enhancement.

CL_MAP_READ or CL_MAP_WRITE and
CL_MAP_WRITE_INVALIDATE_REGION are
mutually exclusive.

 Table 5.5 List of supported cl_map_flags values

Last Revision Date: 11/14/12 Page 91

5.3 Image Objects

An image object is used to store a one-, two- or three- dimensional texture, frame-buffer or
image. The elements of an image object are selected from a list of predefined image formats.
The minimum number of elements in a memory object is one.

5.3.1 Creating Image Objects

A 1D image, 1D image buffer, 1D image array, 2D image, 2D image array and 3D image
object can be created using the following function

 cl_mem clCreateImage (cl_context context,
 cl_mem_flags flags,
 const cl_image_format *image_format,
 const cl_image_desc *image_desc,
 void *host_ptr,
 cl_int *errcode_ret)

context is a valid OpenCL context on which the image object is to be created.

flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in table 5.3.

For all image types except CL_MEM_OBJECT_IMAGE1D_BUFFER, if value specified for flags is
0, the default is used which is CL_MEM_READ_WRITE.

For CL_MEM_OBJECT_IMAGE1D_BUFFER image type, if the CL_MEM_READ_WRITE,
CL_MEM_READ_ONLY or CL_MEM_WRITE_ONLY values are not specified in flags, they are
inherited from the corresponding memory access qualifers associated with buffer. The
CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR
values cannot be specified in flags but are inherited from the corresponding memory access
qualifiers associated with buffer. If CL_MEM_COPY_HOST_PTR is specified in the memory
access qualifier values associated with buffer it does not imply any additional copies when the
sub-buffer is created from buffer. If the CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS values are not specified in
flags, they are inherited from the corresponding memory access qualifiers associated with buffer.

image_format is a pointer to a structure that describes format properties of the image to be
allocated. Refer to section 5.3.1.1 for a detailed description of the image format descriptor.

image_desc is a pointer to a structure that describes type and dimensions of the image to be
allocated. Refer to section 5.3.1.2 for a detailed description of the image descriptor.

Last Revision Date: 11/14/12 Page 92

host_ptr is a pointer to the image data that may already be allocated by the application. Refer to
table below for a description of how large the buffer that host_ptr points to must be.

Image Type Size of buffer that host_ptr points to
CL_MEM_OBJECT_IMAGE1D >= image_row_pitch
CL_MEM_OBJECT_IMAGE1D_BUFFER >= image_row_pitch
CL_MEM_OBJECT_IMAGE2D >= image_row_pitch * image_height
CL_MEM_OBJECT_IMAGE3D >= image_slice_pitch * image_depth
CL_MEM_OBJECT_IMAGE1D_ARRAY >= image_slice_pitch * image_array_size
CL_MEM_OBJECT_IMAGE2D_ARRAY >= image_slice_pitch * image_array_size

For a 3D image or 2D image array, the image data specified by host_ptr is stored as a linear
sequence of adjacent 2D image slices or 2D images respectively. Each 2D image is a linear
sequence of adjacent scanlines. Each scanline is a linear sequence of image elements.

For a 2D image, the image data specified by host_ptr is stored as a linear sequence of adjacent
scanlines. Each scanline is a linear sequence of image elements.

For a 1D image array, the image data specified by host_ptr is stored as a linear sequence of
adjacent 1D images respectively. Each 1D image or 1D image buffer is a single scanline which
is a linear sequence of adjacent elements.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateImage returns a valid non-zero image object created and the errcode_ret is set to
CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in image_format are
not valid or if image_format is NULL.

 CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid or if

image_desc is NULL.

 CL_INVALID_IMAGE_SIZE if image dimensions specified in image_desc exceed the
minimum maximum image dimensions described in table 4.3 for all devices in context.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or

CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but
CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

Last Revision Date: 11/14/12 Page 93

 CL_INVALID_VALUE if a 1D image buffer is being created and the buffer object was
created with CL_MEM_WRITE_ONLY and flags specifies CL_MEM_READ_WRITE or
CL_MEM_READ_ONLY, or if the buffer object was created with CL_MEM_READ_ONLY
and flags specifies CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY, or if flags
specifies CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR or
CL_MEM_COPY_HOST_PTR.

 CL_INVALID_VALUE if a 1D image buffer is being created and the buffer object was

created with CL_MEM_HOST_WRITE_ONLY and flags specifies
CL_MEM_HOST_READ_ONLY, or if the buffer object was created with
CL_MEM_HOST_READ_ONLY and flags specifies CL_MEM_HOST_WRITE_ONLY, or if
the buffer object was created with CL_MEM_HOST_NO_ACCESS and flags specifies
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if the image_format is not supported.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

image object.

 CL_INVALID_OPERATION if there are no devices in context that support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

5.3.1.1 Image Format Descriptor

The image format descriptor structure is defined as

 typedef struct _cl_image_format {
 cl_channel_order image_channel_order;
 cl_channel_type image_channel_data_type;
 } cl_image_format;

image_channel_order specifies the number of channels and the channel layout i.e. the
memory layout in which channels are stored in the image. Valid values are described in table
5.6.

image_channel_data_type describes the size of the channel data type. The list of
supported values is described in table 5.7. The number of bits per element determined by the
image_channel_data_type and image_channel_order must be a power of two.

Last Revision Date: 11/14/12 Page 94

Enum values that can be specified in channel_order
CL_R, CL_Rx or CL_A
CL_INTENSITY. This format can only be used if channel data type = CL_UNORM_INT8,
CL_UNORM_INT16, CL_SNORM_INT8, CL_SNORM_INT16, CL_HALF_FLOAT or
CL_FLOAT.
CL_LUMINANCE. This format can only be used if channel data type =
CL_UNORM_INT8, CL_UNORM_INT16, CL_SNORM_INT8, CL_SNORM_INT16,
CL_HALF_FLOAT or CL_FLOAT.
CL_RG, CL_RGx or CL_RA
CL_RGB or CL_RGBx. This format can only be used if channel data type =
CL_UNORM_SHORT_565, CL_UNORM_SHORT_555, or CL_UNORM_INT_101010.
CL_RGBA
CL_ARGB, CL_BGRA. This format can only be used if channel data type =
CL_UNORM_INT8, CL_SNORM_INT8, CL_SIGNED_INT8 or CL_UNSIGNED_INT8.

 Table 5.6 List of supported Image Channel Order Values

Image Channel Data Type Description
CL_SNORM_INT8 Each channel component is a normalized signed 8-bit

integer value
CL_SNORM_INT16 Each channel component is a normalized signed 16-bit

integer value
CL_UNORM_INT8 Each channel component is a normalized unsigned 8-bit

integer value
CL_UNORM_INT16 Each channel component is a normalized unsigned 16-

bit integer value

CL_UNORM_SHORT_565 Represents a normalized 5-6-5 3-channel RGB image.

The channel order must be CL_RGB or CL_RGBx.
CL_UNORM_SHORT_555 Represents a normalized x-5-5-5 4-channel xRGB

image. The channel order must be CL_RGB or
CL_RGBx.

CL_UNORM_INT_101010

Represents a normalized x-10-10-10 4-channel xRGB
image. The channel order must be CL_RGB or
CL_RGBx.

CL_SIGNED_INT8 Each channel component is an unnormalized signed 8-

bit integer value
CL_SIGNED_INT16 Each channel component is an unnormalized signed 16-

bit integer value
CL_SIGNED_INT32 Each channel component is an unnormalized signed 32-

bit integer value
CL_UNSIGNED_INT8 Each channel component is an unnormalized unsigned

8-bit integer value

Last Revision Date: 11/14/12 Page 95

CL_UNSIGNED_INT16 Each channel component is an unnormalized unsigned
16-bit integer value

CL_UNSIGNED_INT32 Each channel component is an unnormalized unsigned
32-bit integer value

CL_HALF_FLOAT Each channel component is a 16-bit half-float value
CL_FLOAT Each channel component is a single precision floating-

point value

 Table 5.7 List of supported Image Channel Data Types

For example, to specify a normalized unsigned 8-bit / channel RGBA image,
image_channel_order = CL_RGBA, and image_channel_data_type =
CL_UNORM_INT8. The memory layout of this image format is described below:

Similar, if image_channel_order = CL_RGBA and image_channel_data_type =
CL_SIGNED_INT16, the memory layout of this image format is described below:

image_channel_data_type values of CL_UNORM_SHORT_565,
CL_UNORM_SHORT_555 and CL_UNORM_INT_101010 are special cases of packed image
formats where the channels of each element are packed into a single unsigned short or unsigned
int. For these special packed image formats, the channels are normally packed with the first
channel in the most significant bits of the bitfield, and successive channels occupying
progressively less significant locations. For CL_UNORM_SHORT_565, R is in bits 15:11, G is
in bits 10:5 and B is in bits 4:0. For CL_UNORM_SHORT_555, bit 15 is undefined, R is in
bits 14:10, G in bits 9:5 and B in bits 4:0. For CL_UNORM_INT_101010, bits 31:30 are
undefined, R is in bits 29:20, G in bits 19:10 and B in bits 9:0.

OpenCL implementations must maintain the minimum precision specified by the number of bits
in image_channel_data_type. If the image format specified by
image_channel_order, and image_channel_data_type cannot be supported by the
OpenCL implementation, then the call to clCreateImage will return a NULL memory object.

R G B A
Byte
Offset 0 1 2 3

R G B A
Byte
Offset 0 2 4 6

Last Revision Date: 11/14/12 Page 96

5.3.1.2 Image Descriptor

The image descriptor structure describes the type and dimensions of the image or image array
and is defined as:

 typedef struct _cl_image_desc {
 cl_mem_object_type image_type,
 size_t image_width;
 size_t image_height;
 size_t image_depth;
 size_t image_array_size;
 size_t image_row_pitch;
 size_t image_slice_pitch;
 cl_uint num_mip_levels;
 cl_uint num_samples;
 cl_mem buffer;
 } cl_image_desc;

image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D,
CL_MEM_OBJECT_IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE1D_ARRAY,
CL_MEM_OBJECT_IMAGE2D, CL_MEM_OBJECT_IMAGE2D_ARRAY or
CL_MEM_OBJECT_IMAGE3D.

image_width is the width of the image in pixels. For a 2D image and image array, the image
width must be a value >= 1 and <= CL_DEVICE_IMAGE2D_MAX_WIDTH. For a 3D image, the
image width must be a value >=1 and <= CL_DEVICE_IMAGE3D_MAX_WIDTH. For a 1D
image buffer, the image width must be a value >=1 and <=
CL_DEVICE_IMAGE_MAX_BUFFER_SIZE. For a 1D image and 1D image array, the image
width must be a value >=1 and <= CL_DEVICE_IMAGE2D_MAX_WIDTH.

image_height is height of the image in pixels. This is only used if the image is a 2D, 3D or
2D image array. For a 2D image or image array, the image height must be a value >=1 and <=
CL_DEVICE_IMAGE2D_MAX_HEIGHT. For a 3D image, the image height must be a value >=1
and <= CL_DEVICE_IMAGE3D_MAX_HEIGHT.

image_depth is the depth of the image in pixels. This is only used if the image is a 3D image
and must be a value >= 1 and <= CL_DEVICE_IMAGE3D_MAX_DEPTH.

image_array_size11 is the number of images in the image array. This is only used if the
image is a 1D or 2D image array. The values for image_array_size, if specified, must be a
value >= 1 and <= CL_DEVICE_IMAGE_MAX_ARRAY_SIZE.

11 Note that reading and writing 2D image arrays from a kernel with image_array_size =1 may be lower
performance than 2D images.

Last Revision Date: 11/14/12 Page 97

image_row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can
be either 0 or >= image_width * size of element in bytes if host_ptr is not NULL. If host_ptr
is not NULL and image_row_pitch = 0, image_row_pitch is calculated as
image_width * size of element in bytes. If image_row_pitch is not 0, it must be a
multiple of the image element size in bytes.

image_slice_pitch is the size in bytes of each 2D slice in the 3D image or the size in bytes
of each image in a 1D or 2D image array. This must be 0 if host_ptr is NULL. If host_ptr is not
NULL, image_slice_pitch can be either 0 or >= image_row_pitch *
image_height for a 2D image array or 3D image and can be either 0 or >=
image_row_pitch for a 1D image array. If host_ptr is not NULL and
image_slice_pitch = 0, image_slice_pitch is calculated as image_row_pitch *
image_height for a 2D image array or 3D image and image_row_pitch for a 1D image
array. If image_slice_pitch is not 0, it must be a multiple of the image_row_pitch.

num_mip_levels and num_samples must be 0.

buffer refers to a valid buffer memory object if image_type is
CL_MEM_OBJECT_IMAGE1D_BUFFER. Otherwise it must be NULL. For a 1D image buffer
object, the image pixels are taken from the buffer object’s data store. When the contents of a
buffer object’s data store are modified, those changes are reflected in the contents of the 1D
image buffer object and vice-versa at corresponding sychronization points. The image_width
* size of element in bytes must be <= size of buffer object data store.

NOTE:
Concurrent reading from, writing to and copying between both a buffer object and 1D image
buffer object associated with the buffer object is undefined. Only reading from both a buffer
object and 1D image buffer object associated with the buffer object is defined.

5.3.2 Querying List of Supported Image Formats

The function

 cl_int clGetSupportedImageFormats (cl_context context,
 cl_mem_flags flags,
 cl_mem_object_type image_type,
 cl_uint num_entries,
 cl_image_format *image_formats,
 cl_uint *num_image_formats)

can be used to get the list of image formats supported by an OpenCL implementation when the
following information about an image memory object is specified:

 Context

Last Revision Date: 11/14/12 Page 98

 Image type – 1D, 2D, or 3D image, 1D image buffer, 1D or 2D image array.
 Image object allocation information

clGetSupportedImageFormats returns a union of image formats supported by all devices in the
context.

context is a valid OpenCL context on which the image object(s) will be created.

flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in table 5.3.

image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D,
CL_MEM_OBJECT_IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE2D,
CL_MEM_OBJECT_IMAGE3D, CL_MEM_OBJECT_IMAGE1D_ARRAY or
CL_MEM_OBJECT_IMAGE2D_ARRAY.

num_entries specifies the number of entries that can be returned in the memory location given by
image_formats.

image_formats is a pointer to a memory location where the list of supported image formats are
returned. Each entry describes a cl_image_format structure supported by the OpenCL
implementation. If image_formats is NULL, it is ignored.

num_image_formats is the actual number of supported image formats for a specific context and
values specified by flags. If num_image_formats is NULL, it is ignored.

clGetSupportedImageFormats returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if flags or image_type are not valid, or if num_entries is 0 and
image_formats is not NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

If CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_TRUE, the values assigned to
CL_DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS,
CL_DEVICE_IMAGE2D_MAX_WIDTH, CL_DEVICE_IMAGE2D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_DEPTH and CL_DEVICE_MAX_SAMPLERS by the
implementation must be greater than or equal to the minimum values specified in table 4.3.

Last Revision Date: 11/14/12 Page 99

5.3.2.1 Minimum List of Supported Image Formats

For 1D, 2D, 3D image objects, 1D and 2D image array objects, the mandated minimum list of
image formats that must be supported by all devices (for reading and writing) that support
images is described in table 5.8.

4 CL_RGBA CL_UNORM_INT8
CL_UNORM_INT16

CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32

CL_HALF_FLOAT
CL_FLOAT

4 CL_BGRA CL_UNORM_INT8

 Table 5.8 Min. list of supported image formats.

5.3.3 Reading, Writing and Copying Image Objects

The following functions enqueue commands to read from an image or image array object to host
memory or write to an image or image array object from host memory.

 cl_int clEnqueueReadImage (cl_command_queue command_queue,

 cl_mem image,
 cl_bool blocking_read,
 const size_t *origin,
 const size_t *region,
 size_t row_pitch,
 size_t slice_pitch,
 void *ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

image_num_channels image_channel_order image_channel_data_type

Last Revision Date: 11/14/12 Page 100

cl_int clEnqueueWriteImage (cl_command_queue command_queue,

 cl_mem image,
 cl_bool blocking_write,
 const size_t *origin,
 const size_t *region,
 size_t input_row_pitch,

 size_t input_slice_pitch,
 const void * ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

command_queue refers to the command-queue in which the read / write command will be
queued. command_queue and image must be created with the same OpenCL context.

image refers to a valid image or image array object.

blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadImage does
not return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadImage
queues a non-blocking read command and returns. The contents of the buffer that ptr points to
cannot be used until the read command has completed. The event argument returns an event
object which can be used to query the execution status of the read command. When the read
command has completed, the contents of the buffer that ptr points to can be used by the
application.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr
and enqueues the write command in the command-queue. The memory pointed to by ptr can be
reused by the application after the clEnqueueWriteImage call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-
blocking write. As the write is non-blocking the implementation can return immediately. The
memory pointed to by ptr cannot be reused by the application after the call returns. The event
argument returns an event object which can be used to query the execution status of the write
command. When the write command has completed, the memory pointed to by ptr can then be
reused by the application.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer
object, origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be

Last Revision Date: 11/14/12 Page 101

0. If image is a 1D image array object, origin[1] describes the image index in the 1D image
array. If image is a 2D image array object, origin[2] describes the image index in the 2D image
array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is
a 2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

row_pitch in clEnqueueReadImage and input_row_pitch in clEnqueueWriteImage is the
length of each row in bytes. This value must be greater than or equal to the element size in bytes
* width. If row_pitch (or input_row_pitch) is set to 0, the appropriate row pitch is calculated
based on the size of each element in bytes multiplied by width.

slice_pitch in clEnqueueReadImage and input_slice_pitch in clEnqueueWriteImage is the size
in bytes of the 2D slice of the 3D region of a 3D image or each image of a 1D or 2D image array
being read or written respectively. This must be 0 if image is a 1D or 2D image. This value
must be greater than or equal to row_pitch * height. If slice_pitch (or input_slice_pitch) is set to
0, the appropriate slice pitch is calculated based on the row_pitch * height.

ptr is the pointer to a buffer in host memory where image data is to be read from or to be written
to.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular read / write command and can be used
to query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. If the event_wait_list and the event arguments are not
NULL, the event argument should not refer to an element of the event_wait_list array.

clEnqueueReadImage and clEnqueueWriteImage return CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

Last Revision Date: 11/14/12 Page 102

 CL_INVALID_CONTEXT if the context associated with command_queue and image are
not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if the region being read or written specified by origin and region

is out of bounds or if ptr is a NULL value.

 CL_INVALID_VALUE if values in origin and region do not follow rules described in the
argument description for origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for image are not supported by device associated with
queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with image.

 CL_INVALID_OPERATION if the device associated with command_queue does not

support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_INVALID_OPERATION if clEnqueueReadImage is called on image which has been
created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_INVALID_OPERATION if clEnqueueWriteImage is called on image which has been

created with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write
operations are blocking and the execution status of any of the events in event_wait_list is
a negative integer value.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE:

Last Revision Date: 11/14/12 Page 103

Calling clEnqueueReadImage to read a region of the image with the ptr argument value set to
host_ptr + (origin[2] * image slice pitch + origin[1] * image row pitch + origin[0] * bytes per
pixel), where host_ptr is a pointer to the memory region specified when the image being read is
created with CL_MEM_USE_HOST_PTR, must meet the following requirements in order to avoid
undefined behavior:

• All commands that use this image object have finished execution before the read
command begins execution.

• The row_pitch and slice_pitch argument values in clEnqueueReadImage must be set to
the image row pitch and slice pitch.

• The image object is not mapped.

• The image object is not used by any command-queue until the read command has
finished execution.

Calling clEnqueueWriteImage to update the latest bits in a region of the image with the ptr
argument value set to host_ptr + (origin[2] * image slice pitch + origin[1] * image row pitch +
origin[0] * bytes per pixel), where host_ptr is a pointer to the memory region specified when the
image being written is created with CL_MEM_USE_HOST_PTR, must meet the following
requirements in order to avoid undefined behavior:

• The host memory region being written contains the latest bits when the enqueued write
command begins execution.

• The input_row_pitch and input_slice_pitch argument values in clEnqueueWriteImage
must be set to the image row pitch and slice pitch.

• The image object is not mapped.

• The image object is not used by any command-queue until the write command has
finished execution.

The function

 cl_int clEnqueueCopyImage (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_image,

 const size_t *src_origin,
 const size_t *dst_origin,
 const size_t *region,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

Last Revision Date: 11/14/12 Page 104

enqueues a command to copy image objects. src_image and dst_image can be 1D, 2D, 3D
image or a 1D, 2D image array objects allowing us to perform the following actions:

 Copy a 1D image object to a 1D image object.
 Copy a 1D image object to a scanline of a 2D image object and vice-versa.
 Copy a 1D image object to a scanline of a 2D slice of a 3D image object and vice-versa.
 Copy a 1D image object to a scanline of a specific image index of a 1D or 2D image

array object and vice-versa.
 Copy a 2D image object to a 2D image object.
 Copy a 2D image object to a 2D slice of a 3D image object and vice-versa.
 Copy a 2D image object to a specific image index of a 2D image array object and vice-

versa
 Copy images from a 1D image array object to a 1D image array object.
 Copy images from a 2D image array object to a 2D image array object.
 Copy a 3D image object to a 3D image object.

command_queue refers to the command-queue in which the copy command will be queued. The
OpenCL context associated with command_queue, src_image and dst_image must be the same.

src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image object,
src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array object,
src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[1] describes the
image index in the 1D image array. If src_image is a 2D image array object, src_origin[2]
describes the image index in the 2D image array.

dst_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D
image buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array
object, dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes
the image index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2]
describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If
src_image or dst_image is a 2D image object, region[2] must be 1. If src_image or dst_image is
a 1D image or 1D image buffer object, region[1] and region[2] must be 1. If src_image or
dst_image is a 1D image array object, region[2] must be 1. The values in region cannot be 0.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list

Last Revision Date: 11/14/12 Page 105

must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

It is currently a requirement that the src_image and dst_image image memory objects for
clEnqueueCopyImage must have the exact same image format (i.e. the cl_image_format
descriptor specified when src_image and dst_image are created must match).

clEnqueueCopyImage returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_image and
dst_image are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_image and dst_image are not valid image objects.

 CL_IMAGE_FORMAT_MISMATCH if src_image and dst_image do not use the same

image format.

 CL_INVALID_VALUE if the 2D or 3D rectangular region specified by src_origin and
src_origin + region refers to a region outside src_image, or if the 2D or 3D rectangular
region specified by dst_origin and dst_origin + region refers to a region outside
dst_image.

 CL_INVALID_VALUE if values in src_origin, dst_origin and region do not follow rules

described in the argument description for src_origin, dst_origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for src_image or dst_image are not supported by device
associated with queue.

Last Revision Date: 11/14/12 Page 106

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data
type) for src_image or dst_image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with src_image or dst_image.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

 CL_INVALID_OPERATION if the device associated with command_queue does not
support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_MEM_COPY_OVERLAP if src_image and dst_image are the same image object and

the source and destination regions overlap.

5.3.4 Filling Image Objects

The function

 cl_int clEnqueueFillImage (cl_command_queue command_queue,
 cl_mem image,
 const void *fill_color,
 const size_t *origin,
 const size_t *region,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to fill an image object with a specified color. The usage information
which indicates whether the memory object can be read or written by a kernel and/or the host
and is given by the cl_mem_flags argument value specified when image is created is ignored by
clEnqueueFillImage.

command_queue refers to the command-queue in which the fill command will be queued. The
OpenCL context associated with command_queue and image must be the same.

image is a valid image object.

fill_color is the fill color. The fill color is a four component RGBA floating-point color value if
the image channel data type is not an unnormalized signed and unsigned integer type, is a four
component signed integer value if the image channel data type is an unnormalized signed integer
type and is a four component unsigned integer value if the image channel data type is an

Last Revision Date: 11/14/12 Page 107

unnormalized unsigned integer type. The fill color will be converted to the appropriate image
channel format and order associated with image as described in sections 6.12.14 and 8.3.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer
object, origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be
0. If image is a 1D image array object, origin[1] describes the image index in the 1D image
array. If image is a 2D image array object, origin[2] describes the image index in the 2D image
array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is
a 2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueFillImage returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and image are
not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if fill_color is NULL.

Last Revision Date: 11/14/12 Page 108

 CL_INVALID_VALUE if the region being filled as specified by origin and region is out of
bounds or if ptr is a NULL value.

 CL_INVALID_VALUE if values in origin and region do not follow rules described in the

argument description for origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for image are not supported by device associated with
queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with image.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

5.3.5 Copying between Image and Buffer Objects

The function

 cl_int clEnqueueCopyImageToBuffer (cl_command_queue command_queue,
 cl_mem src_image,
 cl_mem dst_buffer,

 const size_t *src_origin,
 const size_t *region,

 size_t dst_offset,
 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,
 cl_event *event)

enqueues a command to copy an image object to a buffer object.

command_queue must be a valid command-queue. The OpenCL context associated with
command_queue, src_image and dst_buffer must be the same.

Last Revision Date: 11/14/12 Page 109

src_image is a valid image object.

dst_buffer is a valid buffer object.

src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If src_image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image or 1D
image buffer object, src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array
object, src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[1] describes
the image index in the 1D image array. If src_image is a 2D image array object, src_origin[2]
describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If
src_image is a 2D image object, region[2] must be 1. If src_image is a 1D image or 1D image
buffer object, region[1] and region[2] must be 1. If src_image is a 1D image array object,
region[2] must be 1. The values in region cannot be 0.

dst_offset refers to the offset where to begin copying data into dst_buffer. The size in bytes of
the region to be copied referred to as dst_cb is computed as width * height * depth * bytes/image
element if src_image is a 3D image object, is computed as width * height * bytes/image element
if src_image is a 2D image, is computed as width * height * arraysize * bytes/image element if
src_image is a 2D image array object, is computed as width * bytes/image element if src_image
is a 1D image or 1D image buffer object and is computed as width * arraysize * bytes/image
element if src_image is a 1D image array object.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyImageToBuffer returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

Last Revision Date: 11/14/12 Page 110

 CL_INVALID_CONTEXT if the context associated with command_queue, src_image and

dst_buffer are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_image is not a valid image object or dst_buffer is not

a valid buffer object or if src_image is a 1D image buffer object created from dst_buffer.

 CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by src_origin and
src_origin + region refers to a region outside src_image, or if the region specified by
dst_offset and dst_offset + dst_cb to a region outside dst_buffer.

 CL_INVALID_VALUE if values in src_origin and region do not follow rules described in

the argument description for src_origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for src_image are not supported by device associated
with queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for src_image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with src_image or dst_buffer.

 CL_INVALID_OPERATION if the device associated with command_queue does not

support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 111

The function

 cl_int clEnqueueCopyBufferToImage (cl_command_queue command_queue,
 cl_mem src_buffer,
 cl_mem dst_image,
 size_t src_offset,

 const size_t *dst_origin,
 const size_t *region,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to copy a buffer object to an image object.

command_queue must be a valid command-queue. The OpenCL context associated with
command_queue, src_buffer and dst_image must be the same.

src_buffer is a valid buffer object.

dst_image is a valid image object.

src_offset refers to the offset where to begin copying data from src_buffer.

dst_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D
image buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array
object, dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes
the image index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2]
describes the image index in the 2D image array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If
dst_image is a 2D image object, region[2] must be 1. If dst_image is a 1D image or 1D image
buffer object, region[1] and region[2] must be 1. If dst_image is a 1D image array object,
region[2] must be 1. The values in region cannot be 0.

The size in bytes of the region to be copied from src_buffer referred to as src_cb is computed as
width * height * depth * bytes/image element if dst_image is a 3D image object, is computed as
width * height * bytes/image element if dst_image is a 2D image, is computed as width * height
* arraysize * bytes/image element if dst_image is a 2D image array object, is computed as width
* bytes/image element if dst_image is a 1D image or 1D image buffer object and is computed as
width * arraysize * bytes/image element if dst_image is a 1D image array object.

Last Revision Date: 11/14/12 Page 112

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular copy command and can be used to
query or queue a wait for this particular command to complete. event can be NULL in which
case it will not be possible for the application to query the status of this command or queue a
wait for this command to complete. clEnqueueBarrierWithWaitList can be used instead. If
the event_wait_list and the event arguments are not NULL, the event argument should not refer to
an element of the event_wait_list array.

clEnqueueCopyBufferToImage returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and
dst_image are not the same or if the context associated with command_queue and events
in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if src_buffer is not a valid buffer object or dst_image is not

a valid image object or if dst_image is a 1D image buffer object created from src_buffer.

 CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by dst_origin and
dst_origin + region refer to a region outside dst_image, or if the region specified by
src_offset and src_offset + src_cb refer to a region outside src_buffer.

 CL_INVALID_VALUE if values in dst_origin and region do not follow rules described in

the argument description for dst_origin and region.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset

specified when the sub-buffer object is created is not aligned to
CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for dst_image are not supported by device associated
with queue.

Last Revision Date: 11/14/12 Page 113

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data
type) for dst_image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with src_buffer or dst_image.

 CL_INVALID_OPERATION if the device associated with command_queue does not
support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

5.3.6 Mapping Image Objects

The function

 void * clEnqueueMapImage (cl_command_queue command_queue,

 cl_mem image,
 cl_bool blocking_map,
 cl_map_flags map_flags,
 const size_t *origin,
 const size_t *region,
 size_t *image_row_pitch,
 size_t *image_slice_pitch,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event,
 cl_int *errcode_ret)

enqueues a command to map a region in the image object given by image into the host address
space and returns a pointer to this mapped region.

command_queue must be a valid command-queue.

image is a valid image object. The OpenCL context associated with command_queue and image
must be the same.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, clEnqueueMapImage does not return until the specified region in
image is mapped into the host address space and the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapImage.

Last Revision Date: 11/14/12 Page 114

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped
region returned by clEnqueueMapImage cannot be used until the map command has completed.
The event argument returns an event object which can be used to query the execution status of
the map command. When the map command is completed, the application can access the
contents of the mapped region using the pointer returned by clEnqueueMapImage.

map_flags is a bit-field and is described in table 5.5.

origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array.
If image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer
object, origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be
0. If image is a 1D image array object, origin[1] describes the image index in the 1D image
array. If image is a 2D image array object, origin[2] describes the image index in the 2D image
array.

region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the
(width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is
a 2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The
values in region cannot be 0.

image_row_pitch returns the scan-line pitch in bytes for the mapped region. This must be a non-
NULL value.

image_slice_pitch returns the size in bytes of each 2D slice of a 3D image or the size of each 1D
or 2D image in a 1D or 2D image array for the mapped region. For a 1D and 2D image, zero is
returned if this argument is not NULL. For a 3D image, 1D and 2D image array,
image_slice_pitch must be a non-NULL value.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueMapImage can be executed. If event_wait_list is NULL, then clEnqueueMapImage
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

Last Revision Date: 11/14/12 Page 115

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clEnqueueMapImage will return a pointer to the mapped region. The errcode_ret is set to
CL_SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in
errcode_ret:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue and image are not
the same or if context associated with command_queue and events in event_wait_list are
not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if region being mapped given by (origin, origin+region) is out of

bounds or if values specified in map_flags are not valid.

 CL_INVALID_VALUE if values in origin and region do not follow rules described in the
argument description for origin and region.

 CL_INVALID_VALUE if image_row_pitch is NULL.

 CL_INVALID_VALUE if image is a 3D image, 1D or 2D image array object and

image_slice_pitch is NULL.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or

compute row and/or slice pitch) for image are not supported by device associated with
queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data

type) for image are not supported by device associated with queue.

 CL_MAP_FAILURE if there is a failure to map the requested region into the host address
space. This error cannot occur for image objects created with CL_MEM_USE_HOST_PTR
or CL_MEM_ALLOC_HOST_PTR.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is

blocking and the execution status of any of the events in event_wait_list is a negative
integer value.

Last Revision Date: 11/14/12 Page 116

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with image.

 CL_INVALID_OPERATION if the device associated with command_queue does not
support images (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_INVALID_OPERATION if image has been created with

CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_READ
is set in map_flags or if image has been created with CL_MEM_HOST_READ_ONLY or
CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or
CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The pointer returned maps a 1D, 2D or 3D region starting at origin and is at least region[0]
pixels in size for a 1D image, 1D image buffer or 1D image array, (image_row_pitch *
region[1]) pixels in size for a 2D image or 2D image array, and (image_slice_pitch * region[2])
pixels in size for a 3D image. The result of a memory access outside this region is undefined.

If the image object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following
will be true:

 The host_ptr specified in clCreateImage is guaranteed to contain the latest bits in the
region being mapped when the clEnqueueMapImage command has completed.

 The pointer value returned by clEnqueueMapImage will be derived from the host_ptr
specified when the image object is created.

Mapped image objects are unmapped using clEnqueueUnmapMemObject. This is described in
section 5.4.2.

5.3.7 Image Object Queries

To get information that is common to all memory objects (buffer and image objects), use the
clGetMemObjectInfo function described in section 5.4.5.

To get information specific to an image object created with clCreateImage, use the following
function

Last Revision Date: 11/14/12 Page 117

 cl_int clGetImageInfo (cl_mem image,

 cl_image_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

image specifies the image object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetImageInfo is described in table 5.9.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.9.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

clGetImageInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.9 and param_value is
not NULL.

 CL_INVALID_MEM_OBJECT if image is a not a valid image object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

cl_image_info Return type Info. returned in param_value
CL_IMAGE_FORMAT cl_image_format Return image format descriptor specified

when image is created with
clCreateImage.

CL_IMAGE_ELEMENT_SIZE size_t Return size of each element of the image
memory object given by image. An
element is made up of n channels. The
value of n is given in cl_image_format
descriptor.

Last Revision Date: 11/14/12 Page 118

CL_IMAGE_ROW_PITCH size_t Return calculated row pitch in bytes of a
row of elements of the image object given
by image.

CL_IMAGE_SLICE_PITCH size_t Return calculated slice pitch in bytes of a
2D slice for the 3D image object or size of
each image in a 1D or 2D image array
given by image. For a 1D image, 1D
image buffer and 2D image object return 0.

CL_IMAGE_WIDTH size_t Return width of the image in pixels.
CL_IMAGE_HEIGHT size_t Return height of the image in pixels. For a

1D image, 1D image buffer and 1D image
array object, height = 0.

CL_IMAGE_DEPTH size_t Return depth of the image in pixels. For a
1D image, 1D image buffer, 2D image or
1D and 2D image array object, depth = 0.

CL_IMAGE_ARRAY_SIZE size_t Return number of images in the image
array. If image is not an image array, 0 is
returned.

CL_IMAGE_BUFFER cl_mem Return buffer object associated with image.
CL_IMAGE_NUM_MIP_
LEVELS

cl_uint Return num_mip_levels associated with
image.

CL_IMAGE_NUM_SAMPLES cl_uint Return num_samples associated with
image.

Table 5.9 List of supported param_names by clGetImageInfo

Last Revision Date: 11/14/12 Page 119

5.4 Querying, Unmapping, Migrating, Retaining and
Releasing Memory Objects

5.4.1 Retaining and Releasing Memory Objects

The function

 cl_int clRetainMemObject (cl_mem memobj)

increments the memobj reference count. clRetainMemObject returns CL_SUCCESS if the
function is executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object (buffer or image
object).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

clCreateBuffer, clCreateSubBuffer and clCreateImage perform an implicit retain.

The function

 cl_int clReleaseMemObject (cl_mem memobj)

decrements the memobj reference count. clReleaseMemObject returns CL_SUCCESS if the
function is executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

After the memobj reference count becomes zero and commands queued for execution on a
command-queue(s) that use memobj have finished, the memory object is deleted. If memobj is a
buffer object, memobj cannot be deleted until all sub-buffer objects associated with memobj are
deleted.

Last Revision Date: 11/14/12 Page 120

The function

 cl_int clSetMemObjectDestructorCallback (cl_mem memobj,
 void (CL_CALLBACK *pfn_notify)(cl_mem memobj,

 void *user_data),
 void *user_data)

registers a user callback function with a memory object. Each call to
clSetMemObjectDestructorCallback registers the specified user callback function on a
callback stack associated with memobj. The registered user callback functions are called in the
reverse order in which they were registered. The user callback functions are called and then the
memory object’s resources are freed and the memory object is deleted. This provides a
mechanism for the application (and libraries) using memobj to be notified when the memory
referenced by host_ptr, specified when the memory object is created and used as the storage bits
for the memory object, can be reused or freed.

memobj is a valid memory object.

pfn_notify is the callback function that can be registered by the application. This callback
function may be called asynchronously by the OpenCL implementation. It is the application’s
responsibility to ensure that the callback function is thread-safe. The parameters to this callback
function are:

 memobj is the memory object being deleted. When the user callback is called by the
implementation, this memory object is not longer valid. memobj is only provided for
reference purposes.

 user_data is a pointer to user supplied data.

user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

clSetMemObjectDestructorCallback returns CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

 CL_INVALID_VALUE if pfn_notify is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 121

NOTE: When the user callback function is called by the implementation, the contents of the
memory region pointed to by host_ptr (if the memory object is created with
CL_MEM_USE_HOST_PTR) are undefined. The callback function is typically used by the
application to either free or reuse the memory region pointed to by host_ptr.

The behavior of calling expensive system routines, OpenCL API calls to create contexts or
command-queues, or blocking OpenCL operations from the following list below, in a callback is
undefined.

 clFinish,
 clWaitForEvents,
 blocking calls to clEnqueueReadBuffer, clEnqueueReadBufferRect,

 clEnqueueWriteBuffer, clEnqueueWriteBufferRect,
blocking calls to clEnqueueReadImage and clEnqueueWriteImage,

 blocking calls to clEnqueueMapBuffer,
 clEnqueueMapImage,

 blocking calls to clBuildProgram, clCompileProgram or clLinkProgram

If an application needs to wait for completion of a routine from the above list in a callback,
please use the non-blocking form of the function, and assign a completion callback to it to do the
remainder of your work. Note that when a callback (or other code) enqueues commands to a
command-queue, the commands are not required to begin execution until the queue is flushed.
In standard usage, blocking enqueue calls serve this role by implicitly flushing the queue. Since
blocking calls are not permitted in callbacks, those callbacks that enqueue commands on a
command queue should either call clFlush on the queue before returning or arrange for clFlush
to be called later on another thread.

The user callback function may not call OpenCL APIs with the memory object for which the
callback function is invoked and for such cases the behavior of OpenCL APIs is considered to be
undefined.

5.4.2 Unmapping Mapped Memory Objects

The function

 cl_int clEnqueueUnmapMemObject (cl_command_queue command_queue,

 cl_mem memobj,
 void *mapped_ptr,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to unmap a previously mapped region of a memory object. Reads or
writes from the host using the pointer returned by clEnqueueMapBuffer or
clEnqueueMapImage are considered to be complete.

Last Revision Date: 11/14/12 Page 122

command_queue must be a valid command-queue.

memobj is a valid memory object. The OpenCL context associated with command_queue and
memobj must be the same.

mapped_ptr is the host address returned by a previous call to clEnqueueMapBuffer, or
clEnqueueMapImage for memobj.

event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueUnmapMemObject can be executed. If event_wait_list is NULL, then
clEnqueueUnmapMemObject does not wait on any event to complete. If event_wait_list is
NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of events
pointed to by event_wait_list must be valid and num_events_in_wait_list must be greater than 0.
The events specified in event_wait_list act as synchronization points. The context associated
with events in event_wait_list and command_queue must be the same. The memory associated
with event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. clEnqueueBarrierWithWaitList can be used instead. If the
event_wait_list and the event arguments are not NULL, the event argument should not refer to an
element of the event_wait_list array.

clEnqueueUnmapMemObject returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

 CL_INVALID_VALUE if mapped_ptr is not a valid pointer returned by
clEnqueueMapBuffer, or clEnqueueMapImage for memobj.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or if event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 123

 CL_INVALID_CONTEXT if context associated with command_queue and memobj are not
the same or if the context associated with command_queue and events in event_wait_list
are not the same.

clEnqueueMapBuffer, and clEnqueueMapImage increments the mapped count of the
memory object. The initial mapped count value of the memory object is zero. Multiple calls to
clEnqueueMapBuffer, or clEnqueueMapImage on the same memory object will increment
this mapped count by appropriate number of calls. clEnqueueUnmapMemObject decrements
the mapped count of the memory object.

clEnqueueMapBuffer, and clEnqueueMapImage act as synchronization points for a region of
the buffer object being mapped.

5.4.3 Accessing mapped regions of a memory object

This section describes the behavior of OpenCL commands that access mapped regions of a
memory object.

The contents of the region of a memory object and associated memory objects (sub-buffer
objects or 1D image buffer objects that overlap this region) mapped for writing (i.e.
CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE_REGION is set in map_flags argument to
clEnqueueMapBuffer, or clEnqueueMapImage) are considered to be undefined until this
region is unmapped.

Multiple commands in command-queues can map a region or overlapping regions of a memory
object and associated memory objects (sub-buffer objects or 1D image buffer objects that
overlap this region) for reading (i.e. map_flags = CL_MAP_READ). The contents of the regions
of a memory object mapped for reading can also be read by kernels and other OpenCL
commands (such as clEnqueueCopyBuffer) executing on a device(s).

Mapping (and unmapping) overlapped regions in a memory object and/or associated memory
objects (sub-buffer objects or 1D image buffer objects that overlap this region) for writing is an
error and will result in CL_INVALID_OPERATION error returned by clEnqueueMapBuffer, or
clEnqueueMapImage.

If a memory object is currently mapped for writing, the application must ensure that the memory
object is unmapped before any enqueued kernels or commands that read from or write to this
memory object or any of its associated memory objects (sub-buffer or 1D image buffer objects)
or its parent object (if the memory object is a sub-buffer or 1D image buffer object) begin
execution; otherwise the behavior is undefined.

If a memory object is currently mapped for reading, the application must ensure that the memory
object is unmapped before any enqueued kernels or commands that write to this memory object
or any of its associated memory objects (sub-buffer or 1D image buffer objects) or its parent
object (if the memory object is a sub-buffer or 1D image buffer object) begin execution;

Last Revision Date: 11/14/12 Page 124

otherwise the behavior is undefined.

Accessing the contents of the memory region referred to by the mapped pointer that has been
unmapped is undefined.
The mapped pointer returned by clEnqueueMapBuffer or clEnqueueMapImage can be used as
ptr argument value to clEnqueue{Read | Write}Buffer, clEnqeue{Read | Write}BufferRect,
clEnqueue{Read | Write}Image provided the rules described above are adhered to.

5.4.4 Migrating Memory Objects

This section describes a mechanism for assigning which device an OpenCL memory object
resides. A user may wish to have more explicit control over the location of their memory objects
on creation. This could be used to:

 Ensure that an object is allocated on a specific device prior to usage.

 Preemptively migrate an object from one device to another.

The function

 cl_int clEnqueueMigrateMemObjects (cl_command_queue command_queue,

 cl_uint num_mem_objects,
 const cl_mem *mem_objects,
 cl_mem_migration_flags flags,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to indicate which device a set of memory objects should be associated
with. Typically, memory objects are implicitly migrated to a device for which enqueued
commands, using the memory object, are targeted. clEnqueueMigrateMemObjects allows this
migration to be explicitly performed ahead of the dependent commands. This allows a user to
preemptively change the association of a memory object, through regular command queue
scheduling, in order to prepare for another upcoming command. This also permits an application
to overlap the placement of memory objects with other unrelated operations before these
memory objects are needed potentially hiding transfer latencies. Once the event, returned from
clEnqueueMigrateMemObjects, has been marked CL_COMPLETE the memory objects
specified in mem_objects have been successfully migrated to the device associated with
command_queue. The migrated memory object shall remain resident on the device until another
command is enqueued that either implicitly or explicitly migrates it away.

clEnqueueMigrateMemObjects can also be used to direct the initial placement of a memory
object, after creation, possibly avoiding the initial overhead of instantiating the object on the first
enqueued command to use it.

Last Revision Date: 11/14/12 Page 125

The user is responsible for managing the event dependencies, associated with this command, in
order to avoid overlapping access to memory objects. Improperly specified event dependencies
passed to clEnqueueMigrateMemObjects could result in undefined results.

command_queue is a valid command-queue. The specified set of memory objects in
mem_objects will be migrated to the OpenCL device associated with command_queue or to the
host if the CL_MIGRATE_MEM_OBJECT_HOST has been specified.

num_mem_objects is the number of memory objects specified in mem_objects.

mem_objects is a pointer to a list of memory objects.

flags is a bit-field that is used to specify migration options. The following table describes the
possible values for flags.

cl_mem_migration flags Description
CL_MIGRATE_MEM_OBJECT_HOST This flag indicates that the specified set of

memory objects are to be migrated to the host,
regardless of the target command-queue.

CL_MIGRATE_MEM_OBJECT_
CONTENT_UNDEFINED

This flag indicates that the contents of the set of
memory objects are undefined after migration.
The specified set of memory objects are migrated
to the device associated with command_queue
without incurring the overhead of migrating their
contents.

Table 5.10 Supported cl_mem_migration flags.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular command and can be used to query or
queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete. If the event_wait_list and the event arguments are not NULL, the event
argument should not refer to an element of the event_wait_list array.

clEnqueueMigrateMemObjects return CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

Last Revision Date: 11/14/12 Page 126

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if the context associated with command_queue and memory

objects in mem_objects are not the same or if the context associated with
command_queue and events in event_wait_list are not the same.

 CL_INVALID_MEM_OBJECT if any of the memory objects in mem_objects is not a valid

memory object.

 CL_INVALID_VALUE if num_mem_objects is zero or if mem_objects is NULL.

 CL_INVALID_VALUE if flags is not 0 or is not any of the values described in the table
above.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

the specified set of memory objects in mem_objects.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

5.4.5 Memory Object Queries

To get information that is common to all memory objects (buffer and image objects), use the
following function

 cl_int clGetMemObjectInfo (cl_mem memobj,

 cl_mem_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)

memobj specifies the memory object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetMemObjectInfo is described in table 5.11.

Last Revision Date: 11/14/12 Page 127

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.11.

param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

clGetMemObjectInfo returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.11 and param_value is
not NULL.

 CL_INVALID_MEM_OBJECT if memobj is a not a valid memory object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

cl_mem_info Return type Info. returned in param_value
CL_MEM_TYPE cl_mem_object_type Returns one of the following values:

CL_MEM_OBJECT_BUFFER if memobj
is created with clCreateBuffer or
clCreateSubBuffer.

cl_image_desc.image_type argument
value if memobj is created with
clCreateImage.

CL_MEM_FLAGS cl_mem_flags Return the flags argument value specified
when memobj is created with
clCreateBuffer,
clCreateSubBuffer or
clCreateImage.

If memobj is a sub-buffer the memory
access qualifiers inherited from parent
buffer is also returned.

CL_MEM_SIZE size_t Return actual size of the data store
associated with memobj in bytes.

Last Revision Date: 11/14/12 Page 128

CL_MEM_HOST_PTR void * If memobj is created with
clCreateBuffer or clCreateImage and
CL_MEM_USE_HOST_PTR is specified
in mem_flags, return the host_ptr
argument value specified when memobj
is created. Otherwise a NULL value is
returned.

If memobj is created with
clCreateSubBuffer, return the host_ptr
+ origin value specified when memobj is
created. host_ptr is the argument value
specified to clCreateBuffer and
CL_MEM_USE_HOST_PTR is specified
in mem_flags for memory object from
which memobj is created. Otherwise a
NULL value is returned.

CL_MEM_MAP_COUNT12 cl_uint Map count.

CL_MEM_REFERENCE_
COUNT13

cl_uint Return memobj reference count.

CL_MEM_CONTEXT cl_context Return context specified when memory
object is created. If memobj is created
using clCreateSubBuffer, the context
associated with the memory object
specified as the buffer argument to
clCreateSubBuffer is returned.

CL_MEM_ASSOCIATED_
MEMOBJECT

cl_mem Return memory object from which
memobj is created.

This returns the memory object specified
as buffer argument to
clCreateSubBuffer.

Otherwise a NULL value is returned.

CL_MEM_OFFSET size_t Return offset if memobj is a sub-buffer
object created using clCreateSubBuffer.

This return 0 if memobj is not a sub-
buffer object.

Table 5.11 List of supported param_names by clGetMemObjectInfo

12 The map count returned should be considered immediately stale. It is unsuitable for general use in applications.
This feature is provided for debugging.
13 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 11/14/12 Page 129

5.5 Sampler Objects

A sampler object describes how to sample an image when the image is read in the kernel. The
built-in functions to read from an image in a kernel take a sampler as an argument. The sampler
arguments to the image read function can be sampler objects created using OpenCL functions
and passed as argument values to the kernel or can be samplers declared inside a kernel. In this
section we discuss how sampler objects are created using OpenCL functions.

5.5.1 Creating Sampler Objects

The function

 cl_sampler clCreateSampler (cl_context context,
 cl_bool normalized_coords,
 cl_addressing_mode addressing_mode,
 cl_filter_mode filter_mode,
 cl_int *errcode_ret)

creates a sampler object. Refer to section 6.12.14.1 for a detailed description of how samplers
work.

context must be a valid OpenCL context.

normalized_coords determines if the image coordinates specified are normalized (if
normalized_coords is CL_TRUE) or not (if normalized_coords is CL_FALSE).

addressing_mode specifies how out-of-range image coordinates are handled when reading from
an image. This can be set to CL_ADDRESS_MIRRORED_REPEAT, CL_ADDRESS_REPEAT,
CL_ADDRESS_CLAMP_TO_EDGE, CL_ADDRESS_CLAMP and CL_ADDRESS_NONE.

filter_mode specifies the type of filter that must be applied when reading an image. This can be
CL_FILTER_NEAREST, or CL_FILTER_LINEAR.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateSampler returns a valid non-zero sampler object and errcode_ret is set to CL_SUCCESS
if the sampler object is created successfully. Otherwise, it returns a NULL value with one of the
following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if addressing_mode, filter_mode or normalized_coords or

Last Revision Date: 11/14/12 Page 130

combination of these argument values are not valid.

 CL_INVALID_OPERATION if images are not supported by any device associated with
context (i.e. CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clRetainSampler (cl_sampler sampler)

increments the sampler reference count. clCreateSampler performs an implicit retain.
clRetainSampler returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_SAMPLER if sampler is not a valid sampler object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clReleaseSampler (cl_sampler sampler)

decrements the sampler reference count. The sampler object is deleted after the reference count
becomes zero and commands queued for execution on a command-queue(s) that use sampler
have finished. clReleaseSampler returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_SAMPLER if sampler is not a valid sampler object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 131

5.5.2 Sampler Object Queries

The function

 cl_int clGetSamplerInfo (cl_sampler sampler,
 cl_sampler_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the sampler object.

sampler specifies the sampler being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetSamplerInfo is described in table 5.12.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.12.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_sampler_info Return Type Info. returned in param_value
CL_SAMPLER_REFERENCE_
COUNT14

cl_uint Return the sampler reference count.

CL_SAMPLER_CONTEXT cl_context Return the context specified when the
sampler is created.

CL_SAMPLER_NORMALIZED_
COORDS

cl_bool Return the normalized coords value
associated with sampler.

CL_SAMPLER_ADDRESSING_
MODE

cl_addressing_
mode

Return the addressing mode value
associated with sampler.

CL_SAMPLER_FILTER_MODE cl_filter_mode Return the filter mode value
associated with sampler.

 Table 5.12 clGetSamplerInfo parameter queries.

14 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 11/14/12 Page 132

clGetSamplerInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.12 and param_value is
not NULL.

 CL_INVALID_SAMPLER if sampler is a not a valid sampler object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 133

5.6 Program Objects

An OpenCL program consists of a set of kernels that are identified as functions declared with
the __kernel qualifier in the program source. OpenCL programs may also contain auxiliary
functions and constant data that can be used by __kernel functions. The program executable
can be generated online or offline by the OpenCL compiler for the appropriate target device(s).

A program object encapsulates the following information:

 An associated context.
 A program source or binary.
 The latest successfully built program executable, library or compiled binary, the list of

devices for which the program executable, library or compiled binary is built, the build
options used and a build log.

 The number of kernel objects currently attached.

5.6.1 Creating Program Objects

The function

 cl_program clCreateProgramWithSource (cl_context context,

 cl_uint count,
 const char **strings,
 const size_t *lengths,
 cl_int *errcode_ret)

creates a program object for a context, and loads the source code specified by the text strings in
the strings array into the program object. The devices associated with the program object are the
devices associated with context. The source code specified by strings is either an OpenCL C
program source, header or implementation-defined source for custom devices that support an
online compiler.

context must be a valid OpenCL context.

strings is an array of count pointers to optionally null-terminated character strings that make up
the source code.

The lengths argument is an array with the number of chars in each string (the string length). If
an element in lengths is zero, its accompanying string is null-terminated. If lengths is NULL, all
strings in the strings argument are considered null-terminated. Any length value passed in that is
greater than zero excludes the null terminator in its count.

Last Revision Date: 11/14/12 Page 134

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateProgramWithSource returns a valid non-zero program object and errcode_ret is set to
CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if count is zero or if strings or any entry in strings is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_program clCreateProgramWithBinary (cl_context context,
 cl_uint num_devices,
 const cl_device_id *device_list,
 const size_t *lengths,

 const unsigned char **binaries,
 cl_int *binary_status,

 cl_int *errcode_ret)

creates a program object for a context, and loads the binary bits specified by binary into the
program object.

context must be a valid OpenCL context.

device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL
value. The binaries are loaded for devices specified in this list.

num_devices is the number of devices listed in device_list.

The devices associated with the program object will be the list of devices specified by
device_list. The list of devices specified by device_list must be devices associated with context.

lengths is an array of the size in bytes of the program binaries to be loaded for devices specified
by device_list.

binaries is an array of pointers to program binaries to be loaded for devices specified by
device_list. For each device given by device_list[i], the pointer to the program binary for that

Last Revision Date: 11/14/12 Page 135

device is given by binaries[i] and the length of this corresponding binary is given by lengths[i].
lengths[i] cannot be zero and binaries[i] cannot be a NULL pointer.

The program binaries specified by binaries contain the bits that describe one of the following:

 a program executable to be run on the device(s) associated with context,

 a compiled program for device(s) associated with context, or

 a library of compiled programs for device(s) associated with context.

The program binary can consist of either or both:

 Device-specific code and/or,

 Implementation-specific intermediate representation (IR) which will be converted to the
device-specific code.

binary_status returns whether the program binary for each device specified in device_list was
loaded successfully or not. It is an array of num_devices entries and returns CL_SUCCESS in
binary_status[i] if binary was successfully loaded for device specified by device_list[i];
otherwise returns CL_INVALID_VALUE if lengths[i] is zero or if binaries[i] is a NULL value or
CL_INVALID_BINARY in binary_status[i] if program binary is not a valid binary for the
specified device. If binary_status is NULL, it is ignored.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateProgramWithBinary returns a valid non-zero program object and errcode_ret is set to
CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if device_list is NULL or num_devices is zero.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of
devices associated with context.

 CL_INVALID_VALUE if lengths or binaries are NULL or if any entry in lengths[i] is zero

or binaries[i] is NULL.

 CL_INVALID_BINARY if an invalid program binary was encountered for any device.
binary_status will return specific status for each device.

Last Revision Date: 11/14/12 Page 136

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

OpenCL allows applications to create a program object using the program source or binary and
build appropriate program executables. This can be very useful as it allows applications to load
program source and then compile and link to generate a program executable online on its first
instance for appropriate OpenCL devices in the system. These executables can now be queried
and cached by the application. Future instances of the application launching will no longer need
to compile and link the program executables. The cached executables can be read and loaded by
the application, which can help significantly reduce the application initialization time.

The function

 cl_program clCreateProgramWithBuiltInKernels (cl_context context,
 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *kernel_names,
 cl_int *errcode_ret)

creates a program object for a context, and loads the information related to the built-in kernels
into a program object.

context must be a valid OpenCL context.

num_devices is the number of devices listed in device_list.

device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL
value. The built-in kernels are loaded for devices specified in this list.

The devices associated with the program object will be the list of devices specified by
device_list. The list of devices specified by device_list must be devices associated with context.

kernel_names is a semi-colon separated list of built-in kernel names.

clCreateProgramWithBuiltInKernels returns a valid non-zero program object and errcode_ret
is set to CL_SUCCESS if the program object is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if device_list is NULL or num_devices is zero.

Last Revision Date: 11/14/12 Page 137

 CL_INVALID_VALUE if kernel_names is NULL or kernel_names contains a kernel
name that is not supported by any of the devices in device_list.

 CL_INVALID_DEVICE if devices listed in device_list are not in the list of devices

associated with context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clRetainProgram (cl_program program)

increments the program reference count. clCreateProgram does an implicit retain.
clRetainProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clReleaseProgram (cl_program program)

decrements the program reference count. The program object is deleted after all kernel objects
associated with program have been deleted and the program reference count becomes zero.
clReleaseProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 138

5.6.2 Building Program Executables

The function

 cl_int clBuildProgram (cl_program program,
 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *options,
 void (CL_CALLBACK *pfn_notify)(cl_program program,

 void *user_data),
 void *user_data)

builds (compiles & links) a program executable from the program source or binary for all the
devices or a specific device(s) in the OpenCL context associated with program. OpenCL allows
program executables to be built using the source or the binary. clBuildProgram must be called
for program created using either clCreateProgramWithSource or
clCreateProgramWithBinary to build the program executable for one or more devices
associated with program. If program is created with clCreateProgramWithBinary, then the
program binary must be an executable binary (not a compiled binary or library).

The executable binary can be queried using clGetProgramInfo(program,
CL_PROGRAM_BINARIES, …) and can be specified to clCreateProgramWithBinary to create
a new program object.

program is the program object.

device_list is a pointer to a list of devices associated with program. If device_list is a NULL
value, the program executable is built for all devices associated with program for which a source
or binary has been loaded. If device_list is a non-NULL value, the program executable is built
for devices specified in this list for which a source or binary has been loaded.

num_devices is the number of devices listed in device_list.

options is a pointer to a null-terminated string of characters that describes the build options to be
used for building the program executable. The list of supported options is described in section
5.6.4.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clBuildProgram does
not need to wait for the build to complete and can return immediately once the build operation
can begin. The build operation can begin if the context, program whose sources are being
compiled and linked, list of devices and build options specified are all valid and appropriate host
and device resources needed to perform the build are available. If pfn_notify is NULL,
clBuildProgram does not return until the build has completed. This callback function may be

Last Revision Date: 11/14/12 Page 139

called asynchronously by the OpenCL implementation. It is the application’s responsibility to
ensure that the callback function is thread-safe.

user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

clBuildProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if
device_list is not NULL and num_devices is zero.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of

devices associated with program

 CL_INVALID_BINARY if program is created with clCreateProgramWithBinary and
devices listed in device_list do not have a valid program binary loaded.

 CL_INVALID_BUILD_OPTIONS if the build options specified by options are invalid.

 CL_INVALID_OPERATION if the build of a program executable for any of the devices
listed in device_list by a previous call to clBuildProgram for program has not
completed.

 CL_COMPILER_NOT_AVAILABLE if program is created with

clCreateProgramWithSource and a compiler is not available i.e.
CL_DEVICE_COMPILER_AVAILABLE specified in table 4.3 is set to CL_FALSE.

 CL_BUILD_PROGRAM_FAILURE if there is a failure to build the program executable.

This error will be returned if clBuildProgram does not return until the build has
completed.

 CL_INVALID_OPERATION if there are kernel objects attached to program.

 CL_INVALID_OPERATION if program was not created with

clCreateProgramWithSource or clCreateProgramWithBinary.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 140

5.6.3 Separate Compilation and Linking of Programs

OpenCL 1.2 extends how programs are compiled and linked to support the following:

 Separate compilation and link stages. Program sources can be compiled to generate a
compiled binary object and linked in a separate stage with other compiled program
objects to the program exectuable.

 Embedded headers. In OpenCL 1.0 and 1.1, the –I build option could be used to specify
the list of directories to be searched for headers files that are included by a program
source(s). OpenCL 1.2 extends this by allowing the header sources to come from
program objects instead of just header files.

 Libraries. The linker can be used to link compiled objects and libraries into a program

executable or to create a library of compiled binaries.

The function

 cl_int clCompileProgram (cl_program program,
 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *options,
 cl_uint num_input_headers,
 const cl_program *input_headers,
 const char **header_include_names,
 void (CL_CALLBACK *pfn_notify)(cl_program program,

 void *user_data),
 void *user_data)

compiles a program’s source for all the devices or a specific device(s) in the OpenCL context
associated with program. The pre-processor runs before the program sources are compiled.
The compiled binary is built for all devices associated with program or the list of devices
specified. The compiled binary can be queried using clGetProgramInfo(program,
CL_PROGRAM_BINARIES, …) and can be specified to clCreateProgramWithBinary to create
a new program object.

program is the program object that is the compilation target.

device_list is a pointer to a list of devices associated with program. If device_list is a NULL
value, the compile is performed for all devices associated with program. If device_list is a non-
NULL value, the compile is performed for devices specified in this list.

num_devices is the number of devices listed in device_list.

Last Revision Date: 11/14/12 Page 141

options is a pointer to a null-terminated string of characters that describes the compilation
options to be used for building the program executable. The list of supported options is as
described in section 5.6.4.

num_input_headers specifies the number of programs that describe headers in the array
referenced by input_headers.

input_headers is an array of program embedded headers created with
clCreateProgramWithSource.

header_include_names is an array that has a one to one correspondence with input_headers.
Each entry in header_include_names specifies the include name used by source in program that
comes from an embedded header. The corresponding entry in input_headers identifies the
program object which contains the header source to be used. The embedded headers are first
searched before the headers in the list of directories specified by the –I compile option (as
described in section 5.6.4.1). If multiple entries in header_include_names refer to the same
header name, the first one encountered will be used.

For example, consider the following program source:

 #include <foo.h>
 #include <mydir/myinc.h>

 __kernel void
 image_filter (int n, int m,
 __constant float *filter_weights,
 __read_only image2d_t src_image,
 __write_only image2d_t dst_image)
 {
 ...
 }

This kernel includes two headers foo.h and mydir/myinc.h. The following describes how these
headers can be passed as embedded headers in program objects:

 cl_program foo_pg = clCreateProgramWithSource(context,
 1, &foo_header_src, NULL, &err);
 cl_program myinc_pg = clCreateProgramWithSource(context,
 1, &myinc_header_src, NULL, &err);

 // let’s assume the program source described above is given
 // by program_A and is loaded via clCreateProgramWithSource

 cl_program input_headers[2] = { foo_pg, myinc_pg };
 char * input_header_names[2] = { “foo.h”, “mydir/myinc.h” };
 clCompileProgram(program_A,

Last Revision Date: 11/14/12 Page 142

 0, NULL, // num_devices & device_list
 NULL, // compile_options
 2, // num_input_headers
 input_headers,
 input_header_names,
 NULL, NULL); // pfn_notify & user_data

pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clCompileProgram
does not need to wait for the compiler to complete and can return immediately once the
compilation can begin. The compilation can begin if the context, program whose sources are
being compiled, list of devices, input headers, programs that describe input headers and compiler
options specified are all valid and appropriate host and device resources needed to perform the
compile are available. If pfn_notify is NULL, clCompileProgram does not return until the
compiler has completed. This callback function may be called asynchronously by the OpenCL
implementation. It is the application’s responsibility to ensure that the callback function is
thread-safe.

user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

clCompileProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if
device_list is not NULL and num_devices is zero.

 CL_INVALID_VALUE if num_input_headers is zero and header_include_names or

input_headers are not NULL or if num_input_headers is not zero and
header_include_names or input_headers are NULL.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of

devices associated with program

 CL_INVALID_COMPILER_OPTIONS if the compiler options specified by options are
invalid.

 CL_INVALID_OPERATION if the compilation or build of a program executable for any of

the devices listed in device_list by a previous call to clCompileProgram or
clBuildProgram for program has not completed.

 CL_COMPILER_NOT_AVAILABLE if a compiler is not available i.e.

Last Revision Date: 11/14/12 Page 143

CL_DEVICE_COMPILER_AVAILABLE specified in table 4.3 is set to CL_FALSE.

 CL_COMPILE_PROGRAM_FAILURE if there is a failure to compile the program source.
This error will be returned if clCompileProgram does not return until the compile has
completed.

 CL_INVALID_OPERATION if there are kernel objects attached to program.

 CL_INVALID_OPERATION if program has no source i.e. it has not been created with

clCreateProgramWithSource.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_program clLinkProgram (cl_context context,

 cl_uint num_devices,
 const cl_device_id *device_list,

 const char *options,
 cl_uint num_input_programs,
 const cl_program *input_programs,
void (CL_CALLBACK *pfn_notify)(cl_program program,

 void *user_data),
 void *user_data,
 cl_int *errcode_ret)

links a set of compiled program objects and libraries for all the devices or a specific device(s) in
the OpenCL context and creates an executable. clLinkProgram creates a new program object
which contains this executable. The executable binary can be queried using
clGetProgramInfo(program, CL_PROGRAM_BINARIES, …) and can be specified to
clCreateProgramWithBinary to create a new program object.

The devices associated with the returned program object will be the list of devices specified by
device_list or if device_list is NULL it will be the list of devices associated with context.

context must be a valid OpenCL context.

device_list is a pointer to a list of devices that are in context. If device_list is a NULL value, the
link is performed for all devices associated with context for which a compiled object is available.
If device_list is a non-NULL value, the link is performed for devices specified in this list for
which a compiled object is available.

Last Revision Date: 11/14/12 Page 144

num_devices is the number of devices listed in device_list.

options is a pointer to a null-terminated string of characters that describes the link options to be
used for building the program executable. The list of supported options is as described in section
5.6.5.

num_input_programs specifies the number of programs in array referenced by input_programs.

input_programs is an array of program objects that are compiled binaries or libraries that are to
be linked to create the program executable. For each device in device_list or if device_list is
NULL the list of devices associated with context, the following cases occur:

 All programs specified by input_programs contain a compiled binary or library for the
device. In this case, a link is performed to generate a program executable for this device.

 None of the programs contain a compiled binary or library for that device. In this case,
no link is performed and there will be no program executable generated for this device.

 All other cases will return a CL_INVALID_OPERATION error.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully).

If pfn_notify is not NULL, clLinkProgram does not need to wait for the linker to complete and
can return immediately once the linking operation can begin. Once the linker has completed, the
pfn_notify callback function is called which returns the program object returned by
clLinkProgram. The application can query the link status and log for this program object. This
callback function may be called asynchronously by the OpenCL implementation. It is the
application’s responsibility to ensure that the callback function is thread-safe.

If pfn_notify is NULL, clLinkProgram does not return until the linker has completed.

user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

The linking operation can begin if the context, list of devices, input programs and linker options
specified are all valid and appropriate host and device resources needed to perform the link are
available. If the linking operation can begin, clLinkProgram returns a valid non-zero program
object.

If pfn_notify is NULL, the errcode_ret will be set to CL_SUCCESS if the link operation was
successful and CL_LINK_FAILURE if there is a failure to link the compiled binaries and/or
libraries.

If pfn_notify is not NULL, clLinkProgram does not have to wait until the linker to complete and

Last Revision Date: 11/14/12 Page 145

can return CL_SUCCESS in errcode_ret if the linking operation can begin. The pfn_notify
callback function will return a CL_SUCCESS or CL_LINK_FAILURE if the linking operation was
successful or not.

Otherwise clLinkProgram returns a NULL program object with an appropriate error in
errcode_ret. The application should query the linker status of this program object to check if the
link was successful or not. The list of errors that can be returned are:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if
device_list is not NULL and num_devices is zero.

 CL_INVALID_VALUE if num_input_programs is zero and input_programs is NULL or if

num_input_programs is zero and input_programs is not NULL or if num_input_programs
is not zero and input_programs is NULL.

 CL_INVALID_PROGRAM if programs specified in input_programs are not valid program

objects.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if OpenCL devices listed in device_list are not in the list of
devices associated with context

 CL_INVALID_LINKER_OPTIONS if the linker options specified by options are invalid.

 CL_INVALID_OPERATION if the compilation or build of a program executable for any of

the devices listed in device_list by a previous call to clCompileProgram or
clBuildProgram for program has not completed.

 CL_INVALID_OPERATION if the rules for devices containing compiled binaries or

libraries as described in input_programs argument above are not followed.

 CL_LINKER_NOT_AVAILABLE if a linker is not available i.e.
CL_DEVICE_LINKER_AVAILABLE specified in table 4.3 is set to CL_FALSE.

 CL_LINK_PROGRAM_FAILURE if there is a failure to link the compiled binaries and/or

libraries.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 146

5.6.4 Compiler Options

The compiler options are categorized as pre-processor options, options for math intrinsics,
options that control optimization and miscellaneous options. This specification defines a
standard set of options that must be supported by the OpenCL C compiler when building
program executables online or offline. These may be extended by a set of vendor- or platform-
specific options.

5.6.4.1 Preprocessor options

These options control the OpenCL C preprocessor which is run on each program source before
actual compilation.

-D name

Predefine name as a macro, with definition 1.

-D name=definition

The contents of definition are tokenized and processed as if they appeared during
translation phase three in a `#define' directive. In particular, the definition will be
truncated by embedded newline characters.

-D options are processed in the order they are given in the options argument to clBuildProgram
or clCompileProgram.

-I dir

Add the directory dir to the list of directories to be searched for header files.

5.6.4.2 Math Intrinsics Options

These options control compiler behavior regarding floating-point arithmetic. These options trade
off between speed and correctness.

-cl-single-precision-constant

Treat double precision floating-point constant as single precision constant.

-cl-denorms-are-zero

This option controls how single precision and double precision denormalized numbers
are handled. If specified as a build option, the single precision denormalized numbers
may be flushed to zero; double precision denormalized numbers may also be flushed to
zero if the optional extension for double precision is supported. This is intended to be a
performance hint and the OpenCL compiler can choose not to flush denorms to zero if
the device supports single precision (or double precision) denormalized numbers.

Last Revision Date: 11/14/12 Page 147

This option is ignored for single precision numbers if the device does not support single
precision denormalized numbers i.e. CL_FP_DENORM bit is not set in
CL_DEVICE_SINGLE_FP_CONFIG.

This option is ignored for double precision numbers if the device does not support double
precision or if it does support double precision but not double precision denormalized
numbers i.e. CL_FP_DENORM bit is not set in CL_DEVICE_DOUBLE_FP_CONFIG.

This flag only applies for scalar and vector single precision floating-point variables and
computations on these floating-point variables inside a program. It does not apply to
reading from or writing to image objects.

-cl-fp32-correctly-rounded-divide-sqrt

The -cl-fp32-correctly-rounded-divide-sqrt build option to clBuildProgram or
clCompileProgram allows an application to specify that single precision floating-point
divide (x/y and 1/x) and sqrt used in the program source are correctly rounded. If
this build option is not specified, the minimum numerical accuracy of single precision
floating-point divide and sqrt are as defined in section 7.4 of the OpenCL specification.

This build option can only be specified if the
CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT is set in
CL_DEVICE_SINGLE_FP_CONFIG (as defined in table 4.3) for devices that the program
is being build. clBuildProgram or clCompileProgram will fail to compile the program
for a device if the -cl-fp32-correctly-rounded-divide-sqrt option is specified and
CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT is not set for the device.

5.6.4.3 Optimization Options

These options control various sorts of optimizations. Turning on optimization flags makes the
compiler attempt to improve the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.

-cl-opt-disable
 This option disables all optimizations. The default is optimizations are enabled.

The following options control compiler behavior regarding floating-point arithmetic. These
options trade off between performance and correctness and must be specifically enabled. These
options are not turned on by default since it can result in incorrect output for programs which
depend on an exact implementation of IEEE 754 rules/specifications for math functions.

-cl-mad-enable

Allow a * b + c to be replaced by a mad. The mad computes a * b + c with
reduced accuracy. For example, some OpenCL devices implement mad as truncate the
result of a * b before adding it to c.

Last Revision Date: 11/14/12 Page 148

-cl-no-signed-zeros

Allow optimizations for floating-point arithmetic that ignore the signedness of zero.
IEEE 754 arithmetic specifies the distinct behavior of +0.0 and -0.0 values, which
then prohibits simplification of expressions such as x+0.0 or 0.0*x (even with -cl-
finite-math only). This option implies that the sign of a zero result isn't significant.

-cl-unsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that arguments and
results are valid, (b) may violate IEEE 754 standard and (c) may violate the OpenCL
numerical compliance requirements as defined in section 7.4 for single precision and
double precision floating-point, and edge case behavior in section 7.5. This option
includes the -cl-no-signed-zeros and -cl-mad-enable options.

-cl-finite-math-only

Allow optimizations for floating-point arithmetic that assume that arguments and results
are not NaNs or ±∞. This option may violate the OpenCL numerical compliance
requirements defined in section 7.4 for single precision and double precision floating-
point, and edge case behavior in section 7.5.

-cl-fast-relaxed-math

Sets the optimization options -cl-finite-math-only and -cl-unsafe-math-optimizations.
This allows optimizations for floating-point arithmetic that may violate the IEEE 754
standard and the OpenCL numerical compliance requirements defined in in section 7.4
for single precision and double precision floating-point, and edge case behavior in section
7.5. This option causes the preprocessor macro __FAST_RELAXED_MATH__ to be
defined in the OpenCL program.

5.6.4.4 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there may have been an error. The following language-
independent options do not enable specific warnings but control the kinds of diagnostics
produced by the OpenCL compiler.

-w
Inhibit all warning messages.

-Werror
Make all warnings into errors.

5.6.4.5 Options Controlling the OpenCL C version

The following option controls the version of OpenCL C that the compiler accepts.

Last Revision Date: 11/14/12 Page 149

-cl-std=
Determine the OpenCL C language version to use. A value for this option must be
provided. Valid values are:

CL1.1 – Support all OpenCL C programs that use the OpenCL C language features
defined in section 6 of the OpenCL 1.1 specification.

CL1.2 – Support all OpenCL C programs that use the OpenCL C language features
defined in section 6 of the OpenCL 1.2 specification.

Calls to clBuildProgram or clCompileProgram with the -cl-std=CL1.1 option will fail to
compile the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0.
Calls to clBuildProgram or clCompileProgram with the -cl-std=CL1.2 option will fail to
compile the program for any devices with CL_DEVICE_OPENCL_C_VERSION = OpenCL C 1.0
or OpenCL C 1.1.

If the –cl-std build option is not specified, the CL_DEVICE_OPENCL_C_VERSION is
used to select the version of OpenCL C to be used when compiling the program
for each device.

5.6.4.6 Options for Querying Kernel Argument Information

-cl-kernel-arg-info

This option allows the compiler to store information about the arguments of a kernel(s) in
the program executable. The argument information stored includes the argument name,
its type, the address and access qualifiers used. Refer to description of
clGetKernelArgInfo on how to query this information.

5.6.5 Linker Options

This specification defines a standard set of linker options that must be supported by the OpenCL
C compiler when linking compiled programs online or offline. These linker options are
categorized as library linking options and program linking options. These may be extended by a
set of vendor- or platform-specific options.

5.6.5.1 Library Linking Options

The following options can be specified when creating a library of compiled binaries.

-create-library

Create a library of compiled binaries specified in input_programs argument to
clLinkProgram.

Last Revision Date: 11/14/12 Page 150

-enable-link-options
Allows the linker to modify the library behavior based on one or more link options
(described in section 5.6.5.2) when this library is linked with a program executable. This
option must be specified with the –create-library option.

5.6.5.2 Program Linking Options

The following options can be specified when linking a program executable.

-cl-denorms-are-zero
-cl-no-signed-zeroes
-cl-unsafe-math-optimizations
-cl-finite-math-only
-cl-fast-relaxed-math

The options are described in section 5.6.4.2 and section 5.6.4.3. The linker may apply these
options to all compiled program objects specified to clLinkProgram. The linker may apply
these options only to libraries which were created with the –enable-link-option.

5.6.6 Unloading the OpenCL Compiler

The function

 cl_int clUnloadPlatformCompiler (cl_platform_id platform)

allows the implementation to release the resources allocated by the OpenCL compiler for
platform. This is a hint from the application and does not guarantee that the compiler will not be
used in the future or that the compiler will actually be unloaded by the implementation. Calls to
clBuildProgram, clCompileProgram or clLinkProgram after clUnloadPlatformCompiler
will reload the compiler, if necessary, to build the appropriate program executable.

clUnloadPlatformCompiler returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_PLATFORM if platform is not a valid platform.

Last Revision Date: 11/14/12 Page 151

5.6.7 Program Object Queries

The function

 cl_int clGetProgramInfo (cl_program program,
 cl_program_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the program object.

program specifies the program object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramInfo is described in table 5.13.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.13.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_program_info Return Type Info. returned in param_value
CL_PROGRAM_REFERENCE_
COUNT15

cl_uint Return the program reference count.

CL_PROGRAM_CONTEXT cl_context Return the context specified when the
program object is created

CL_PROGRAM_NUM_DEVICES cl_uint Return the number of devices associated

with program.
CL_PROGRAM_DEVICES cl_device_id[] Return the list of devices associated with

the program object. This can be the
devices associated with context on which
the program object has been created or can
be a subset of devices that are specified
when a progam object is created using
clCreateProgramWithBinary.

15 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 11/14/12 Page 152

CL_PROGRAM_SOURCE char[] Return the program source code specified

by clCreateProgramWithSource. The
source string returned is a concatenation of
all source strings specified to
clCreateProgramWithSource with a null
terminator. The concatenation strips any
nulls in the original source strings.

If program is created using
clCreateProgramWithBinary or
clCreateProgramWithBuiltinKernels, a
null string or the appropriate program
source code is returned depending on
whether or not the program source code is
stored in the binary.

The actual number of characters that
represents the program source code
including the null terminator is returned in
param_value_size_ret.

CL_PROGRAM_BINARY_SIZES size_t[] Returns an array that contains the size in

bytes of the program binary (could be an
executable binary, compiled binary or
library binary) for each device associated
with program. The size of the array is the
number of devices associated with
program. If a binary is not available for a
device(s), a size of zero is returned.

If program is created using
clCreateProgramWithBuiltinKernels,
the implementation may return zero in any
entries of the returned array.

CL_PROGRAM_BINARIES unsigned
char *[]

Return the program binaries (could be an
executable binary, compiled binary or
library binary) for all devices associated
with program. For each device in
program, the binary returned can be the
binary specified for the device when
program is created with
clCreateProgramWithBinary or it can be
the executable binary generated by
clBuildProgram or clLinkProgram. If
program is created with

Last Revision Date: 11/14/12 Page 153

clCreateProgramWithSource, the binary
returned is the binary generated by
clBuildProgram, clCompileProgram or
clLinkProgram. The bits returned can be
an implementation-specific intermediate
representation (a.k.a. IR) or device specific
executable bits or both. The decision on
which information is returned in the binary
is up to the OpenCL implementation.

param_value points to an array of n
pointers allocated by the caller, where n is
the number of devices associated with
program. The buffer sizes needed to
allocate the memory that these n pointers
refer to can be queried using the
CL_PROGRAM_BINARY_SIZES query as
described in this table.

Each entry in this array is used by the
implementation as the location in memory
where to copy the program binary for a
specific device, if there is a binary
available. To find out which device the
program binary in the array refers to, use
the CL_PROGRAM_DEVICES query to get
the list of devices. There is a one-to-one
correspondence between the array of n
pointers returned by
CL_PROGRAM_BINARIES and array of
devices returned by
CL_PROGRAM_DEVICES.

If an entry value in the array is NULL, the
implementation skips copying the program
binary for the specific device identified by
the array index.

CL_PROGRAM_NUM_KERNELS size_t Returns the number of kernels declared in

program that can be created with
clCreateKernel. This information is only
available after a successful program
executable has been built for at least one
device in the list of devices associated with
program.

CL_PROGRAM_KERNEL_ char[] Returns a semi-colon separated list of

Last Revision Date: 11/14/12 Page 154

NAMES kernel names in program that can be
created with clCreateKernel. This
information is only available after a
successful program executable has been
built for at least one device in the list of
devices associated with program.

 Table 5.13 clGetProgramInfo parameter queries.

clGetProgramInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.13 and param_value is
not NULL.

 CL_INVALID_PROGRAM if program is a not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE if param_name is
CL_PROGRAM_NUM_KERNELS or CL_PROGRAM_KERNEL_NAMES and a successful
program executable has not been built for at least one device in the list of devices
associated with program.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clGetProgramBuildInfo (cl_program program,
 cl_device_id device,
 cl_program_build_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns build information for each device in the program object.

program specifies the program object being queried.

device specifies the device for which build information is being queried. device must be a valid
device associated with program.

Last Revision Date: 11/14/12 Page 155

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramBuildInfo is described in table 5.14.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.14.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_program_build_info Return Type Info. returned in param_value
CL_PROGRAM_BUILD_
STATUS

cl_build_status Returns the build, compile or link status,
whichever was performed last on program for
device.

This can be one of the following:

CL_BUILD_NONE. The build status returned if
no clBuildProgram, clCompileProgram or
clLinkProgram has been performed on the
specified program object for device.

CL_BUILD_ERROR. The build status returned
if clBuildProgram, clCompileProgram or
clLinkProgram whichever was performed last
on the specified program object for device
generated an error.

CL_BUILD_SUCCESS. The build status
returned if clBuildProgram,
clCompileProgram or clLinkProgram
whichever was performed last on the specified
program object for device was successful.

CL_BUILD_IN_PROGRESS. The build status
returned if clBuildProgram,
clCompileProgram or clLinkProgram
whichever was performed last on the specified
program object for device has not finished.

CL_PROGRAM_BUILD_
OPTIONS

char[] Return the build, compile or link options
specified by the options argument in
clBuildProgram, clCompileProgram or
clLinkProgram, whichever was performed last

Last Revision Date: 11/14/12 Page 156

on program for device.

If build status of program for device is
CL_BUILD_NONE, an empty string is returned.

CL_PROGRAM_BUILD_
LOG

char[] Return the build, compile or link log for
clBuildProgram, clCompileProgram or
clLinkProgram whichever was performed last
on program for device.

If build status of program for device is
CL_BUILD_NONE, an empty string is returned.

CL_PROGRAM_BINARY_
TYPE

cl_program_
binary_type

Return the program binary type for device.
This can be one of the following values:

CL_PROGRAM_BINARY_TYPE_NONE – There
is no binary associated with device.

CL_PROGRAM_BINARY_TYPE_
COMPILED_OBJECT – A compiled binary is
associated with device. This is the case if
program was created using
clCreateProgramWithSource and compiled
using clCompileProgram or a compiled binary
is loaded using clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_
LIBRARY – A library binary is associated with
device. This is the case if program was created
by clLinkProgram which is called with the –
create-library link option or if a library binary is
loaded using clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_
EXECUTABLE – An executable binary is
associated with device. This is the case if
program was created by clLinkProgram
without the –create-library link option or
program was created by clBuildProgram or an
executable binary is loaded using
clCreateProgramWithBinary.

 Table 5.14 clGetProgramBuildInfo parameter queries.

clGetProgramBuildInfo returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

Last Revision Date: 11/14/12 Page 157

 CL_INVALID_DEVICE if device is not in the list of devices associated with program.

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.14 and param_value is
not NULL.

 CL_INVALID_PROGRAM if program is a not a valid program object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE:

A program binary (compiled binary, library binary or executable binary) built for a parent device
can be used by all its sub-devices. If a program binary has not been built for a sub-device, the
program binary associated with the parent device will be used.

A program binary for a device specified with clCreateProgramWithBinary or queried using
clGetProgramInfo can be used as the binary for the associated root device, and all sub-devices
created from the root-level device or sub-devices thereof.

Last Revision Date: 11/14/12 Page 158

5.7 Kernel Objects

A kernel is a function declared in a program. A kernel is identified by the __kernel qualifier
applied to any function in a program. A kernel object encapsulates the specific __kernel
function declared in a program and the argument values to be used when executing this
__kernel function.

5.7.1 Creating Kernel Objects

To create a kernel object, use the function

cl_kernel clCreateKernel (cl_program program,
 const char *kernel_name,
 cl_int *errcode_ret)

program is a program object with a successfully built executable.

kernel_name is a function name in the program declared with the __kernel qualifier.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateKernel returns a valid non-zero kernel object and errcode_ret is set to CL_SUCCESS if
the kernel object is created successfully. Otherwise, it returns a NULL value with one of the
following error values returned in errcode_ret:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for
program.

 CL_INVALID_KERNEL_NAME if kernel_name is not found in program.

 CL_INVALID_KERNEL_DEFINITION if the function definition for __kernel function

given by kernel_name such as the number of arguments, the argument types are not the
same for all devices for which the program executable has been built.

 CL_INVALID_VALUE if kernel_name is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

Last Revision Date: 11/14/12 Page 159

OpenCL implementation on the host.

The function

 cl_int clCreateKernelsInProgram (cl_program program,

 cl_uint num_kernels,
 cl_kernel *kernels,
 cl_uint *num_kernels_ret)

creates kernel objects for all kernel functions in program. Kernel objects are not created for any
__kernel functions in program that do not have the same function definition across all devices
for which a program executable has been successfully built.

program is a program object with a successfully built executable.

num_kernels is the size of memory pointed to by kernels specified as the number of cl_kernel
entries.

kernels is the buffer where the kernel objects for kernels in program will be returned. If kernels
is NULL, it is ignored. If kernels is not NULL, num_kernels must be greater than or equal to the
number of kernels in program.

num_kernels_ret is the number of kernels in program. If num_kernels_ret is NULL, it is ignored.

clCreateKernelsInProgram will return CL_SUCCESS if the kernel objects were successfully
allocated. Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for
any device in program.

 CL_INVALID_VALUE if kernels is not NULL and num_kernels is less than the number of

kernels in program.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by

the OpenCL implementation on the host.

Kernel objects can only be created once you have a program object with a valid program source
or binary loaded into the program object and the program executable has been successfully built
for one or more devices associated with program. No changes to the program executable are
allowed while there are kernel objects associated with a program object. This means that calls to

Last Revision Date: 11/14/12 Page 160

clBuildProgram and clCompileProgram return CL_INVALID_OPERATION if there are kernel
objects attached to a program object. The OpenCL context associated with program will be the
context associated with kernel. The list of devices associated with program are the devices
associated with kernel. Devices associated with a program object for which a valid program
executable has been built can be used to execute kernels declared in the program object.

The function

 cl_int clRetainKernel (cl_kernel kernel)

increments the kernel reference count. clRetainKernel returns CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

clCreateKernel or clCreateKernelsInProgram do an implicit retain.

The function

 cl_int clReleaseKernel (cl_kernel kernel)

decrements the kernel reference count. clReleaseKernel returns CL_SUCCESS if the function is
executed successfully. Otherwise, it returns one of the following errors:

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The kernel object is deleted once the number of instances that are retained to kernel become zero
and the kernel object is no longer needed by any enqueued commands that use kernel.

Last Revision Date: 11/14/12 Page 161

5.7.2 Setting Kernel Arguments

To execute a kernel, the kernel arguments must be set.

The function

 cl_int clSetKernelArg (cl_kernel kernel,

 cl_uint arg_index,
 size_t arg_size,
 const void *arg_value)

is used to set the argument value for a specific argument of a kernel.

kernel is a valid kernel object.

arg_index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a kernel.

For example, consider the following kernel:

 kernel void
 image_filter (int n, int m,
 __constant float *filter_weights,
 __read_only image2d_t src_image,
 __write_only image2d_t dst_image)
 {
 ...
 }

Argument index values for image_filter will be 0 for n, 1 for m, 2 for
filter_weights, 3 for src_image and 4 for dst_image.

arg_value is a pointer to data that should be used as the argument value for argument specified
by arg_index. The argument data pointed to by arg_value is copied and the arg_value pointer
can therefore be reused by the application after clSetKernelArg returns. The argument value
specified is the value used by all API calls that enqueue kernel (clEnqueueNDRangeKernel and
clEnqueueTask) until the argument value is changed by a call to clSetKernelArg for kernel.

If the argument is a memory object (buffer, image or image array), the arg_value entry will be a
pointer to the appropriate buffer, image or image array object. The memory object must be
created with the context associated with the kernel object. If the argument is a buffer object, the
arg_value pointer can be NULL or point to a NULL value in which case a NULL value will be
used as the value for the argument declared as a pointer to __global or __constant memory in the
kernel. If the argument is declared with the __local qualifier, the arg_value entry must be
NULL. If the argument is of type sampler_t, the arg_value entry must be a pointer to the sampler
object.

Last Revision Date: 11/14/12 Page 162

If the argument is declared to be a pointer of a built-in scalar or vector type, or a user defined
structure type in the global or constant address space, the memory object specified as argument
value must be a buffer object (or NULL). If the argument is declared with the __constant
qualifier, the size in bytes of the memory object cannot exceed
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE and the number of arguments declared as
pointers to __constant memory cannot exceed CL_DEVICE_MAX_CONSTANT_ARGS.

The memory object specified as argument value must be a 2D image object if the argument is
declared to be of type image2d_t. The memory object specified as argument value must be a 3D
image object if argument is declared to be of type image3d_t. The memory object specified as
argument value must be a 1D image object if the argument is declared to be of type image1d_t.
The memory object specified as argument value must be a 1D image buffer object if the
argument is declared to be of type image1d_buffer_t. The memory object specified as argument
value must be a 1D image array object if argument is declared to be of type image1d_array_t.
The memory object specified as argument value must be a 2D image array object if argument is
declared to be of type image2d_array_t.

For all other kernel arguments, the arg_value entry must be a pointer to the actual data to be used
as argument value.

arg_size specifies the size of the argument value. If the argument is a memory object, the size is
the size of the buffer or image object type. For arguments declared with the __local qualifier,
the size specified will be the size in bytes of the buffer that must be allocated for the __local
argument. If the argument is of type sampler_t, the arg_size value must be equal to
sizeof(cl_sampler). For all other arguments, the size will be the size of argument type.

NOTE: A kernel object does not update the reference count for objects such as memory, sampler
objects specified as argument values by clSetKernelArg, Users may not rely on a kernel object
to retain objects specified as argument values to the kernel16.

clSetKernelArg returns CL_SUCCESS if the function was executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.

 CL_INVALID_ARG_VALUE if arg_value specified is not a valid value.

16 Implementations shall not allow cl_kernel objects to hold reference counts to cl_kernel arguments, because no
mechanism is provided for the user to tell the kernel to release that ownership right. If the kernel holds ownership
rights on kernel args, that would make it impossible for the user to tell with certainty when he may safely release
user allocated resources associated with OpenCL objects such as the cl_mem backing store used with
CL_MEM_USE_HOST_PTR.

Last Revision Date: 11/14/12 Page 163

 CL_INVALID_MEM_OBJECT for an argument declared to be a memory object when the
specified arg_value is not a valid memory object.

 CL_INVALID_SAMPLER for an argument declared to be of type sampler_t when the

specified arg_value is not a valid sampler object.

 CL_INVALID_ARG_SIZE if arg_size does not match the size of the data type for an
argument that is not a memory object or if the argument is a memory object and arg_size
!= sizeof(cl_mem) or if arg_size is zero and the argument is declared with the
__local qualifier or if the argument is a sampler and arg_size !=
sizeof(cl_sampler).

 CL_INVALID_ARG_VALUE if the argument is an image declared with the read_only

qualifier and arg_value refers to an image object created with cl_mem_flags of
CL_MEM_WRITE or if the image argument is declared with the write_only qualifier
and arg_value refers to an image object created with cl_mem_flags of CL_MEM_READ.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

5.7.3 Kernel Object Queries

The function

 cl_int clGetKernelInfo (cl_kernel kernel,
 cl_kernel_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the kernel object.

kernel specifies the kernel object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelInfo is described in table 5.15.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.15.

Last Revision Date: 11/14/12 Page 164

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_kernel_info Return Type Info. returned in param_value
CL_KERNEL_FUNCTION_NAME char[] Return the kernel function name.

CL_KERNEL_NUM_ARGS cl_uint Return the number of arguments to

kernel.

CL_KERNEL_REFERENCE_
COUNT17

cl_uint Return the kernel reference count.

CL_KERNEL_CONTEXT cl_context Return the context associated with
kernel.

CL_KERNEL_PROGRAM cl_program Return the program object associated
with kernel.

CL_KERNEL_ATTRIBUTES char[] Returns any attributes specified using
the __attribute__ qualifier with the
kernel function declaration in the
program source. These attributes
include attributes described in section
6.11.2 and other attributes supported
by an implementation.

Attributes are returned as they were
declared inside __attribute__((...)),
with any surrounding whitespace and
embedded newlines removed. When
multiple attributes are present, they
are returned as a single, space
delimited string.

Table 5.15 clGetKernelInfo parameter queries.

clGetKernelInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.15 and param_value is
not NULL.

 CL_INVALID_KERNEL if kernel is a not a valid kernel object.

17 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 11/14/12 Page 165

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clGetKernelWorkGroupInfo (cl_kernel kernel,
 cl_device_id device,
 cl_kernel_work_group_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns information about the kernel object that may be specific to a device.

kernel specifies the kernel object being queried.

device identifies a specific device in the list of devices associated with kernel. The list of devices
is the list of devices in the OpenCL context that is associated with kernel. If the list of devices
associated with kernel is a single device, device can be a NULL value.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelWorkGroupInfo is described in table
5.16.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.16.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_kernel_work_group_info Return Type Info. returned in param_value
CL_KERNEL_GLOBAL_WORK_
SIZE

size_t[3] This provides a mechanism for the
application to query the maximum global
size that can be used to execute a kernel
(i.e. global_work_size argument to
clEnqueueNDRangeKernel) on a custom
device given by device or a built-in kernel
on an OpenCL device given by device.

Last Revision Date: 11/14/12 Page 166

If device is not a custom device or kernel
is not a built-in kernel,
clGetKernelArgInfo returns the error
CL_INVALID_VALUE.

CL_KERNEL_WORK_GROUP_S
IZE

size_t This provides a mechanism for the
application to query the maximum work-
group size that can be used to execute a
kernel on a specific device given by
device. The OpenCL implementation uses
the resource requirements of the kernel
(register usage etc.) to determine what this
work-group size should be.

CL_KERNEL_COMPILE_
WORK_GROUP_SIZE

size_t[3] Returns the work-group size specified by
the
__attribute__((reqd_work_gro
up_size(X, Y, Z))) qualifier.
Refer to section 6.7.2.

If the work-group size is not specified
using the above attribute qualifier (0, 0, 0)
is returned.

CL_KERNEL_LOCAL_MEM_
SIZE

cl_ulong Returns the amount of local memory in
bytes being used by a kernel. This
includes local memory that may be
needed by an implementation to execute
the kernel, variables declared inside the
kernel with the __local address
qualifier and local memory to be allocated
for arguments to the kernel declared as
pointers with the __local address
qualifier and whose size is specified with
clSetKernelArg.

If the local memory size, for any pointer
argument to the kernel declared with the
__local address qualifier, is not
specified, its size is assumed to be 0.

CL_KERNEL_PREFERRED_
WORK_GROUP_SIZE_
MULTIPLE

size_t Returns the preferred multiple of work-
group size for launch. This is a
performance hint. Specifying a work-
group size that is not a multiple of the
value returned by this query as the value

Last Revision Date: 11/14/12 Page 167

of the local work size argument to
clEnqueueNDRangeKernel will not fail
to enqueue the kernel for execution unless
the work-group size specified is larger
than the device maximum.

CL_KERNEL_PRIVATE_MEM_
SIZE

cl_ulong Returns the minimum amount of private
memory, in bytes, used by each work-item
in the kernel. This value may include any
private memory needed by an
implementation to execute the kernel,
including that used by the language built-
ins and variable declared inside the kernel
with the __private qualifier.

Table 5.16 clGetKernelWorkGroupInfo parameter queries.

clGetKernelWorkGroupInfo returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_DEVICE if device is not in the list of devices associated with kernel or if
device is NULL but there is more than one device associated with kernel.

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.15 and param_value is
not NULL.

 CL_INVALID_VALUE if param_name is CL_KERNEL_GLOBAL_WORK_SIZE and

device is not a custom device or kernel is not a built-in kernel.

 CL_INVALID_KERNEL if kernel is a not a valid kernel object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clGetKernelArgInfo (cl_kernel kernel,
 cl_uint arg_indx,
 cl_kernel_arg_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

Last Revision Date: 11/14/12 Page 168

returns information about the arguments of a kernel. Kernel argument information is only
available if the program object associated with kernel is created with
clCreateProgramWithSource and the program executable is built with the -cl-kernel-arg-info
option specified in options argument to clBuildProgram or clCompileProgram.

kernel specifies the kernel object being queried.

arg_indx is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a kernel.

param_name specifies the argument information to query. The list of supported param_name
types and the information returned in param_value by clGetKernelArgInfo is described in table
5.17.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be > size of return type as described in table 5.17. param_value_size ret returns
the actual size in bytes of data copied to param value. If param_value_size_ret is NULL, it is
ignored.

cl_kernel_arg_info Return Type Info. returned in param_value
CL_KERNEL_ARG_
ADDRESS_QUALIFIER

cl_kernel_arg_
address_qualifier

Returns the address qualifier specified for the
argument given by arg_indx. This can be one of the
following values:

CL_KERNEL_ARG_ADDRESS_GLOBAL
CL_KERNEL_ARG_ADDRESS_LOCAL
CL_KERNEL_ARG_ADDRESS_CONSTANT
CL_KERNEL_ARG_ADDRESS_PRIVATE

If no address qualifier is specified, the default
address qualifier which is
CL_KERNEL_ARG_ADDRESS_PRIVATE is
returned.

CL_KERNEL_ARG_
ACCESS_QUALIFIER

cl_kernel_arg_
access_qualifier

Returns the access qualifier specified for the
argument given by arg_indx. This can be one of the
following values:

CL_KERNEL_ARG_ACCESS_READ_ONLY
CL_KERNEL_ARG_ACCESS_WRITE_ONLY
CL_KERNEL_ARG_ACCESS_READ_WRITE
CL_KERNEL_ARG_ACCESS_NONE

If argument is not an image type,

Last Revision Date: 11/14/12 Page 169

CL_KERNEL_ARG_ACCESS_NONE is returned. If
argument is an image type, the access qualifier
specified or the default access qualifier is returned.

CL_KERNEL_ARG_TYPE_
NAME

char[] Returns the type name specified for the argument
given by arg_indx. The type name returned will be
the argument type name as it was declared with any
whitespace removed. If argument type name is an
unsigned scalar type (i.e. unsigned char, unsigned
short, unsigned int, unsigned long), uchar, ushort,
uint and ulong will be returned. The argument type
name returned does not include any type qualifiers.

CL_KERNEL_ARG_TYPE_
QUALIFIER

cl_kernel_arg_
type_qualifier

Returns the type qualifier specified for the argument
given by arg_indx. The returned value can be:

CL_KERNEL_ARG_TYPE_CONST
CL_KERNEL_ARG_TYPE_RESTRICT
CL_KERNEL_ARG_TYPE_VOLATILE, a
combination of the above enums or
CL_KERNEL_ARG_TYPE_NONE

NOTE: CL_KERNEL_ARG_TYPE_VOLATILE is
returned if the argument is a pointer and the
referenced type is declared with the volatile
qualifier. For example, a kernel argument declared
as global int volatile *x returns
CL_KERNEL_ARG_TYPE_VOLATILE but
a kernel argument declared as global int *
volatile x does not. Similarly,
CL_KERNEL_ARG_TYPE_RESTRICT or
CL_KERNEL_ARG_TYPE_CONST is returned if the
argument is a pointer and the referenced type is
declared with the restrict or const qualifier. For
example, a kernel argument declared as global
int const *x returns
CL_KERNEL_ARG_TYPE_CONST but
a kernel argument declared as global int *
const x does not.

If the argument is declared with the constant address
space qualifier, the
CL_KERNEL_ARG_TYPE_CONST type qualifier
will be set.

CL_KERNEL_ARG_NAME char[] Returns the name specified for the argument given
by arg_indx.

Table 5.17 clGetKernelArgInfo parameter queries.

Last Revision Date: 11/14/12 Page 170

clGetKernelArgInfo returns CL SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

 CL_INVALID_ARG_INDEX if arg_indx is not a valid argument index.

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value size is < size of return type as described in table 5.17 and param_value is
not NULL.

 CL_KERNEL_ARG_INFO_NOT_AVAILABLE if the argument information is not available

for kernel.

 CL_INVALID_KERNEL if kernel is a not a valid kernel object.

Last Revision Date: 11/14/12 Page 171

5.8 Executing Kernels

The function

 cl_int clEnqueueNDRangeKernel (cl_command_queue command_queue,

 cl_kernel kernel,
 cl_uint work_dim,

 const size_t *global_work_offset,
 const size_t *global_work_size,

 const size_t *local_work_size,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to execute a kernel on a device.

command_queue is a valid command-queue. The kernel will be queued for execution on the
device associated with command_queue.

kernel is a valid kernel object. The OpenCL context associated with kernel and command-queue
must be the same.

work_dim is the number of dimensions used to specify the global work-items and work-items in
the work-group. work_dim must be greater than zero and less than or equal to
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS.

global_work_offset can be used to specify an array of work_dim unsigned values that describe
the offset used to calculate the global ID of a work-item. If global_work_offset is NULL, the
global IDs start at offset (0, 0, … 0).

global_work_size points to an array of work_dim unsigned values that describe the number of
global work-items in work_dim dimensions that will execute the kernel function. The total
number of global work-items is computed as global_work_size[0] * … *
global_work_size[work_dim – 1].

local_work_size points to an array of work_dim unsigned values that describe the number of
work-items that make up a work-group (also referred to as the size of the work-group) that will
execute the kernel specified by kernel. The total number of work-items in a work-group is
computed as local_work_size[0] * … * local_work_size[work_dim – 1]. The total number of
work-items in the work-group must be less than or equal to the
CL_DEVICE_MAX_WORK_GROUP_SIZE value specified in table 4.3 and the number of work-
items specified in local_work_size[0], … local_work_size[work_dim – 1] must be less than or
equal to the corresponding values specified by CL_DEVICE_MAX_WORK_ITEM_SIZES[0], ….
CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim – 1]. The explicitly specified
local_work_size will be used to determine how to break the global work-items specified by

Last Revision Date: 11/14/12 Page 172

global_work_size into appropriate work-group instances. If local_work_size is specified, the
values specified in global_work_size[0], … global_work_size[work_dim - 1] must be evenly
divisible by the corresponding values specified in local_work_size[0], …
local_work_size[work_dim – 1].

The work-group size to be used for kernel can also be specified in the program source using the
__attribute__((reqd_work_group_size(X, Y, Z)))qualifier (refer to section
6.7.2). In this case the size of work group specified by local_work_size must match the value
specified by the reqd_work_group_size attribute qualifier.

local_work_size can also be a NULL value in which case the OpenCL implementation will
determine how to be break the global work-items into appropriate work-group instances.

These work-group instances are executed in parallel across multiple compute units or
concurrently on the same compute unit.

Each work-item is uniquely identified by a global identifier. The global ID, which can be read
inside the kernel, is computed using the value given by global_work_size and
global_work_offset. In addition, a work-item is also identified within a work-group by a unique
local ID. The local ID, which can also be read by the kernel, is computed using the value given
by local_work_size. The starting local ID is always (0, 0, … 0).

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular kernel execution instance. Event
objects are unique and can be used to identify a particular kernel execution instance later on. If
event is NULL, no event will be created for this kernel execution instance and therefore it will not
be possible for the application to query or queue a wait for this particular kernel execution
instance. If the event_wait_list and the event arguments are not NULL, the event argument
should not refer to an element of the event_wait_list array.

clEnqueueNDRangeKernel returns CL_SUCCESS if the kernel execution was successfully
queued. Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program
executable available for device associated with command_queue.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

Last Revision Date: 11/14/12 Page 173

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_CONTEXT if context associated with command_queue and kernel are not
the same or if the context associated with command_queue and events in event_wait_list
are not the same.

 CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified.

 CL_INVALID_WORK_DIMENSION if work_dim is not a valid value (i.e. a value between

1 and 3).

 CL_INVALID_GLOBAL_WORK_SIZE if global_work_size is NULL, or if any of the
values specified in global_work_size[0], … global_work_size[work_dim – 1] are 0 or
exceed the range given by the sizeof(size_t) for the device on which the kernel
execution will be enqueued.

 CL_INVALID_GLOBAL_OFFSET if the value specified in global_work_size + the
corresponding values in global_work_offset for any dimensions is greater than the
sizeof(size t) for the device on which the kernel execution will be enqueued.

 CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and number of work-

items specified by global_work_size is not evenly divisible by size of work-group given
by local_work_size or does not match the work-group size specified for kernel using the
__attribute__((reqd_work_group_size(X, Y, Z))) qualifier in program
source.

 CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and the total number

of work-items in the work-group computed as local_work_size[0] * …
local_work_size[work_dim – 1] is greater than the value specified by
CL_DEVICE_MAX_WORK_GROUP_SIZE in table 4.3.

 CL_INVALID_WORK_GROUP_SIZE if local_work_size is NULL and the
__attribute__((reqd_work_group_size(X, Y, Z))) qualifier is used to
declare the work-group size for kernel in the program source.

 CL_INVALID_WORK_ITEM_SIZE if the number of work-items specified in any of

local_work_size[0], … local_work_size[work_dim – 1] is greater than the
corresponding values specified by CL_DEVICE_MAX_WORK_ITEM_SIZES[0], ….
CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim – 1].

 CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value

for an argument that is a buffer object and the offset specified when the sub-buffer object
is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

Last Revision Date: 11/14/12 Page 174

 CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the
image dimensions (image width, height, specified or compute row and/or slice pitch) are
not supported by device associated with queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is specified as an argument

value and the image format (image channel order and data type) is not supported by
device associated with queue.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel

on the command-queue because of insufficient resources needed to execute the kernel.
For example, the explicitly specified local_work_size causes a failure to execute the
kernel because of insufficient resources such as registers or local memory. Another
example would be the number of read-only image args used in kernel exceed the
CL_DEVICE_MAX_READ_IMAGE_ARGS value for device or the number of write-only
image args used in kernel exceed the CL_DEVICE_MAX_WRITE_IMAGE_ARGS value
for device or the number of samplers used in kernel exceed
CL_DEVICE_MAX_SAMPLERS for device.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with image or buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clEnqueueTask (cl_command_queue command_queue,

 cl_kernel kernel,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to execute a kernel on a device. The kernel is executed using a single
work-item.

command_queue is a valid command-queue. The kernel will be queued for execution on the
device associated with command_queue.

Last Revision Date: 11/14/12 Page 175

kernel is a valid kernel object. The OpenCL context associated with kernel and command-queue
must be the same.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list
must be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must
be valid and num_events_in_wait_list must be greater than 0. The events specified in
event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

event returns an event object that identifies this particular kernel execution instance. Event
objects are unique and can be used to identify a particular kernel execution instance later on. If
event is NULL, no event will be created for this kernel execution instance and therefore it will not
be possible for the application to query or queue a wait for this particular kernel execution
instance. If the event_wait_list and the event arguments are not NULL, the event argument
should not refer to an element of the event_wait_list array.

clEnqueueTask is equivalent to calling clEnqueueNDRangeKernel with work_dim = 1,
global_work_offset = NULL, global_work_size[0] set to 1 and local_work_size[0] set to 1.

clEnqueueTask returns CL_SUCCESS if the kernel execution was successfully queued.
Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program
executable available for device associated with command_queue.

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_CONTEXT if context associated with command_queue and kernel are not

the same or if the context associated with command_queue and events in event_wait_list
are not the same.

 CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified.

 CL_INVALID_WORK_GROUP_SIZE if a work-group size is specified for kernel using the
__attribute__((reqd_work_group_size(X, Y, Z))) qualifier in program
source and is not (1, 1, 1).

 CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value

for an argument that is a buffer object and the offset specified when the sub-buffer object
is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue.

Last Revision Date: 11/14/12 Page 176

 CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the

image dimensions (image width, height, specified or compute row and/or slice pitch) are
not supported by device associated with queue.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is specified as an argument

value and the image format (image channel order and data type) is not supported by
device associated with queue.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel

on the command-queue because of insufficient resources needed to execute the kernel.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for
data store associated with image or buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clEnqueueNativeKernel (cl_command_queue command_queue,

 void (CL_CALLBACK *user_func)(void *)
 void *args,
 size_t cb_args,
 cl_uint num_mem_objects,
 const cl_mem *mem_list,
 const void **args_mem_loc,

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,

 cl_event *event)

enqueues a command to execute a native C/C++ function not compiled using the OpenCL
compiler.

command_queue is a valid command-queue. A native user function can only be executed on a
command-queue created on a device that has CL_EXEC_NATIVE_KERNEL capability set in
CL_DEVICE_EXECUTION_CAPABILITIES as specified in table 4.3.

user_func is a pointer to a host-callable user function.

Last Revision Date: 11/14/12 Page 177

args is a pointer to the args list that user_func should be called with.

cb_args is the size in bytes of the args list that args points to.

The data pointed to by args and cb_args bytes in size will be copied and a pointer to this copied
region will be passed to user_func. The copy needs to be done because the memory objects
(cl_mem values) that args may contain need to be modified and replaced by appropriate
pointers to global memory. When clEnqueueNativeKernel returns, the memory region pointed
to by args can be reused by the application.

num_mem_objects is the number of buffer objects that are passed in args.

mem_list is a list of valid buffer objects, if num_mem_objects > 0. The buffer object values
specified in mem_list are memory object handles (cl_mem values) returned by clCreateBuffer
or NULL.

args_mem_loc is a pointer to appropriate locations that args points to where memory object
handles (cl_mem values) are stored. Before the user function is executed, the memory object
handles are replaced by pointers to global memory.

event_wait_list, num_events_in_wait_list and event are as described in
clEnqueueNDRangeKernel.

clEnqueueNativeKernel returns CL_SUCCESS if the user function execution instance was
successfully queued. Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_VALUE if user_func is NULL.

 CL_INVALID_VALUE if args is a NULL value and cb_args > 0, or if args is a NULL

value and num_mem_objects > 0.

 CL_INVALID_VALUE if args is not NULL and cb_args is 0.

 CL_INVALID_VALUE if num_mem_objects > 0 and mem_list or args_mem_loc are
NULL.

 CL_INVALID_VALUE if num_mem_objects = 0 and mem_list or args_mem_loc are not

NULL.

Last Revision Date: 11/14/12 Page 178

 CL_INVALID_OPERATION if the device associated with command_queue cannot execute
the native kernel.

 CL_INVALID_MEM_OBJECT if one or more memory objects specified in mem_list are

not valid or are not buffer objects.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel
on the command-queue because of insufficient resources needed to execute the kernel.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for

data store associated with buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and
num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

NOTE:

The total number of read-only images specified as arguments to a kernel cannot exceed
CL_DEVICE_MAX_READ_IMAGE_ARGS. Each 2D image array argument to a kernel declared
with the read_only qualifier counts as one image.

The total number of write-only images specified as arguments to a kernel cannot exceed
CL_DEVICE_MAX_WRITE_IMAGE_ARGS. Each 2D image array argument to a kernel
declared with the write_only qualifier counts as one image.

Last Revision Date: 11/14/12 Page 179

5.9 Event Objects

Event objects can be used to refer to a kernel execution command (clEnqueueNDRangeKernel,
clEnqueueTask, clEnqueueNativeKernel), read, write, map and copy commands on memory
objects (clEnqueue{Read|Write|Map}Buffer, clEnqueueUnmapMemObject,
clEnqueue{Read|Write}BufferRect, clEnqueue{Read|Write|Map}Image,
clEnqueueCopy{Buffer|Image}, clEnqueueCopyBufferRect,
clEnqueueCopyBufferToImage, clEnqueueCopyImageToBuffer),
clEnqueueMarkerWithWaitList, clEnqueueBarrierWithWaitList (refer to section 5.10) or
user events.

An event object can be used to track the execution status of a command. The API calls that
enqueue commands to a command-queue create a new event object that is returned in the event
argument. In case of an error enqueuing the command in the command-queue the event
argument does not return an event object.

The execution status of an enqueued command at any given point in time can be one of the
following:

 CL_QUEUED – This indicates that the command has been enqueued in a command-
queue. This is the initial state of all events except user events.

 CL_SUBMITTED – This is the initial state for all user events. For all other events, this
indicates that the command has been submitted by the host to the device.

 CL_RUNNING – This indicates that the device has started executing this command. In

order for the execution status of an enqueued command to change from CL_SUBMITTED
to CL_RUNNING, all events that this command is waiting on must have completed
successfully i.e. their execution status must be CL_COMPLETE.

 CL_COMPLETE – This indicates that the command has successfully completed.

 Error code – The error code is a negative integer value and indicates that the command

was abnormally terminated. Abnormal termination may occur for a number of reasons
such as a bad memory access.

NOTE: A command is considered to be complete if its execution status is CL_COMPLETE or is
a negative integer value.

If the execution of a command is terminated, the command-queue associated with this
terminated command, and the associated context (and all other command-queues in this context)
may no longer be available. The behavior of OpenCL API calls that use this context (and
command-queues associated with this context) are now considered to be implementation-
defined. The user registered callback function specified when context is created can be used to
report appropriate error information.

Last Revision Date: 11/14/12 Page 180

The function

 cl_event clCreateUserEvent (cl_context context, cl_int *errcode_ret)

creates a user event object. User events allow applications to enqueue commands that wait on a
user event to finish before the command is executed by the device.

context must be a valid OpenCL context.

errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateUserEvent returns a valid non-zero event object and errcode_ret is set to CL_SUCCESS
if the user event object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The execution status of the user event object created is set to CL_SUBMITTED.

The function

 cl_int clSetUserEventStatus (cl_event event, cl_int execution_status)

sets the execution status of a user event object.

event is a user event object created using clCreateUserEvent.

execution_status specifies the new execution status to be set and can be CL_COMPLETE or a
negative integer value to indicate an error. A negative integer value causes all enqueued
commands that wait on this user event to be terminated. clSetUserEventStatus can only be
called once to change the execution status of event.

clSetUserEventStatus returns CL_SUCCESS if the function was executed successfully.
Otherwise, it returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid user event object.

Last Revision Date: 11/14/12 Page 181

 CL_INVALID_VALUE if the execution_status is not CL_COMPLETE or a negative integer
value.

 CL_INVALID_OPERATION if the execution_status for event has already been changed by

a previous call to clSetUserEventStatus.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

NOTE: Enqueued commands that specify user events in the event_wait_list argument of
clEnqueue*** commands must ensure that the status of these user events being waited on are set
using clSetUserEventStatus before any OpenCL APIs that release OpenCL objects except for
event objects are called; otherwise the behavior is undefined.

For example, the following code sequence will result in undefined behavior of
clReleaseMemObject.

ev1 = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ...,

1, &ev1, NULL);
clEnqueueWriteBuffer(cq, buf2, CL_FALSE,...);
clReleaseMemObject(buf2);
clSetUserEventStatus(ev1, CL_COMPLETE);

The following code sequence, however, works correctly.

ev1 = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ...,

1, &ev1, NULL);
clEnqueueWriteBuffer(cq, buf2, CL_FALSE,...);
clSetUserEventStatus(ev1, CL_COMPLETE);
clReleaseMemObject(buf2);

The function

 cl_int clWaitForEvents (cl_uint num_events, const cl_event *event_list)

waits on the host thread for commands identified by event objects in event_list to complete. A
command is considered complete if its execution status is CL_COMPLETE or a negative value.
The events specified in event_list act as synchronization points.

clWaitForEvents returns CL_SUCCESS if the execution status of all events in event_list is
CL_COMPLETE. Otherwise, it returns one of the following errors:

Last Revision Date: 11/14/12 Page 182

 CL_INVALID_VALUE if num_events is zero or event_list is NULL.

 CL_INVALID_CONTEXT if events specified in event_list do not belong to the same

context.

 CL_INVALID_EVENT if event objects specified in event_list are not valid event objects.

 CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of
any of the events in event_list is a negative integer value.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clGetEventInfo (cl_event event,

 cl_event_info param_name,
 size_t param_value_size,

 void *param_value,
 size_t *param_value_size_ret)

returns information about the event object.

event specifies the event object being queried.

param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetEventInfo is described in table 5.18.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.18.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

cl_event_info Return

Type
Info. returned in param_value

CL_EVENT_COMMAND_ cl_command_ Return the command-queue associated with

Last Revision Date: 11/14/12 Page 183

QUEUE queue event. For user event objects, a NULL value
is returned.

CL_EVENT_CONTEXT cl_context Return the context associated with event.
CL_EVENT_COMMAND_
TYPE

cl_command_
type

Return the command associated with event.
Can be one of the following values:

CL_COMMAND_NDRANGE_KERNEL
CL_COMMAND_TASK
CL_COMMAND_NATIVE_KERNEL
CL_COMMAND_READ_BUFFER
CL_COMMAND_WRITE_BUFFER
CL_COMMAND_COPY_BUFFER
CL_COMMAND_READ_IMAGE
CL_COMMAND_WRITE_IMAGE
CL_COMMAND_COPY_IMAGE
CL_COMMAND_COPY_BUFFER_TO_IMAGE
CL_COMMAND_COPY_IMAGE_TO_BUFFER
CL_COMMAND_MAP_BUFFER
CL_COMMAND_MAP_IMAGE
CL_COMMAND_UNMAP_MEM_OBJECT
CL_COMMAND_MARKER
CL_COMMAND_ACQUIRE_GL_OBJECTS
CL_COMMAND_RELEASE_GL_OBJECTS

CL_COMMAND_READ_BUFFER_RECT
CL_COMMAND_WRITE_BUFFER_RECT
CL_COMMAND_COPY_BUFFER_RECT
CL_COMMAND_USER
CL_COMMAND_BARRIER
CL_COMMAND_MIGRATE_MEM_OBJECTS
CL_COMMAND_FILL_BUFFER
CL_COMMAND_FILL_IMAGE

CL_EVENT_COMMAND_
EXECUTION_STATUS18

cl_int Return the execution status of the command
identified by event.

Valid values are:

CL_QUEUED (command has been enqueued
in the command-queue),

CL_SUBMITTED (enqueued command has
been submitted by the host to the device
associated with the command-queue),

CL_RUNNING (device is currently executing
this command),

18 The error code values are negative, and event state values are positive. The event state values are ordered from
the largest value (CL_QUEUED) for the first or initial state to the smallest value (CL_COMPLETE or negative
integer value) for the last or complete state. The value of CL_COMPLETE and CL_SUCCESS are the same.

Last Revision Date: 11/14/12 Page 184

CL_COMPLETE (the command has
completed), or

Error code given by a negative integer value.
(command was abnormally terminated – this
may be caused by a bad memory access etc.).
These error codes come from the same set of
error codes that are returned from the
platform or runtime API calls as return
values or errcode_ret values.

CL_EVENT_REFERENCE_
COUNT19

cl_uint Return the event reference count.

 Table 5.18 clGetEventInfo parameter queries.

Using clGetEventInfo to determine if a command identified by event has finished execution (i.e.
CL_EVENT_COMMAND_EXECUTION_STATUS returns CL_COMPLETE) is not a
synchronization point. There are no guarantees that the memory objects being modified by
command associated with event will be visible to other enqueued commands.

clGetEventInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.18 and param_value is
not NULL.

 CL_INVALID_VALUE if information to query given in param_name cannot be queried
for event.

 CL_INVALID_EVENT if event is a not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

19 The reference count returned should be considered immediately stale. It is unsuitable for general use in
applications. This feature is provided for identifying memory leaks.

Last Revision Date: 11/14/12 Page 185

The function

 cl_int clSetEventCallback (cl_event event,
 cl_int command_exec_callback_type,
 void (CL_CALLBACK *pfn_event_notify)(cl_event event,
 cl_int event_command_exec_status,
 void *user_data),
 void *user_data)

registers a user callback function for a specific command execution status. The registered
callback function will be called when the execution status of command associated with event
changes to an execution status equal to or past the status specified by command_exec_status.

Each call to clSetEventCallback registers the specified user callback function on a callback
stack associated with event. The order in which the registered user callback functions are called
is undefined.

event is a valid event object.

command_exec_callback_type specifies the command execution status for which the callback is
registered. The command execution callback values for which a callback can be registered are:
CL_SUBMITTED, CL_RUNNING or CL_COMPLETE20. There is no guarantee that the callback
functions registered for various execution status values for an event will be called in the exact
order that the execution status of a command changes. Furthermore, it should be noted that
receiving a call back for an event with a status other than CL_COMPLETE, in no way implies that
the memory model or execution model as defined by the OpenCL specification has changed. For
example, it is not valid to assume that a corresponding memory transfer has completed unless the
event is in a state CL_COMPLETE.

pfn_event_notify is the event callback function that can be registered by the application. This
callback function may be called asynchronously by the OpenCL implementation. It is the
application’s responsibility to ensure that the callback function is thread-safe. The parameters to
this callback function are:

 event is the event object for which the callback function is invoked.

 event_command_exec_status represents the execution status of command for which
this callback function is invoked. Refer to table 5.18 for the command execution
status values. If the callback is called as the result of the command associated with
event being abnormally terminated, an appropriate error code for the error that caused
the termination will be passed to event_command_exec_status instead.

 user_data is a pointer to user supplied data.

20The callback function registered for a command_exec_callback_type value of CL_COMPLETE will be called
when the command has completed successfully or is abnormally terminated.

Last Revision Date: 11/14/12 Page 186

user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

All callbacks registered for an event object must be called. All enqueued callbacks shall be
called before the event object is destroyed. Callbacks must return promptly. The behavior of
calling expensive system routines, OpenCL API calls to create contexts or command-queues, or
blocking OpenCL operations from the following list below, in a callback is undefined.

 clFinish,
 clWaitForEvents,
 blocking calls to clEnqueueReadBuffer, clEnqueueReadBufferRect,

 clEnqueueWriteBuffer, clEnqueueWriteBufferRect,
blocking calls to clEnqueueReadImage and clEnqueueWriteImage,

 blocking calls to clEnqueueMapBuffer and clEnqueueMapImage,
 blocking calls to clBuildProgram, clCompileProgram or clLinkProgram

If an application needs to wait for completion of a routine from the above list in a callback,
please use the non-blocking form of the function, and assign a completion callback to it to do the
remainder of your work. Note that when a callback (or other code) enqueues commands to a
command-queue, the commands are not required to begin execution until the queue is flushed.
In standard usage, blocking enqueue calls serve this role by implicitly flushing the queue. Since
blocking calls are not permitted in callbacks, those callbacks that enqueue commands on a
command queue should either call clFlush on the queue before returning or arrange for clFlush
to be called later on another thread.

clSetEventCallback returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid event object.

 CL_INVALID_VALUE if pfn_event_notify is NULL or if command_exec_callback_type is
not CL_SUBMITTED, CL_RUNNING or CL_COMPLETE.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The function

 cl_int clRetainEvent (cl_event event)

increments the event reference count. The OpenCL commands that return an event perform an
implicit retain.

Last Revision Date: 11/14/12 Page 187

clRetainEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

To release an event, use the following function

 cl_int clReleaseEvent (cl_event event)

decrements the event reference count.

clReleaseEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_EVENT if event is not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the

OpenCL implementation on the host.

The event object is deleted once the reference count becomes zero, the specific command
identified by this event has completed (or terminated) and there are no commands in the
command-queues of a context that require a wait for this event to complete.

NOTE: Developers should be careful when releasing their last reference count on events created
by clCreateUserEvent that have not yet been set to status of CL_COMPLETE or an error. If the
user event was used in the event_wait_list argument passed to a clEnqueue*** API or another
application host thread is waiting for it in clWaitForEvents, those commands and host threads
will continue to wait for the event status to reach CL_COMPLETE or error, even after the user has
released the object. Since in this scenario the developer has released his last reference count to
the user event, it would be in principle no longer valid for him to change the status of the event
to unblock all the other machinery. As a result the waiting tasks will wait forever, and associated
events, cl_mem objects, command queues and contexts are likely to leak. In-order command
queues caught up in this deadlock may cease to do any work.

Last Revision Date: 11/14/12 Page 188

5.10 Markers, Barriers and Waiting for Events

The function

 cl_int clEnqueueMarkerWithWaitList (cl_command_queue command_queue,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a marker command which waits for either a list of events to complete, or if the list is
empty it waits for all commands previously enqueued in command_queue to complete before it
completes. This command returns an event which can be waited on, i.e. this event can be waited
on to insure that all events either in the event_wait_list or all previously enqueued commands,
queued before this command to command_queue, have completed.

command_queue is a valid command-queue.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL,
the list of events pointed to by event_wait_list must be valid and num_events_in_wait_list must
be greater than 0. The events specified in event_wait_list act as synchronization points. The
context associated with events in event_wait_list and command_queue must be the same. The
memory associated with event_wait_list can be reused or freed after the function returns.

If event_wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

event returns an event object that identifies this particular command. Event objects are unique
and can be used to identify this marker command later on. event can be NULL in which case it
will not be possible for the application to query the status of this command or queue a wait for
this command to complete. If the event_wait_list and the event arguments are not NULL, the
event argument should not refer to an element of the event_wait_list array.

clEnqueueMarkerWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and

Last Revision Date: 11/14/12 Page 189

num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

The function

 cl_int clEnqueueBarrierWithWaitList (cl_command_queue command_queue,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

enqueues a barrier command which waits for either a list of events to complete, or if the list is
empty it waits for all commands previously enqueued in command_queue to complete before it
completes. This command blocks command execution, that is, any following commands
enqueued after it do not execute until it completes. This command returns an event which can be
waited on, i.e. this event can be waited on to insure that all events either in the event_wait_list or
all previously enqueued commands, queued before this command to command_queue, have
completed

command_queue is a valid command-queue.

event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL,
the list of events pointed to by event_wait_list must be valid and num_events_in_wait_list must
be greater than 0. The events specified in event_wait_list act as synchronization points. The
context associated with events in event_wait_list and command_queue must be the same. The
memory associated with event_wait_list can be reused or freed after the function returns.

If event_wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

event returns an event object that identifies this particular command. Event objects are unique
and can be used to identify this barrier command later on. event can be NULL in which case it
will not be possible for the application to query the status of this command or queue a wait for
this command to complete. If the event_wait_list and the event arguments are not NULL, the
event argument should not refer to an element of the event_wait_list array.

clEnqueueBarrierWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

Last Revision Date: 11/14/12 Page 190

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_INVALID_CONTEXT if context associated with command_queue and events in
event_wait_list are not the same.

 CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and

num_events_in_wait_list > 0, or event_wait_list is not NULL and
num_events_in_wait_list is 0, or if event objects in event_wait_list are not valid events.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 191

5.11 Out-of-order Execution of Kernels and Memory
Object Commands

The OpenCL functions that are submitted to a command-queue are enqueued in the order the
calls are made but can be configured to execute in-order or out-of-order. The properties
argument in clCreateCommandQueue can be used to specify the execution order.

If the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command-queue is
not set, the commands enqueued to a command-queue execute in order. For example, if an
application calls clEnqueueNDRangeKernel to execute kernel A followed by a
clEnqueueNDRangeKernel to execute kernel B, the application can assume that kernel A
finishes first and then kernel B is executed. If the memory objects output by kernel A are inputs
to kernel B then kernel B will see the correct data in memory objects produced by execution of
kernel A. If the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command-
queue is set, then there is no guarantee that kernel A will finish before kernel B starts execution.

Applications can configure the commands enqueued to a command-queue to execute out-of-
order by setting the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of the
command-queue. This can be specified when the command-queue is created. In out-of-order
execution mode there is no guarantee that the enqueued commands will finish execution in the
order they were queued. As there is no guarantee that kernels will be executed in order, i.e.
based on when the clEnqueueNDRangeKernel calls are made within a command-queue, it is
therefore possible that an earlier clEnqueueNDRangeKernel call to execute kernel A identified
by event A may execute and/or finish later than a clEnqueueNDRangeKernel call to execute
kernel B which was called by the application at a later point in time. To guarantee a specific
order of execution of kernels, a wait on a particular event (in this case event A) can be used.
The wait for event A can be specified in the event_wait_list argument to
clEnqueueNDRangeKernel for kernel B.

In addition, a wait for events (clEnqueueMarkerWithWaitList) or a barrier
(clEnqueueBarrierWithWaitList) command can be enqueued to the command-queue. The
wait for events command ensures that previously enqueued commands identified by the list of
events to wait for have finished before the next batch of commands is executed. The barrier
command ensures that all previously enqueued commands in a command-queue have finished
execution before the next batch of commands is executed.

Similarly, commands to read, write, copy or map memory objects that are enqueued after
clEnqueueNDRangeKernel, clEnqueueTask or clEnqueueNativeKernel commands are not
guaranteed to wait for kernels scheduled for execution to have completed (if the
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property is set). To ensure correct
ordering of commands, the event object returned by clEnqueueNDRangeKernel,
clEnqueueTask or clEnqueueNativeKernel can be used to enqueue a wait for event or a barrier
command can be enqueued that must complete before reads or writes to the memory object(s)
occur.

Last Revision Date: 11/14/12 Page 192

5.12 Profiling Operations on Memory Objects and
Kernels

This section describes profiling of OpenCL functions that are enqueued as commands to a
command-queue. The specific functions21 being referred to are:
clEnqueue{Read|Write|Map}Buffer, clEnqueue{Read|Write}BufferRect,
clEnqueue{Read|Write|Map}Image, clEnqueueUnmapMemObject, clEnqueueCopyBuffer,
clEnqueueCopyBufferRect, clEnqueueCopyImage, clEnqueueCopyImageToBuffer,
clEnqueueCopyBufferToImage, clEnqueueNDRangeKernel , clEnqueueTask and
clEnqueueNativeKernel. These enqueued commands are identified by unique event objects.

Event objects can be used to capture profiling information that measure execution time of a
command. Profiling of OpenCL commands can be enabled either by using a command-queue
created with CL_QUEUE_PROFILING_ENABLE flag set in properties argument to
clCreateCommandQueue.

If profiling is enabled, the function

 cl_int clGetEventProfilingInfo (cl_event event,
 cl_profiling_info param_name,

 size_t param_value_size,
 void *param_value,

 size_t *param_value_size_ret)

returns profiling information for the command associated with event.

event specifies the event object.

param_name specifies the profiling data to query. The list of supported param_name types and
the information returned in param_value by clGetEventProfilingInfo is described in table 5.19.

param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

param_value_size is used to specify the size in bytes of memory pointed to by param_value.
This size must be >= size of return type as described in table 5.19.

param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

21 clEnqueueAcquireGLObjects and clEnqueueReleaseGLObjects defined in section 9.6.6 of the
OpenCL 1.2 Extension Specification are also included.

Last Revision Date: 11/14/12 Page 193

cl_profiling_info Return

Type
Info. returned in param_value

CL_PROFILING_COMMAND_QUEUED cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event is enqueued in a
command-queue by the host.

CL_PROFILING_COMMAND_SUBMIT cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event that has been
enqueued is submitted by the host to
the device associated with the
command-queue.

CL_PROFILING_COMMAND_START cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event starts execution on
the device.

CL_PROFILING_COMMAND_END cl_ulong A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event has finished
execution on the device.

 Table 5.19 clGetEventProfilingInfo parameter queries.

The unsigned 64-bit values returned can be used to measure the time in nano-seconds consumed
by OpenCL commands.

OpenCL devices are required to correctly track time across changes in device frequency and
power states. The CL_DEVICE_PROFILING_TIMER_RESOLUTION specifies the resolution of
the timer i.e. the number of nanoseconds elapsed before the timer is incremented.

clGetEventProfilingInfo returns CL_SUCCESS if the function is executed successfully and the
profiling information has been recorded. Otherwise, it returns one of the following errors:

 CL_PROFILING_INFO_NOT_AVAILABLE if the CL_QUEUE_PROFILING_ENABLE flag
is not set for the command-queue, if the execution status of the command identified by
event is not CL_COMPLETE or if event is a user event object.

Last Revision Date: 11/14/12 Page 194

 CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by
param_value_size is < size of return type as described in table 5.19 and param_value is
not NULL.

 CL_INVALID_EVENT if event is a not a valid event object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 195

5.13 Flush and Finish

The function

 cl_int clFlush (cl_command_queue command_queue)

issues all previously queued OpenCL commands in command_queue to the device associated
with command_queue. clFlush only guarantees that all queued commands to command_queue
will eventually be submitted to the appropriate device. There is no guarantee that they will be
complete after clFlush returns.

clFlush returns CL_SUCCESS if the function call was executed successfully. Otherwise, it
returns one of the following errors:

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the
OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Any blocking commands queued in a command-queue and clReleaseCommandQueue perform
an implicit flush of the command-queue. These blocking commands are clEnqueueReadBuffer,
clEnqueueReadBufferRect, clEnqueueReadImage, with blocking_read set to CL_TRUE;
clEnqueueWriteBuffer, clEnqueueWriteBufferRect, clEnqueueWriteImage with
blocking_write set to CL_TRUE; clEnqueueMapBuffer, clEnqueueMapImage with
blocking_map set to CL_TRUE; or clWaitForEvents.

To use event objects that refer to commands enqueued in a command-queue as event objects to
wait on by commands enqueued in a different command-queue, the application must call a
clFlush or any blocking commands that perform an implicit flush of the command-queue where
the commands that refer to these event objects are enqueued.

The function

 cl_int clFinish (cl_command_queue command_queue)

blocks until all previously queued OpenCL commands in command_queue are issued to the
associated device and have completed. clFinish does not return until all previously queued
commands in command_queue have been processed and completed. clFinish is also a
synchronization point.

clFinish returns CL_SUCCESS if the function call was executed successfully. Otherwise, it
returns one of the following errors:

Last Revision Date: 11/14/12 Page 196

 CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the

OpenCL implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the
OpenCL implementation on the host.

Last Revision Date: 11/14/12 Page 197

6. The OpenCL C Programming Language

This section describes the OpenCL C programming language used to create kernels that are
executed on OpenCL device(s). The OpenCL C programming language (also referred to as
OpenCL C) is based on the ISO/IEC 9899:1999 C language specification (a.k.a. C99
specification) with specific extensions and restrictions. Please refer to the ISO/IEC 9899:1999
specification for a detailed description of the language grammar. This section describes
modifications and restrictions to ISO/IEC 9899:1999 supported in OpenCL C.

6.1 Supported Data Types

The following data types are supported.

6.1.1 Built-in Scalar Data Types

Table 6.1 describes the list of built-in scalar data types.

Type Description
bool22 A conditional data type which is either true or false. The value true

expands to the integer constant 1 and the value false expands to the
integer constant 0.

char A signed two’s complement 8-bit integer.
unsigned char,
uchar

An unsigned 8-bit integer.

short A signed two’s complement 16-bit integer.
unsigned short,
ushort

An unsigned 16-bit integer.

int A signed two’s complement 32-bit integer.
unsigned int,
uint

An unsigned 32-bit integer.

long A signed two’s complement 64-bit integer.
unsigned long,
ulong

An unsigned 64-bit integer.

float A 32-bit floating-point. The float data type must conform to the
IEEE 754 single precision storage format.

double23 A 64-bit floating-point. The double data type must conform to the
IEEE 754 double precision storage format.

half A 16-bit floating-point. The half data type must conform to the

22 When any scalar value is converted to bool, the result is 0 if the value compares equal to 0; otherwise, the result is
1.
23 The double scalar type is an optional type that is supported if CL_DEVICE_DOUBLE_FP_CONFIG in table 4.3
for a device is not zero.

Last Revision Date: 11/14/12 Page 198

IEEE 754-2008 half precision storage format.
size_t The unsigned integer type of the result of the sizeof operator. This

is a 32-bit unsigned integer if CL_DEVICE_ADDRESS_BITS
defined in table 4.3 is 32-bits and is a 64-bit unsigned integer if
CL_DEVICE_ADDRESS_BITS is 64-bits.

ptrdiff_t A signed integer type that is the result of subtracting two pointers.
This is a 32-bit signed integer if CL_DEVICE_ADDRESS_BITS
defined in table 4.3 is 32-bits and is a 64-bit signed integer if
CL_DEVICE_ADDRESS_BITS is 64-bits.

intptr_t A signed integer type with the property that any valid pointer to
void can be converted to this type, then converted back to pointer
to void, and the result will compare equal to the original pointer.
This is a 32-bit signed integer if CL_DEVICE_ADDRESS_BITS
defined in table 4.3 is 32-bits and is a 64-bit signed integer if
CL_DEVICE_ADDRESS_BITS is 64-bits.

uintptr_t An unsigned integer type with the property that any valid pointer to
void can be converted to this type, then converted back to pointer
to void, and the result will compare equal to the original pointer.
This is a 32-bit signed integer if CL_DEVICE_ADDRESS_BITS
defined in table 4.3 is 32-bits and is a 64-bit signed integer if
CL_DEVICE_ADDRESS_BITS is 64-bits.

void The void type comprises an empty set of values; it is an incomplete
type that cannot be completed.

 Table 6.1 Built-in Scalar Data Types

Most built-in scalar data types are also declared as appropriate types in the OpenCL API (and
header files) that can be used by an application. The following table describes the built-in scalar
data type in the OpenCL C programming language and the corresponding data type available to
the application:

Type in OpenCL Language API type for application
bool n/a
char cl_char

unsigned char,
uchar

cl_uchar

short cl_short
unsigned short,

ushort
cl_ushort

int cl_int
unsigned int,

uint
cl_uint

long cl_long
unsigned long, cl_ulong

Last Revision Date: 11/14/12 Page 199

ulong
float cl_float

double cl_double
half cl_half

size_t n/a
ptrdiff_t n/a
intptr_t n/a

uintptr_t n/a
void void

6.1.1.1 The half data type

The half data type must be IEEE 754-2008 compliant. half numbers have 1 sign bit, 5
exponent bits, and 10 mantissa bits. The interpretation of the sign, exponent and mantissa is
analogous to IEEE 754 floating-point numbers. The exponent bias is 15. The half data type
must represent finite and normal numbers, denormalized numbers, infinities and NaN.
Denormalized numbers for the half data type which may be generated when converting a
float to a half using vstore_half and converting a half to a float using vload_half cannot be
flushed to zero. Conversions from float to half correctly round the mantissa to 11 bits of
precision. Conversions from half to float are lossless; all half numbers are exactly
representable as float values.

The half data type can only be used to declare a pointer to a buffer that contains half values. A
few valid examples are given below:

 void
 bar (__global half *p)
 {
 ….
 }

 __kernel void
 foo (__global half *pg, __local half *pl)
 {
 __global half *ptr;
 int offset;

 ptr = pg + offset;
 bar(ptr);
 }

Below are some examples that are not valid usage of the half type:

 half a;
 half b[100];

Last Revision Date: 11/14/12 Page 200

 half *p;
 a = *p; ß not allowed. must use vload_half function

Loads from a pointer to a half and stores to a pointer to a half can be performed using the
vload_half, vload_halfn, vloada_halfn and vstore_half, vstore_halfn, vstorea_halfn functions
respectively as described in section 6.12.7. The load functions read scalar or vector half values
from memory and convert them to a scalar or vector float value. The store functions take a
scalar or vector float value as input, convert it to a half scalar or vector value (with appropriate
rounding mode) and write the half scalar or vector value to memory.

6.1.2 Built-in Vector Data Types24

The char, unsigned char, short, unsigned short, integer, unsigned integer, long, unsigned long,
float vector data types are supported. The vector data type is defined with the type name i.e.
char, uchar, short, ushort, int, uint, float, long, ulong followed by a literal value n that defines the
number of elements in the vector. Supported values of n are 2, 3, 4, 8, and 16 for all vector data
types.

Table 6.2 describes the list of built-in vector data types.

Type Description
charn A vector of n 8-bit signed two’s complement integer values.
ucharn A vector of n 8-bit unsigned integer values.
shortn A vector of n 16-bit signed two’s complement integer values.
ushortn A vector of n 16-bit unsigned integer values.
intn A vector of n 32-bit signed two’s complement integer values.
uintn A vector of n 32-bit unsigned integer values.
longn A vector of n 64-bit signed two’s complement integer values.
ulongn A vector of n 64-bit unsigned integer values.
floatn A vector of n 32-bit floating-point values.
doublen25 A vector of n 64-bit floating-point values.

 Table 6.2 Built-in Vector Data Types

The built-in vector data types are also declared as appropriate types in the OpenCL API (and
header files) that can be used by an application. The following table describes the built-in vector

24 Built-in vector data types are supported by the OpenCL implementation even if the underlying compute
device does not support any or all of the vector data types. These are to be converted by the device
compiler to appropriate instructions that use underlying built-in types supported natively by the compute
device. Refer to Appendix B for a description of the order of the components of a vector type in memory.

25 The double vector type is an optional type that is supported if CL_DEVICE_DOUBLE_FP_CONFIG in table 4.3
for a device is not zero.

Last Revision Date: 11/14/12 Page 201

data type in the OpenCL C programming language and the corresponding data type available to
the application:

Type in OpenCL Language API type for application
charn cl_charn

ucharn cl_ucharn
shortn cl_shortn

ushortn cl_ushortn
intn cl_intn

uintn cl_uintn
longn cl_longn

ulongn cl_ulongn
floatn cl_floatn

doublen cl_doublen

6.1.3 Other Built-in Data Types

Table 6.3 describes the list of additional data types supported by OpenCL.

Type Description
image2d_t A 2D image. Refer to section 6.12.14 for a detailed description of

the built-in functions that use this type.
image3d_t A 3D image. Refer to section 6.12.14 for a detailed description of

the built-in functions that use this type.
image2d_array_t A 2D image array. Refer to section 6.12.14 for a detailed

description of the built-in functions that use this type.
image1d_t A 1D image. Refer to section 6.12.14 for a detailed description of

the built-in functions that use this type.
image1d_buffer_t A 1D image created from a buffer object. Refer to section

6.12.14 for a detailed description of the built-in functions that use
this type.

image1d_array_t A 1D image array. Refer to section 6.12.14 for a detailed
description of the built-in functions that use this type.

sampler_t A sampler type. Refer to section 6.12.14 for a detailed
description the built-in functions that use of this type.

event_t An event. This can be used to identify async copies from global
to local memory and vice-versa. Refer to section 6.12.10.

 Table 6.3 Other Built-in Data Types

Last Revision Date: 11/14/12 Page 202

NOTE: The image2d_t, image3d_t, image2d_array_t, image1d_t, image1d_buffer_t,
image1d_array_t and sampler_t types are only defined if the device supports images i.e.
CL_DEVICE_IMAGE_SUPPORT as described in table 4.3 is CL_TRUE.

The C99 derived types (arrays, structs, unions, functions, and pointers), constructed from the
built-in data types described in sections 6.1.1, 6.1.2 and 6.1.3 are supported, with restrictions
described in section 6.9.

6.1.4 Reserved Data Types

The data type names described in table 6.4 are reserved and cannot be used by applications as
type names. The vector data type names defined in table 6.2, but where n is any value other
than 2, 3, 4, 8 and 16, are also reserved.

Type Description
booln A boolean vector.
halfn A 16-bit floating-point vector.
quad, quadn A 128-bit floating-point scalar and vector.
complex half,
complex halfn

A complex 16-bit floating-point scalar and
vector.

imaginary half,
imaginary halfn

An imaginary 16-bit floating-point scalar and
vector.

complex float,
complex floatn

A complex 32-bit floating-point scalar and
vector.

imaginary float,
imaginary floatn

An imaginary 32-bit floating-point scalar and
vector.

complex double,
complex doublen,

A complex 64-bit floating-point scalar and
vector.

imaginary double,
imaginary doublen

An imaginary 64-bit floating-point scalar and
vector.

complex quad,
complex quadn,

A complex 128-bit floating-point scalar and
vector.

imaginary quad,
imaginary quadn

An imaginary 128-bit floating-point scalar and
vector.

floatnxm

An n x m matrix of single precision floating-
point values stored in column-major order.

doublenxm

An n x m matrix of double precision floating-
point values stored in column-major order.

long double
long doublen

A floating-point scalar and vector type with at
least as much precision and range as a double
and no more precision and range than a quad.

long long, long longn A 128-bit signed integer scalar and vector.
unsigned long long, A 128-bit unsigned integer scalar and vector.

Last Revision Date: 11/14/12 Page 203

ulong long, ulong longn

 Table 6.4 Reserved Data Types

6.1.5 Alignment of Types

A data item declared to be a data type in memory is always aligned to the size of the data type in
bytes. For example, a float4 variable will be aligned to a 16-byte boundary, a char2 variable will
be aligned to a 2-byte boundary.

For 3-component vector data types, the size of the data type is 4 * sizeof(component). This
means that a 3-component vector data type will be aligned to a 4 * sizeof(component)
boundary. The vload3 and vstore3 built-in functions can be used to read and write, respectively,
3-component vector data types from an array of packed scalar data type.

A built-in data type that is not a power of two bytes in size must be aligned to the next larger
power of two. This rule applies to built-in types only, not structs or unions.

The OpenCL compiler is responsible for aligning data items to the appropriate alignment as
required by the data type. For arguments to a __kernel function declared to be a pointer to a
data type, the OpenCL compiler can assume that the pointee is always appropriately aligned as
required by the data type. The behavior of an unaligned load or store is undefined, except for the
vloadn, vload_halfn, vstoren, and vstore_halfn functions defined in section 6.12.7. The vector
load functions can read a vector from an address aligned to the element type of the vector. The
vector store functions can write a vector to an address aligned to the element type of the vector.

6.1.6 Vector Literals

Vector literals can be used to create vectors from a list of scalars, vectors or a mixture thereof. A
vector literal can be used either as a vector initializer or as a primary expression. A vector literal
cannot be used as an L-value.

A vector literal is written as a parenthesized vector type followed by a parenthesized comma
delimited list of parameters. A vector literal operates as an overloaded function. The forms of
the function that are available is the set of possible argument lists for which all arguments have
the same element type as the result vector, and the total number of elements is equal to the
number of elements in the result vector. In addition, a form with a single scalar of the same type
as the element type of the vector is available. For example, the following forms are available for
float4:

(float4)(float, float, float, float)
(float4)(float2, float, float)
(float4)(float, float2, float)

Last Revision Date: 11/14/12 Page 204

(float4)(float, float, float2)
(float4)(float2, float2)
(float4)(float3, float)
(float4)(float, float3)

(float4)(float)

Operands are evaluated by standard rules for function evaluation, except that implicit scalar
widening shall not occur. The order in which the operands are evaluated is undefined. The
operands are assigned to their respective positions in the result vector as they appear in memory
order. That is, the first element of the first operand is assigned to result.x, the second element of
the first operand (or the first element of the second operand if the first operand was a scalar) is
assigned to result.y, etc. In the case of the form that has a single scalar operand, the operand is
replicated across all lanes of the vector.

Examples:

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

uint4 u = (uint4)(1); ß u will be (1, 1, 1, 1).

 float4 f = (float4)((float2)(1.0f, 2.0f),
 (float2)(3.0f, 4.0f));

float4 f = (float4)(1.0f, (float2)(2.0f, 3.0f), 4.0f);

 float4 f = (float4)(1.0f, 2.0f); ß error

6.1.7 Vector Components

The components of vector data types with 1 … 4 components can be addressed as
<vector_data_type>.xyzw. Vector data types of type char2, uchar2, short2,
ushort2, int2, uint2, long2, ulong2, and float2 can access .xy elements.
Vector data types of type char3, uchar3, short3, ushort3, int3, uint3,
long3, ulong3, and float3 can access .xyz elements. Vector data types of type
char4, uchar4, short4, ushort4, int4, uint4, long4, ulong4,
float4 can access .xyzw elements.

Accessing components beyond those declared for the vector type is an error so, for example:

float2 pos;
pos.x = 1.0f; // is legal
pos.z = 1.0f; // is illegal

float3 pos;
pos.z = 1.0f; // is legal

Last Revision Date: 11/14/12 Page 205

pos.w = 1.0f; // is illegal

The component selection syntax allows multiple components to be selected by appending their
names after the period (.).

float4 c;

c.xyzw = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
c.z = 1.0f;
c.xy = (float2)(3.0f, 4.0f);
c.xyz = (float3)(3.0f, 4.0f, 5.0f);

The component selection syntax also allows components to be permuted or replicated.

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

float4 swiz= pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)

float4 dup = pos.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)

The component group notation can occur on the left hand side of an expression. To form an l-
value, swizzling must be applied to an l-value of vector type, contain no duplicate components,
and it results in an l-value of scalar or vector type, depending on number of components
specified. Each component must be a supported scalar or vector type.

float4 pos = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

pos.xw = (float2)(5.0f, 6.0f);// pos = (5.0f, 2.0f, 3.0f, 6.0f)
pos.wx = (float2)(7.0f, 8.0f);// pos = (8.0f, 2.0f, 3.0f, 7.0f)
pos.xyz = (float3)(3.0f, 5.0f, 9.0f); // pos = (3.0f, 5.0f, 9.0f, 4.0f)
pos.xx = (float2)(3.0f, 4.0f);// illegal - 'x' used twice

// illegal - mismatch between float2 and float4
pos.xy = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

float4 a, b, c, d;
float16 x;
x = (float16)(a, b, c, d);
x = (float16)(a.xxxx, b.xyz, c.xyz, d.xyz, a.yzw);

// illegal – component a.xxxxxxx is not a valid vector type
x = (float16)(a.xxxxxxx, b.xyz, c.xyz, d.xyz);

Elements of vector data types can also be accessed using a numeric index to refer to the
appropriate element in the vector. The numeric indices that can be used are given in the table
below:

Last Revision Date: 11/14/12 Page 206

Vector Components Numeric indices that can be used
2-component 0, 1
3-component 0, 1, 2
4-component 0, 1, 2, 3
8-component 0, 1, 2, 3, 4, 5, 6, 7
16-component 0, 1, 2, 3, 4, 5, 6, 7,

8, 9, a, A, b, B, c, C, d, D, e, E,
f, F

 Table 6.5 Numeric indices for built-in vector data types

The numeric indices must be preceded by the letter s or S.

In the following example

 float8 f;

f.s0 refers to the 1st element of the float8 variable f and f.s7 refers to the 8th element of
the float8 variable f.

In the following example

 float16 x;

x.sa (or x.sA) refers to the 11th element of the float16 variable x and x.sf (or
x.sF) refers to the 16th element of the float16 variable x.

The numeric indices used to refer to an appropriate element in the vector cannot be intermixed
with .xyzw notation used to access elements of a 1 .. 4 component vector.

For example

 float4 f, a;

 a = f.x12w; // illegal use of numeric indices with .xyzw

 a.xyzw = f.s0123; // valid

Vector data types can use the .lo (or .even) and .hi (or .odd) suffixes to get smaller
vector types or to combine smaller vector types to a larger vector type. Multiple levels of .lo
(or .even) and .hi (or .odd) suffixes can be used until they refer to a scalar term.

Last Revision Date: 11/14/12 Page 207

The .lo suffix refers to the lower half of a given vector. The .hi suffix refers to the upper half
of a given vector.

The .even suffix refers to the even elements of a vector. The .odd suffix refers to the odd
elements of a vector.

Some examples to help illustrate this are given below:

float4 vf;

float2 low = vf.lo; // returns vf.xy
float2 high = vf.hi; // returns vf.zw

float2 even = vf.even; // returns vf.xz
float2 odd = vf.odd; // returns vf.yw

The suffixes .lo (or .even) and .hi (or .odd) for a 3-component vector type operate as
if the 3-component vector type is a 4-component vector type with the value in the w component
undefined.

Some examples are given below:

 float8 vf;
 float4 odd = vf.odd;
 float4 even = vf.even;
 float2 high = vf.even.hi;
 float2 low = vf.odd.lo;

 // interleave L+R stereo stream
 float4 left, right;
 float8 interleaved;
 interleaved.even = left;
 interleaved.odd = right;

 // deinterleave
 left = interleaved.even;
 right = interleaved.odd;

 // transpose a 4x4 matrix
 void transpose(float4 m[4])
 {
 // read matrix into a float16 vector
 float16 x = (float16)(m[0], m[1], m[2], m[3]);
 float16 t;

 //transpose
 t.even = x.lo;
 t.odd = x.hi;
 x.even = t.lo;
 x.odd = t.hi;
 //write back
 m[0] = x.lo.lo; // { m[0][0], m[1][0], m[2][0], m[3][0] }
 m[1] = x.lo.hi; // { m[0][1], m[1][1], m[2][1], m[3][1] }

Last Revision Date: 11/14/12 Page 208

 m[2] = x.hi.lo; // { m[0][2], m[1][2], m[2][2], m[3][2] }
 m[3] = x.hi.hi; // { m[0][3], m[1][3], m[2][3], m[3][3] }
 }

 float3 vf = (float3)(1.0f, 2.0f, 3.0f);
 float2 low = vf.lo; // (1.0f, 2.0f);
 float2 high = vf.hi; // (3.0f, undefined);

It is an error to take the address of a vector element and will result in a compilation error. For
example:

 float8 vf;

 float *f = &vf.x; // is illegal
 float2 *f2 = &vf.s07; // is illegal

float4 *odd = &vf.odd; // is illegal
float4 *even = &vf.even; // is illegal
float2 *high = &vf.even.hi; // is illegal
float2 *low = &vf.odd.lo; // is illegal

6.1.8 Aliasing Rules

OpenCL C programs shall comply with the C99 type-based aliasing rules (defined in section 6.5,
item 7 of the C99 specification). The OpenCL C built-in vector data types are considered
aggregate26 types for the purpose of applying these aliasing rules.

6.1.9 Keywords

The following names are reserved for use as keywords in OpenCL C and shall not be used
otherwise.

 Names reserved as keywords by C99.

 OpenCL C data types defined in tables 6.2, 6.3 and 6.4.

 Address space qualifiers: __global, global, __local, local,
__constant, constant, __private and private.

 Function qualifiers: __kernel and kernel.

 Access qualifiers: __read_only, read_only, __write_only, write_only,

__read_write and read_write.

26 That is, for the purpose of applying type-based aliasing rules, a built-in vector data type will be considered
equivalent to the corresponding array type.

Last Revision Date: 11/14/12 Page 209

6.2 Conversions and Type Casting
6.2.1 Implicit Conversions

Implicit conversions between scalar built-in types defined in table 6.1 (except void and
half27) are supported. When an implicit conversion is done, it is not just a re-interpretation of
the expression's value but a conversion of that value to an equivalent value in the new type. For
example, the integer value 5 will be converted to the floating-point value 5.0.

Implicit conversions between built-in vector data types are disallowed.

Implicit conversions for pointer types follow the rules described in the C99 specification.

6.2.2 Explicit Casts

Standard typecasts for built-in scalar data types defined in table 6.1 will perform appropriate
conversion (except void and half28). In the example below:

 float f = 1.0f;
 int i = (int)f;

f stores 0x3F800000 and i stores 0x1 which is the floating-point value 1.0f in f converted
to an integer value.

Explicit casts between vector types are not legal. The examples below will generate a
compilation error.

 int4 i;
 uint4 u = (uint4) i; ß not allowed

 float4 f;
 int4 i = (int4) f; ß not allowed

 float4 f;
 int8 i = (int8) f; ß not allowed

Scalar to vector conversions may be performed by casting the scalar to the desired vector data
type. Type casting will also perform appropriate arithmetic conversion. The round to zero
rounding mode will be used for conversions to built-in integer vector types. The default
rounding mode will be used for conversions to floating-point vector types. When casting a
bool to a vector integer data type, the vector components will be set to -1 (i.e. all bits set) if the

27 Unless the cl_khr_fp16 extension is supported.
28 Unless the cl_khr_fp16 extension is supported.

Last Revision Date: 11/14/12 Page 210

bool value is true and 0 otherwise.

Below are some correct examples of explicit casts.

 float f = 1.0f;
 float4 va = (float4)f;

// va is a float4 vector with elements (f, f, f, f).

 uchar u = 0xFF;
 float4 vb = (float4)u;

// vb is a float4 vector with elements((float)u, (float)u,
// (float)u, (float)u).

float f = 2.0f;
int2 vc = (int2)f;

// vc is an int2 vector with elements ((int)f, (int)f).

uchar4 vtrue = (uchar4)true;

// vtrue is a uchar4 vector with elements (0xff, 0xff,
// 0xff, 0xff).

6.2.3 Explicit Conversions

Explicit conversions may be performed using the

convert_destType(sourceType)

suite of functions. These provide a full set of type conversions between supported types (see
sections 6.1.1, 6.1.2 and 6.1.3) except for the following types: bool, half, size_t,
ptrdiff_t, intptr_t, uintptr_t, and void.

The number of elements in the source and destination vectors must match.

In the example below:

uchar4 u;
int4 c = convert_int4(u);

convert_int4 converts a uchar4 vector u to an int4 vector c.

float f;
int i = convert_int(f);

Last Revision Date: 11/14/12 Page 211

convert_int converts a float scalar f to an int scalar i.

The behavior of the conversion may be modified by one or two optional modifiers that specify
saturation for out-of-range inputs and rounding behavior.

The full form of the scalar convert function is:

destType convert_destType<_sat><_roundingMode> (sourceType)

The full form of the vector convert function is:

destTypen convert_destTypen<_sat><_roundingMode> (sourceTypen)

6.2.3.1 Data Types

Conversions are available for the following scalar types: char, uchar, short, ushort,
int, uint, long, ulong, float, and built-in vector types derived therefrom. The operand
and result type must have the same number of elements. The operand and result type may be the
same type in which case the conversion has no effect on the type or value of an expression.

Conversions between integer types follow the conversion rules specified in sections 6.3.1.1 and
6.3.1.3 of the C99 specification except for out-of-range behavior and saturated conversions
which are described in section 6.2.3.3 below.

6.2.3.2 Rounding Modes

Conversions to and from floating-point type shall conform to IEEE-754 rounding rules.
Conversions may have an optional rounding mode modifier described in table 6.6.

Modifier Rounding Mode Description
_rte Round to nearest even
_rtz Round toward zero
_rtp Round toward positive infinity
_rtn Round toward negative infinity
no modifier specified Use the default rounding mode for this destination type,

_rtz for conversion to integers or the default rounding
mode for conversion to floating-point types.

 Table 6.6 Rounding Modes

By default, conversions to integer type use the _rtz (round toward zero) rounding mode and
conversions to floating-point type29 use the default rounding mode. The only default floating-

29 For conversions to floating-point format, when a finite source value exceeds the maximum representable finite

Last Revision Date: 11/14/12 Page 212

point rounding mode supported is round to nearest even i.e the default rounding mode will be
_rte for floating-point types.

6.2.3.3 Out-of-Range Behavior and Saturated Conversions

When the conversion operand is either greater than the greatest representable destination value or
less than the least representable destination value, it is said to be out-of-range. The result of out-
of-range conversion is determined by the conversion rules specified by the C99 specification in
section 6.3. When converting from a floating-point type to integer type, the behavior is
implementation-defined.

Conversions to integer type may opt to convert using the optional saturated mode by appending
the _sat modifier to the conversion function name. When in saturated mode, values that are
outside the representable range shall clamp to the nearest representable value in the destination
format. (NaN should be converted to 0).

Conversions to floating-point type shall conform to IEEE-754 rounding rules. The _sat
modifier may not be used for conversions to floating-point formats.

6.2.3.4 Explicit Conversion Examples

Example 1:

 short4 s;

 // negative values clamped to 0
 ushort4 u = convert_ushort4_sat(s);

 // values > CHAR_MAX converted to CHAR_MAX
 // values < CHAR_MIN converted to CHAR_MIN
 char4 c = convert_char4_sat(s);

Example 2:

 float4 f;

 // values implementation defined for
 // f > INT_MAX, f < INT_MIN or NaN
 int4 i = convert_int4(f);

 // values > INT_MAX clamp to INT_MAX, values < INT_MIN clamp
 // to INT_MIN. NaN should produce 0.

floating-point destination value, the rounding mode will affect whether the result is the maximum finite floating-
point value or infinity of same sign as the source value, per IEEE-754 rules for rounding.

Last Revision Date: 11/14/12 Page 213

 // The _rtz rounding mode is used to produce the integer values.
 int4 i2 = convert_int4_sat(f);

 // similar to convert_int4, except that floating-point values
 // are rounded to the nearest integer instead of truncated
 int4 i3 = convert_int4_rte(f);

 // similar to convert_int4_sat, except that floating-point values
 // are rounded to the nearest integer instead of truncated
 int4 i4 = convert_int4_sat_rte(f);

Example 3:

 int4 i;

 // convert ints to floats using the default rounding mode.
 float4 f = convert_float4(i);

 // convert ints to floats. integer values that cannot
 // be exactly represented as floats should round up to the
 // next representable float.
 float4 f = convert_float4_rtp(i);

6.2.4 Reinterpreting Data As Another Type

It is frequently necessary to reinterpret bits in a data type as another data type in OpenCL. This
is typically required when direct access to the bits in a floating-point type is needed, for example
to mask off the sign bit or make use of the result of a vector relational operator (see section
6.3.d) on floating-point data30. Several methods to achieve this (non-) conversion are frequently
practiced in C, including pointer aliasing, unions and memcpy. Of these, only memcpy is strictly
correct in C99. Since OpenCL does not provide memcpy, other methods are needed.

6.2.4.1 Reinterpreting Types Using Unions

The OpenCL language extends the union to allow the program to access a member of a union
object using a member of a different type. The relevant bytes of the representation of the object
are treated as an object of the type used for the access. If the type used for access is larger than
the representation of the object, then the value of the additional bytes is undefined.

30 In addition, some other extensions to the C language designed to support particular vector ISA (e.g. AltiVec™,
CELL Broadband Engine™ Architecture) use such conversions in conjunction with swizzle operators to achieve
type unconversion. So as to support legacy code of this type, as_typen() allows conversions between vectors of the
same size but different numbers of elements, even though the behavior of this sort of conversion is not likely to be
portable except to other OpenCL implementations for the same hardware architecture. AltiVec™ is a trademark of
Motorola Inc. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

Last Revision Date: 11/14/12 Page 214

Examples:

 union{ float f; uint u; double d31;} u;

u.u = 1; // u.f contains 2**-149. u.d is undefined --
// depending on endianness the low or high half
// of d is unknown

u.f = 1.0f; // u.u contains 0x3f800000, u.d contains an

// undefined value -- depending on endianness
// the low or high half of d is unknown

 u.d = 1.0; // u.u contains 0x3ff00000 (big endian) or 0
// (little endian). u.f contains either 0x1.ep0f
// (big endian) or 0.0f (little endian)

6.2.4.2 Reinterpreting Types Using as_type() and as_typen()

All data types described in tables 6.1 and 6.2 (except bool, half32 and void) may be also
reinterpreted as another data type of the same size using the as_type() operator for scalar data
types and the as_typen() operator33 for vector data types. When the operand and result type
contain the same number of elements, the bits in the operand shall be returned directly without
modification as the new type. The usual type promotion for function arguments shall not be
performed.

For example, as_float(0x3f800000) returns 1.0f, which is the value that the bit pattern
0x3f800000 has if viewed as an IEEE-754 single precision value.

When the operand and result type contain a different number of elements, the result shall be
implementation-defined except if the operand is a 4-component vector and the result is a 3-
component vector. In this case, the bits in the operand shall be returned directly without
modification as the new type. That is, a conforming implementation shall explicitly define a
behavior, but two conforming implementations need not have the same behavior when the
number of elements in the result and operand types does not match. The implementation may

31 Only if double precision is supported.
32 Unless the cl_khr_fp16 extension is supported.
33 While the union is intended to reflect the organization of data in memory, the as_type() and as_typen() constructs
are intended to reflect the organization of data in register. The as_type() and as_typen() constructs are intended to
compile to no instructions on devices that use a shared register file designed to operate on both the operand and
result types. Note that while differences in memory organization are expected to largely be limited to those arising
from endianness, the register based representation may also differ due to size of the element in register. (For
example, an architecture may load a char into a 32-bit register, or a char vector into a SIMD vector register with
fixed 32-bit element size.) If the element count does not match, then the implementation should pick a data
representation that most closely matches what would happen if an appropriate result type operator was applied to a
register containing data of the source type. If the number of elements matches, then the as_typen() should faithfully
reproduce the behavior expected from a similar data type reinterpretation using memory/unions. So, for example if
an implementation stores all single precision data as double in register, it should implement as_int(float) by first
downconverting the double to single precision and then (if necessary) moving the single precision bits to a register
suitable for operating on integer data. If data stored in different address spaces do not have the same endianness,
then the "dominant endianness" of the device should prevail.

Last Revision Date: 11/14/12 Page 215

define the result to contain all, some or none of the original bits in whatever order it chooses. It
is an error to use as_type() or as_typen() operator to reinterpret data to a type of a different
number of bytes.

Examples:

 float f = 1.0f;
 uint u = as_uint(f); // Legal. Contains: 0x3f800000

 float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

// Legal. Contains:
// (int4)(0x3f800000, 0x40000000, 0x40400000, 0x40800000)
int4 i = as_int4(f);

 float4 f, g;
 int4 is_less = f < g;

// Legal. f[i] = f[i] < g[i] ? f[i] : 0.0f
 f = as_float4(as_int4(f) & is_less);

 int i;

// Legal. Result is implementation-defined.
 short2 j = as_short2(i);

 int4 i;

// Legal. Result is implementation-defined.
 short8 j = as_short8(i);

 float4 f;
 // Error. Result and operand have different sizes
 double4 g = as_double434(f);

 float4 f;

// Legal. g.xyz will have same values as f.xyz. g.w is undefined
 float3 g = as_float3(f);

6.2.5 Pointer Casting

Pointers to old and new types may be cast back and forth to each other. Casting a pointer to a
new type represents an unchecked assertion that the address is correctly aligned. The developer
will also need to know the endianness of the OpenCL device and the endianness of the data to
determine how the scalar and vector data elements are stored in memory.

34 Only if double precision is supported.

Last Revision Date: 11/14/12 Page 216

6.2.6 Usual Arithmetic Conversions

Many operators that expect operands of arithmetic type cause conversions and yield result types
in a similar way. The purpose is to determine a common real type for the operands and result.
For the specified operands, each operand is converted, without change of type domain, to a type
whose corresponding real type is the common real type. For this purpose, all vector types shall
be considered to have higher conversion ranks than scalars. Unless explicitly stated otherwise,
the common real type is also the corresponding real type of the result, whose type domain is the
type domain of the operands if they are the same, and complex otherwise. This pattern is called
the usual arithmetic conversions. If the operands are of more than one vector type, then an error
shall occur. Implicit conversions between vector types are not permitted, per section 6.2.1.

Otherwise, if there is only a single vector type, and all other operands are scalar types, the scalar
types are converted to the type of the vector element, then widened into a new vector containing
the same number of elements as the vector, by duplication of the scalar value across the width of
the new vector. An error shall occur if any scalar operand has greater rank than the type of the
vector element. For this purpose, the rank order defined as follows:

1. The rank of a floating-point type is greater than the rank of another floating-point type, if
the first floating-point type can exactly represent all numeric values in the second
floating-point type. (For this purpose, the encoding of the floating-point value is used,
rather than the subset of the encoding usable by the device.)

2. The rank of any floating-point type is greater than the rank of any integer type.
3. The rank of an integer type is greater than the rank of an integer type with less precision.
4. The rank of an unsigned integer type is greater than the rank of a signed integer type

with the same precision.35
5. The rank of the bool type is less than the rank of any other type.
6. The rank of an enumerated type shall equal the rank of the compatible integer type.
7. For all types, T1, T2 and T3, if T1 has greater rank than T2, and T2 has greater rank than

T3, then T1 has greater rank than T3.

Otherwise, if all operands are scalar, the usual arithmetic conversions apply, per section 6.3.1.8
of the C99 standard.

NOTE: Both the standard orderings in sections 6.3.1.8 and 6.3.1.1 of C99 were examined and
rejected. Had we used integer conversion rank here, int4 + 0U would have been legal and had
int4 return type. Had we used standard C99 usual arithmetic conversion rules for scalars, then
the standard integer promotion would have been performed on vector integer element types and
short8 + char would either have return type of int8 or be illegal.

35 This is different from the standard integer conversion rank described in C99 TC2, section 6.3.1.1.

Last Revision Date: 11/14/12 Page 217

6.3 Operators

a. The arithmetic operators add (+), subtract (-), multiply (*) and divide (/) operate on built-in

integer and floating-point scalar, and vector data types. The remainder (%) operates on built-
in integer scalar and integer vector data types. All arithmetic operators return result of the
same built-in type (integer or floating-point) as the type of the operands, after operand type
conversion. After conversion, the following cases are valid:

 The two operands are scalars. In this case, the operation is applied, resulting in a
scalar.

 One operand is a scalar, and the other is a vector. In this case, the scalar may be

subject to the usual arithmetic conversion to the element type used by the vector
operand. The scalar type is then widened to a vector that has the same number of
components as the vector operand. The operation is done component-wise resulting
in the same size vector.

 The two operands are vectors of the same type. In this case, the operation is done

component-wise resulting in the same size vector.

All other cases of implicit conversions are illegal. Division on integer types which results in
a value that lies outside of the range bounded by the maximum and minimum representable
values of the integer type will not cause an exception but will result in an unspecified value.
A divide by zero with integer types does not cause an exception but will result in an
unspecified value. Division by zero for floating-point types will result in ±infinity or NaN as
prescribed by the IEEE-754 standard. Use the built-in functions dot and cross to get,
respectively, the vector dot product and the vector cross product.

b. The arithmetic unary operators (+ and -) operate on built-in scalar and vector types.

c. The arithmetic post- and pre-increment and decrement operators (-- and ++) operate on

built-in scalar and vector types except the built-in scalar and vector float types 36. All unary
operators work component-wise on their operands. These result with the same type they
operated on. For post- and pre-increment and decrement, the expression must be one that
could be assigned to (an l-value). Pre-increment and pre-decrement add or subtract 1 to the
contents of the expression they operate on, and the value of the pre-increment or pre-
decrement expression is the resulting value of that modification. Post-increment and post-
decrement expressions add or subtract 1 to the contents of the expression they operate on, but
the resulting expression has the expression’s value before the post-increment or post-
decrement was executed.

36 The pre- and post- increment operators may have unexpected behavior on floating-point values and are therefore
not supported for floating-point scalar and vector built-in types. For example, if variable a has type float and holds
the value 0x1.0p25f, then a++ returns 0x1.0p25f. Also, (a++)-- is not guaranteed to return a, if a has fractional
value. In non-default rounding modes, (a++)-- may produce the same result as a++ or a-- for large a.

Last Revision Date: 11/14/12 Page 218

d. The relational operators37 greater than (>), less than (<), greater than or equal (>=), and less

than or equal (<=) operate on scalar and vector types. All relational operators result in an
integer type. After operand type conversion, the following cases are valid:

 The two operands are scalars. In this case, the operation is applied, resulting in an
int scalar.

 One operand is a scalar, and the other is a vector. In this case, the scalar may be

subject to the usual arithmetic conversion to the element type used by the vector
operand. The scalar type is then widened to a vector that has the same number of
components as the vector operand. The operation is done component-wise resulting
in the same size vector.

 The two operands are vectors of the same type. In this case, the operation is done

component-wise resulting in the same size vector.

All other cases of implicit conversions are illegal.

The result is a scalar signed integer of type int if the source operands are scalar and a vector
signed integer type of the same size as the source operands if the source operands are vector
types. Vector source operands of type charn and ucharn return a charn result; vector
source operands of type shortn and ushortn return a shortn result; vector source
operands of type intn, uintn and floatn return an intn result; vector source operands
of type longn, ulongn and doublen return a longn result. For scalar types, the
relational operators shall return 0 if the specified relation is false and 1 if the specified
relation is true. For vector types, the relational operators shall return 0 if the specified
relation is false and –1 (i.e. all bits set) if the specified relation is true. The relational
operators always return 0 if either argument is not a number (NaN).

e. The equality operators38 equal (==), and not equal (!=) operate on built-in scalar and vector

types. All equality operators result in an integer type. After operand type conversion, the
following cases are valid:

 The two operands are scalars. In this case, the operation is applied, resulting in a
scalar.

 One operand is a scalar, and the other is a vector. In this case, the scalar may be

subject to the usual arithmetic conversion to the element type used by the vector
operand. The scalar type is then widened to a vector that has the same number of
components as the vector operand. The operation is done component-wise resulting

37 To test whether any or all elements in the result of a vector relational operator test true, for example to use in the
context in an if () statement, please see the any and all builtins in section 6.11.6.
38 To test whether any or all elements in the result of a vector equality operator test true, for example to use in the
context in an if () statement, please see the any and all builtins in section 6.11.6.

Last Revision Date: 11/14/12 Page 219

in the same size vector.

 The two operands are vectors of the same type. In this case, the operation is done
component-wise resulting in the same size vector.

All other cases of implicit conversions are illegal.

The result is a scalar signed integer of type int if the source operands are scalar and a vector
signed integer type of the same size as the source operands if the source operands are vector
types. Vector source operands of type charn and ucharn return a charn result; vector
source operands of type shortn and ushortn return a shortn result; vector source
operands of type intn, uintn and floatn return an intn result; vector source operands
of type longn, ulongn and doublen return a longn result.

For scalar types, the equality operators return 0 if the specified relation is false and return 1
if the specified relation is true. For vector types, the equality operators shall return 0 if the
specified relation is false and –1 (i.e. all bits set) if the specified relation is true. The equality
operator equal (==) returns 0 if one or both arguments are not a number (NaN). The equality
operator not equal (!=) returns 1 (for scalar source operands) or -1 (for vector source
operands) if one or both arguments are not a number (NaN).

f. The bitwise operators and (&), or (|), exclusive or (^), not (~) operate on all scalar and

vector built-in types except the built-in scalar and vector float types. For vector built-in types,
the operators are applied component-wise. If one operand is a scalar and the other is a
vector, the scalar may be subject to the usual arithmetic conversion to the element type used
by the vector operand. The scalar type is then widened to a vector that has the same number
of components as the vector operand. The operation is done component-wise resulting in the
same size vector.

g. The logical operators and (&&), or (||) operate on all scalar and vector built-in types. For

scalar built-in types only, and (&&) will only evaluate the right hand operand if the left hand
operand compares unequal to 0. For scalar built-in types only, or (||) will only evaluate the
right hand operand if the left hand operand compares equal to 0. For built-in vector types,
both operands are evaluated and the operators are applied component-wise. If one operand is
a scalar and the other is a vector, the scalar may be subject to the usual arithmetic conversion
to the element type used by the vector operand. The scalar type is then widened to a vector
that has the same number of components as the vector operand. The operation is done
component-wise resulting in the same size vector.

The logical operator exclusive or (^^) is reserved.

The result is a scalar signed integer of type int if the source operands are scalar and a vector
signed integer type of the same size as the source operands if the source operands are vector
types. Vector source operands of type charn and ucharn return a charn result; vector
source operands of type shortn and ushortn return a shortn result; vector source

Last Revision Date: 11/14/12 Page 220

operands of type intn, uintn and floatn return an intn result; vector source operands
of type longn, ulongn and doublen return a longn result.

For scalar types, the logical operators shall return 0 if the result of the operation is false and
1 if the result is true. For vector types, the logical operators shall return 0 if the result of the
operation is false and –1 (i.e. all bits set) if the result is true.

h. The logical unary operator not (!) operates on all scalar and vector built-in types. For built-in

vector types, the operators are applied component-wise.

The result is a scalar signed integer of type int if the source operands are scalar and a vector
signed integer type of the same size as the source operands if the source operands are vector
types. Vector source operands of type charn and ucharn return a charn result; vector
source operands of type shortn and ushortn return a shortn result; vector source
operands of type intn, uintn and floatn return an intn result; vector source operands
of type longn, ulongn and doublen return a longn result.

For scalar types, the result of the logical unary operator is 0 if the value of its operand
compares unequal to 0, and 1 if the value of its operand compares equal to 0. For vector
types, the unary operator shall return a 0 if the value of its operand compares unequal to 0,
and -1 (i.e. all bits set) if the value of its operand compares equal to 0.

i. The ternary selection operator (?:) operates on three expressions (exp1 ? exp2 : exp3). This

operator evaluates the first expression exp1, which can be a scalar or vector result except
float. If the result is a scalar value then it selects to evaluate the second expression if the
result compares unequal to 0, otherwise it selects to evaluate the third expression. If the
result is a vector value, then this is equivalent to calling select(exp3, exp2, exp1). The select
function is described in table 6.14. The second and third expressions can be any type, as
long their types match, or there is a conversion in section 6.2.1 Implicit Conversions that
can be applied to one of the expressions to make their types match, or one is a vector and the
other is a scalar and the scalar may be subject to the usual arithmetic conversion to the
element type used by the vector operand and widened to the same type as the vector type.
This resulting matching type is the type of the entire expression.

j. The operators right-shift (>>), left-shift (<<) operate on all scalar and vector built-in types

except the built-in scalar and vector float types. For built-in vector types, the operators are
applied component-wise. For the right-shift (>>), left-shift (<<) operators, the rightmost
operand must be a scalar if the first operand is a scalar, and the rightmost operand can be a
vector or scalar if the first operand is a vector.

The result of E1 << E2 is E1 left-shifted by log2(N) least significant bits in E2 viewed
as an unsigned integer value, where N is the number of bits used to represent the data type of
E1 after integer promotion39, if E1 is a scalar, or the number of bits used to represent the

39 Integer promotion is described in ISO/IEC 9899:1999 in section 6.3.1.1.

Last Revision Date: 11/14/12 Page 221

type of E1 elements, if E1 is a vector. The vacated bits are filled with zeros.

The result of E1 >> E2 is E1 right-shifted by log2(N) least significant bits in E2 viewed
as an unsigned integer value, where N is the number of bits used to represent the data type of
E1 after integer promotion, if E1 is a scalar, or the number of bits used to represent the type
of E1 elements, if E1 is a vector. If E1 has an unsigned type or if E1 has a signed type and
a nonnegative value, the vacated bits are filled with zeros. If E1 has a signed type and a
negative value, the vacated bits are filled with ones.

k. The sizeof operator yields the size (in bytes) of its operand, including any padding bytes

(refer to section 6.1.5) needed for alignment, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand. The
result is of type size_t. If the type of the operand is a variable length array40 type, the
operand is evaluated; otherwise, the operand is not evaluated and the result is an integer
constant.

When applied to an operand that has type char, uchar, the result is 1. When applied to an
operand that has type short, ushort, or half the result is 2. When applied to an
operand that has type int, uint or float, the result is 4. When applied to an operand
that has type long, ulong or double, the result is 8. When applied to an operand that is a
vector type, the result41 is number of components * size of each scalar component. When
applied to an operand that has array type, the result is the total number of bytes in the array.
When applied to an operand that has structure or union type, the result is the total number of
bytes in such an object, including internal and trailing padding. The sizeof operator shall
not be applied to an expression that has function type or an incomplete type, to the
parenthesized name of such a type, or to an expression that designates a bit-field struct
member42.

The behavior of applying the sizeof operator to the bool, image2d_t, image3d_t,
image2d_array_t, image1d_t, image1d_buffer_t or image1d_array_t,
sampler_t and event_t types is implementation-defined.

l. The comma (,) operator operates on expressions by returning the type and value of the right-

most expression in a comma separated list of expressions. All expressions are evaluated, in
order, from left to right.

m. The unary (*) operator denotes indirection. If the operand points to an object, the result is an

lvalue designating the object. If the operand has type ‘‘pointer to type’’, the result has type
‘‘type’’. If an invalid value has been assigned to the pointer, the behavior of the unary *

40 Variable length arrays are not supported in OpenCL 1.1. Refer to section 6.9.d.

41 Except for 3-component vectors whose size is defined as 4 * size of each scalar component.

42 Bit-field struct members are not supported in OpenCL 1.1. Refer to section 6.9.c.

Last Revision Date: 11/14/12 Page 222

operator is undefined43.

n. The unary (&) operator returns the address of its operand. If the operand has type ‘‘type’’,

the result has type ‘‘pointer to type’’. If the operand is the result of a unary * operator,
neither that operator nor the & operator is evaluated and the result is as if both were omitted,
except that the constraints on the operators still apply and the result is not an lvalue.
Similarly, if the operand is the result of a [] operator, neither the & operator nor the unary *
that is implied by the [] is evaluated and the result is as if the & operator were removed and
the [] operator were changed to a + operator. Otherwise, the result is a pointer to the object
designated by its operand44.

o. Assignments of values to variable names are done with the assignment operator (=), like

 lvalue = expression

The assignment operator stores the value of expression into lvalue. The expression and
lvalue must have the same type, or the expression must have a type in table 6.1, in which
case an implicit conversion will be done on the expression before the assignment is done.

If expression is a scalar type and lvalue is a vector type, the scalar is converted to the element
type used by the vector operand. The scalar type is then widened to a vector that has the
same number of components as the vector operand. The operation is done component-wise
resulting in the same size vector.

Any other desired type-conversions must be specified explicitly. L-values must be writable.
Variables that are built-in types, entire structures or arrays, structure fields, l-values with the
field selector (.) applied to select components or swizzles without repeated fields, l-values
within parentheses, and l-values dereferenced with the array subscript operator ([]) are all l-
values. Other binary or unary expressions, function names, swizzles with repeated fields,
and constants cannot be l-values. The ternary operator (?:) is also not allowed as an l-value.

The order of evaluation of the operands is unspecified. If an attempt is made to modify the
result of an assignment operator or to access it after the next sequence point, the behavior is
undefined. Other assignment operators are the assignments add into (+=), subtract from
(-=), multiply into (*=), divide into (/=), modulus into (%=), left shift by (<<=), right shift by
(>>=), and into (&=), inclusive or into (|=), and exclusive or into (^=).

The expression

 lvalue op= expression

43 Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address
inappropriately aligned for the type of object pointed to, and the address of an object after the end of its lifetime. If
*P is an lvalue and T is the name of an object pointer type, *(T)P is an lvalue that has a type compatible with that to
which T points.

44 Thus, &*E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). It is always true that if
E is an lvalue that is a valid operand of the unary & operator, *&E is an lvalue equal to E.

Last Revision Date: 11/14/12 Page 223

is equivalent to

 lvalue = lvalue op expression

and the l-value and expression must satisfy the requirements for both operator op and
assignment (=).

Note: Except for the sizeof operator, the half data type cannot be used with any of the operators described in
this section.

6.4 Vector Operations

Vector operations are component-wise. Usually, when an operator operates on a vector, it is
operating independently on each component of the vector, in a component-wise fashion.

For example,

float4 v, u;
float f;

v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;
v.w = u.w + f;

And

float4 v, u, w;

w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;
w.w = v.w + u.w;

and likewise for most operators and all integer and floating-point vector types.

Last Revision Date: 11/14/12 Page 224

6.5 Address Space Qualifiers

OpenCL implements the following disjoint address spaces: __global, __local,
__constant and __private. The address space qualifier may be used in variable
declarations to specify the region of memory that is used to allocate the object. The C syntax for
type qualifiers is extended in OpenCL to include an address space name as a valid type qualifier.
If the type of an object is qualified by an address space name, the object is allocated in the
specified address name; otherwise, the object is allocated in the generic address space.

The address space names without the __ prefix i.e. global, local, constant and
private may be substituted for the corresponding address space names with the __prefix.

The generic address space name for arguments to a function in a program, or local variables of a
function is __private. All function arguments shall be in the __private address space.

__kernel function arguments declared to be a pointer or an array of a type can point to one of
the following address spaces only: __global, __local or __constant. A pointer to
address space A can only be assigned to a pointer to the same address space A. Casting a
pointer to address space A to a pointer to address space B is illegal.

There is no generic address space name for program scope variables. All program scope
variables must be declared in the __constant address space.

Examples:

// declares a pointer p in the __private address space that
// points to an int object in address space __global
__global int *p;

// declares an array of 4 floats in the __private address space.

 float x[4];

There is no address space for function return values. Using an address space qualifier in a
function return type declaration will generate a compilation error, unless the return type is
declared as a pointer type and the qualifier is used on the points-to address space.

Examples:

 __private int f() { … } // should generate an error
 __local int *f() { … } // allowed
 __local int * __private f() { … }; // should generate an error.

Last Revision Date: 11/14/12 Page 225

6.5.1 __global (or global)

The __global or global address space name is used to refer to memory objects (buffer or
image objects) allocated from the global memory pool.

A buffer memory object can be declared as a pointer to a scalar, vector or user-defined struct.
This allows the kernel to read and/or write any location in the buffer.

The actual size of the array memory object is determined when the memory object is allocated
via appropriate API calls in the host code.

Some examples are:

__global float4 *color; // An array of float4 elements
typedef struct {
 float a[3];
 int b[2];
} foo_t;
__global foo_t *my_info; // An array of foo_t elements.

As image objects are always allocated from the global address space, the __global or
global qualifier should not be specified for image types. The elements of an image object
cannot be directly accessed. Built-in functions to read from and write to an image object are
provided.

The const qualifier can also be used with the __global qualifier to specify a read-only
buffer memory object.

6.5.2 __local (or local)

The __local or local address space name is used to describe variables that need to be
allocated in local memory and are shared by all work-items of a work-group. Pointers to the
__local address space are allowed as arguments to functions (including kernel functions).
Variables declared in the __local address space inside a kernel function must occur at kernel
function scope.

Some examples of variables allocated in the __local address space inside a kernel function
are:

 __kernel void my_func(…)
 {

__local float a; // A single float allocated
// in local address space

 __local float b[10];// An array of 10 floats

Last Revision Date: 11/14/12 Page 226

 // allocated in local address space.

 if (…)
 {
 // example of variable in __local address space but not

 // declared at __kernel function scope.
 __local float c; ß not allowed.
 }
 }

Variables allocated in the __local address space inside a kernel function cannot be initialized.

 __kernel void my_func(…)
 {

__local float a = 1; ß not allowed

__local float b;
b = 1; ß allowed

 }

NOTE: Variables allocated in the __local address space inside a kernel function are allocated
for each work-group executing the kernel and exist only for the lifetime of the work-group
executing the kernel.

6.5.3 __constant (or constant)

The __constant or constant address space name is used to describe variables allocated in
global memory and which are accessed inside a kernel(s) as read-only variables. These read-
only variables can be accessed by all (global) work-items of the kernel during its execution.
Pointers to the __constant address space are allowed as arguments to functions (including
kernel functions) and for variables declared inside functions.

All string literal storage shall be in the __constant address space.

NOTE: Each argument to a kernel that is a pointer to the __constant address space is
counted separately towards the maximum number of such arguments, defined as
CL_DEVICE_MAX_CONSTANT_ARGS in table 4.3.

Variables in the program scope must be declared in the __constant address space. Variables
in the outermost scope of kernel functions can be declared in the __constant address space.
These variables are required to be initialized and the values used to initialize these variables must
be a compile time constant. Writing to such a variable results in a compile-time error.

Implementations are not required to aggregate these declarations into the fewest number of
constant arguments. This behavior is implementation defined.

Last Revision Date: 11/14/12 Page 227

Thus portable code must conservatively assume that each variable declared inside a function or
in program scope allocated in the __constant address space counts as a separate constant
argument.

6.5.4 __private (or private)

Variables inside a kernel function not declared with an address space qualifier, all variables
inside non-kernel functions, and all function arguments are in the __private or private
address space. Variables declared as pointers are considered to point to the __private
address space if an address space qualifier is not specified.

The __global, __constant, __local, __private, global, constant,
local and private names are reserved for use as address space qualifiers and shall not be
used otherwise.

Last Revision Date: 11/14/12 Page 228

6.6 Access Qualifiers

Image objects specified as arguments to a kernel can be declared to be read-only or write-only.
A kernel cannot read from and write to the same image object. The __read_only (or
read_only) and __write_only (or write_only) qualifiers must be used with image
object arguments to declare if the image object is being read or written by a kernel. The default
qualifier is __read_only.

In the following example

 __kernel void
 foo (read_only image2d_t imageA,

 write_only image2d_t imageB)
 {
 ….
 }

imageA is a read-only 2D image object, and imageB is a write-only 2D image object.

The __read_only, __write_only, __read_write, read_only,
write_only and read_write names are reserved for use as access qualifiers and shall
not be used otherwise.

Last Revision Date: 11/14/12 Page 229

6.7 Function Qualifiers
6.7.1 __kernel (or kernel)

The __kernel (or kernel) qualifier declares a function to be a kernel that can be
executed by an application on an OpenCL device(s). The following rules apply to functions that
are declared with this qualifier:

 It can be executed on the device only
 It can be called by the host
 It is just a regular function call if a __kernel function is called by another kernel

function.

NOTE:

Kernel functions with variables declared inside the function with the __local or local
qualifier can be called by the host using appropriate APIs such as clEnqueueNDRangeKernel,
and clEnqueueTask.

The __kernel and kernel names are reserved for use as functions qualifiers and shall not
be used otherwise.

6.7.2 Optional Attribute Qualifiers

The __kernel qualifier can be used with the keyword __attribute__ to declare additional
information about the kernel function as described below.

The optional __attribute__((vec_type_hint(<type>)))45 is a hint to the compiler
and is intended to be a representation of the computational width of the __kernel, and should
serve as the basis for calculating processor bandwidth utilization when the compiler is looking to
autovectorize the code. In the __attribute__((vec_type_hint(<type>)))
qualifier <type> is one of the built-in vector types listed in table 6.2 or the constituent scalar
element types. If vec_type_hint (<type>) is not specified, the kernel is assumed to
have the __attribute__((vec_type_hint(int))) qualifier.

For example, where the developer specified a width of float4, the compiler should assume
that the computation usually uses up to 4 lanes of a float vector, and would decide to merge

45 Implicit in autovectorization is the assumption that any libraries called from the __kernel must be recompilable at
run time to handle cases where the compiler decides to merge or separate workitems. This probably means that such
libraries can never be hard coded binaries or that hard coded binaries must be accompanied either by source or some
retargetable intermediate representation. This may be a code security question for some.

Last Revision Date: 11/14/12 Page 230

work-items or possibly even separate one work-item into many threads to better match the
hardware capabilities. A conforming implementation is not required to autovectorize code, but
shall support the hint. A compiler may autovectorize, even if no hint is provided. If an
implementation merges N work-items into one thread, it is responsible for correctly handling
cases where the number of global or local work-items in any dimension modulo N is not zero.

Examples:

 // autovectorize assuming float4 as the

// basic computation width
 __kernel __attribute__((vec_type_hint(float4)))
 void foo(__global float4 *p) { }

// autovectorize assuming double as the
// basic computation width
__kernel __attribute__((vec_type_hint(double)))
void foo(__global float4 *p) { }

// autovectorize assuming int (default)
// as the basic computation width

 __kernel
 void foo(__global float4 *p) { }

If for example, a __kernel function is declared with __attribute__((
vec_type_hint (float4))) (meaning that most operations in the __kernel function
are explicitly vectorized using float4) and the kernel is running using Intel® Advanced Vector
Instructions (Intel® AVX) which implements a 8-float-wide vector unit, the autovectorizer might
choose to merge two work-items to one thread, running a second work-item in the high half of
the 256-bit AVX register.

As another example, a Power4 machine has two scalar double precision floating-point units with
an 6-cycle deep pipe. An autovectorizer for the Power4 machine might choose to interleave six
kernels declared with the__attribute__((vec_type_hint (double2))) qualifier
into one hardware thread, to ensure that there is always 12-way parallelism available to saturate
the FPUs. It might also choose to merge 4 or 8 work-items (or some other number) if it
concludes that these are better choices, due to resource utilization concerns or some preference
for divisibility by 2.

The optional __attribute__((work_group_size_hint(X, Y, Z))) is a hint to the
compiler and is intended to specify the work-group size that may be used i.e. value most likely to
be specified by the local_work_size argument to clEnqueueNDRangeKernel. For example the
__attribute__((work_group_size_hint(1, 1, 1))) is a hint to the compiler
that the kernel will most likely be executed with a work-group size of 1.

Last Revision Date: 11/14/12 Page 231

The optional __attribute__((reqd_work_group_size(X, Y, Z))) is the work-
group size that must be used as the local_work_size argument to clEnqueueNDRangeKernel.
This allows the compiler to optimize the generated code appropriately for this kernel. The
optional __attribute__((reqd_work_group_size(X, Y, Z))), if specified, must
be (1, 1, 1) if the kernel is executed via clEnqueueTask.

If Z is one, the work_dim argument to clEnqueueNDRangeKernel can be 2 or 3. If Y and Z are
one, the work_dim argument to clEnqueueNDRangeKernel can be 1, 2 or 3.

Last Revision Date: 11/14/12 Page 232

6.8 Storage-Class Specifiers

The typedef, extern and static storage-class specifiers are supported. The auto and
register storage-class specifiers are not supported.

The extern storage-class specifier can only be used for functions (kernel and non-kernel
functions) and global variables declared in program scope or variables declared inside a function
(kernel and non-kernel functions). The static storage-class specifier can only be used for
non-kernel functions and global variables declared in program scope.

Examples:

 extern constant float4 noise_table[256];
 static constant float4 color_table[256];

 extern kernel void my_foo(image2d_t img);
 extern void my_bar(global float *a);

 kernel void my_func(image2d_t img, global float *a)
 {
 extern constant float4 a;
 static constant float4 b; // error.
 static float c; // error.

 ...
 my_foo(img);
 ...
 my_bar(a);
 ...
 }

Last Revision Date: 11/14/12 Page 233

6.9 Restrictions46

a. The use of pointers is somewhat restricted. The following rules apply:

 Arguments to kernel functions declared in a program that are pointers must be
declared with the __global, __constant or __local qualifier.

 A pointer declared with the __constant, __local or __global qualifier can

only be assigned to a pointer declared with the __constant, __local or
__global qualifier respectively.

 Pointers to functions are not allowed.

 Arguments to kernel functions in a program cannot be declared as a pointer to a

pointer(s). Variables inside a function or arguments to non-kernel functions in a
program can be declared as a pointer to a pointer(s).

b. An image type (image2d_t, image3d_t, image2d_array_t, image1d_t,

image1d_buffer_t or image1d_array_t) can only be used as the type of a
function argument. An image function argument cannot be modified. Elements of an
image can only be accessed using built-in functions described in section 6.12.14.

An image type cannot be used to declare a variable, a structure or union field, an array of
images, a pointer to an image, or the return type of a function. An image type cannot be
used with the __global, __private, __local and __constant address space
qualifiers. The image3d_t type cannot be used with the __write_only access
qualifier unless the cl_khr_3d_image_writes extension is enabled. An image
type cannot be used with the __read_write access qualifer which is reserved for
future use.

The sampler type (sampler_t) can only be used as the type of a function argument or a
variable declared in the program scope or the outermost scope of a kernel function. The
behavior of a sampler variable declared in a non-outermost scope of a kernel function is
implementation-defined. A sampler argument or variable cannot be modified.

The sampler type cannot be used to declare a structure or union field, an array of
samplers, a ponter to a sampler, or the return type of a function. The sampler type cannot
be used with the __local and __global address space qualifiers.

c. Bit-field struct members are currently not supported.

d. Variable length arrays and structures with flexible (or unsized) arrays are not supported.

46 Items struckthrough are restrictions in OpenCL 1.0 that are removed in OpenCL 1.1.

Last Revision Date: 11/14/12 Page 234

e. Variadic macros and functions are not supported.

f. The library functions defined in the C99 standard headers assert.h, ctype.h,

complex.h, errno.h, fenv.h, float.h, inttypes.h, limits.h,
locale.h, setjmp.h, signal.h, stdarg.h, stdio.h, stdlib.h,
string.h, tgmath.h, time.h, wchar.h and wctype.h are not available
and cannot be included by a program.

g. The auto and register storage-class specifiers are not supported.

h. Predefined identifiers are not supported.

i. Recursion is not supported.

j. The return type of a kernel function must be void.

k. Arguments to kernel functions in a program cannot be declared with the built-in scalar

types bool, half, size_t, ptrdiff_t, intptr_t, and uintptr_t or a struct
and/or union that contain fields declared to be one of these built-in scalar types. The size
in bytes of these types except half are implementation-defined and in addition can also
be different for the OpenCL device and the host processor making it difficult to allocate
buffer objects to be passed as arguments to a kernel declared as pointer to these types.
half is not supported as half can be used as a storage format47 only and is not a data
type on which floating-point arithmetic can be performed.

l. Whether or not irreducible control flow is illegal is implementation defined.

m. Built-in types that are less than 32-bits in size i.e. char, uchar, char2, uchar2,

short, ushort, and half have the following restriction:

 Writes to a pointer (or arrays) of type char, uchar, char2, uchar2, short,
ushort, and half or to elements of a struct that are of type char, uchar,
char2, uchar2, short and ushort are not supported. Refer to section 9.9
for additional information.

 The kernel example below shows what memory operations are not supported on
 built-in types less than 32-bits in size.

 kernel void
 do_proc (__global char *pA, short b,

__global short *pB)
 {

 char x[100];

47 Unless the cl_khr_fp16 extension is supported.

Last Revision Date: 11/14/12 Page 235

 __private char *px = x;
 int id = (int)get_global_id(0);
 short f;

 f = pB[id] + b; ß is allowed

 px[1] = pA[1]; ß error. px cannot be written.

 pB[id] = b; ß error. pB cannot be written
}

n. Arguments to kernel functions in a program cannot be declared to be of type event_t.

o. Elements of a struct or union must belong to the same address space. Declaring a struct

or union whose elements are in different address spaces is illegal.

p. Arguments to kernel functions that are declared to be a struct or union do not allow
OpenCL objects to be passed as elements of the struct or union.

q. The type qualifiers const, restrict and volatile as defined by the C99

specification are supported. These qualifiers cannot be used with image2d_t,
image3d_t , image2d_array_t, image1d_t, image1d_buffer_t and
image1d_array_t types. Types other than pointer types shall not use the
restrict qualifier.

r. The event type (event_t) cannot be used as the type of a kernel function argument.

The event type cannot be used to declare a program scope variable. The event type
cannot be used to declare a structure or union field. The event type cannot be used with
the __local, __constant and __global address space qualifiers.

Last Revision Date: 11/14/12 Page 236

6.10 Preprocessor Directives and Macros

The preprocessing directives defined by the C99 specification are supported.

The # pragma directive is described as:

 # pragma pp-tokensopt new-line

A # pragma directive where the preprocessing token OPENCL (used instead of STDC) does not
immediately follow pragma in the directive (prior to any macro replacement) causes the
implementation to behave in an implementation-defined manner. The behavior might cause
translation to fail or cause the translator or the resulting program to behave in a non-conforming
manner. Any such pragma that is not recognized by the implementation is ignored. If the
preprocessing token OPENCL does immediately follow pragma in the directive (prior to any
macro replacement), then no macro replacement is performed on the directive, and the directive
shall have one of the following forms whose meanings are described elsewhere:

#pragma OPENCL FP_CONTRACT on-off-switch
on-off-switch: one of ON OFF DEFAULT

 #pragma OPENCL EXTENSION extensionname : behavior
#pragma OPENCL EXTENSION all : behavior

The following predefined macro names are available.

__FILE__ The presumed name of the current source file (a character string literal).

__LINE__ The presumed line number (within the current source file) of the current
source line (an integer constant).

__OPENCL_VERSION__ substitutes an integer reflecting the version number of the OpenCL
supported by the OpenCL device. The version of OpenCL described in this document will have
__OPENCL_VERSION__ substitute the integer 120.

CL_VERSION_1_0 substitutes the integer 100 reflecting the OpenCL 1.0 version.

CL_VERSION_1_1 substitutes the integer 110 reflecting the OpenCL 1.1 version.

CL_VERSION_1_2 substitutes the integer 120 reflecting the OpenCL 1.2 version.

__OPENCL_C_VERSION__ substitutes an integer reflecting the OpenCL C version
specified by the –cl-std build option (specified in section 5.6.4.5) to clBuildProgram or
clCompileProgram. If the –cl-std build option is not specified, the OpenCL C version

Last Revision Date: 11/14/12 Page 237

supported by the compiler for this OpenCL device will be used. The version of OpenCL C
described in this document will have __OPENCL_C_VERSION__ substitute the integer 120.

__ENDIAN_LITTLE__ is used to determine if the OpenCL device is a little endian architecture
or a big endian architecture (an integer constant of 1 if device is little endian and is undefined
otherwise). Also refer to CL_DEVICE_ENDIAN_LITTLE specified in table 4.3.

__kernel_exec(X, typen) (and kernel_exec(X, typen)) is defined as
 __kernel __attribute__((work_group_size_hint(X, 1, 1))) \
 __attribute__((vec_type_hint(typen)))

__IMAGE_SUPPORT__ is used to determine if the OpenCL device supports images. This is an
integer constant of 1 if images are supported and is undefined otherwise. Also refer to
CL_DEVICE_IMAGE_SUPPORT specified in table 4.3.

__FAST_RELAXED_MATH__ is used to determine if the –cl-fast-relaxed-math optimization
option is specified in build options given to clBuildProgram or clCompileProgram. This is an
integer constant of 1 if the –cl-fast-relaxed-math build option is specified and is undefined
otherwise.

The macro names defined by the C99 specification but not currently supported by OpenCL are
reserved for future use.

The predefined identifier __func__ is available.

Last Revision Date: 11/14/12 Page 238

6.11 Attribute Qualifiers

This section describes the syntax with which __attribute__ may be used, and the constructs
to which attribute specifiers bind.

An attribute specifier is of the form __attribute__ ((attribute-list)).

An attribute list is defined as:

attribute-list:
attributeopt
attribute-list , attributeopt

attribute:
attribute-token attribute-argument-clauseopt

attribute-token:

identifier

attribute-argument-clause:
(attribute-argument-list)

attribute-argument-list:

attribute-argument
attribute-argument-list, attribute-argument

attribute-argument:

assignment-expression

This syntax is taken directly from GCC but unlike GCC, which allows attributes to be applied
only to functions, types, and variables, OpenCL attributes can be associated with:

 types;
 functions;
 variables;
 blocks; and
 control-flow statements.

In general, the rules for how an attribute binds, for a given context, are non-trivial and
the reader is pointed to GCC’s documentation and Maurer and Wong’s paper [See 16. and 17. in
section 11 – References] for the details.

Last Revision Date: 11/14/12 Page 239

6.11.1 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of enum, struct and
union types when you define such types. This keyword is followed by an attribute
specification inside double parentheses. Two attributes are currently defined for types: aligned,
and packed.

You may specify type attributes in an enum, struct or union type declaration or definition,
or for other types in a typedef declaration.

For an enum, struct or union type, you may specify attributes either between the enum,
struct or union tag and the name of the type, or just past the closing curly brace of the
definition. The former syntax is preferred.

aligned (alignment)

This attribute specifies a minimum alignment (in bytes) for variables of the
specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8)));
typedef int more_aligned_int __attribute__ ((aligned (8)));

force the compiler to insure (as far as it can) that each variable whose type is
struct S or more_aligned_int will be allocated and aligned at least on a
8-byte boundary.

Note that the alignment of any given struct or union type is required by the ISO C
standard to be at least a perfect multiple of the lowest common multiple of the alignments
of all of the members of the struct or union in question and must also be a power of
two. This means that you can effectively adjust the alignment of a struct or union
type by attaching an aligned attribute to any one of the members of such a type, but the
notation illustrated in the example above is a more obvious, intuitive, and readable way to
request the compiler to adjust the alignment of an entire struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes) that you
wish the compiler to use for a given struct or union type. Alternatively, you can
leave out the alignment factor and just ask the compiler to align a type to the maximum
useful alignment for the target machine you are compiling for. For example, you could
write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification, the
compiler automatically sets the alignment for the type to the largest alignment which is
ever used for any data type on the target machine you are compiling for. In the example

Last Revision Date: 11/14/12 Page 240

above, the size of each short is 2 bytes, and therefore the size of the entire struct S
type is 6 bytes. The smallest power of two which is greater than or equal to that is 8, so
the compiler sets the alignment for the entire struct S type to 8 bytes.

Note that the effectiveness of aligned attributes may be limited by inherent limitations of
the OpenCL device and compiler. For some devices, the OpenCL compiler may only be
able to arrange for variables to be aligned up to a certain maximum alignment. If the
OpenCL compiler is only able to align variables up to a maximum of 8 byte alignment,
then specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your platform-specific documentation for further information.

The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed as well. See below.

packed

This attribute, attached to struct or union type definition, specifies that each
member of the structure or union is placed to minimize the memory required. When
attached to an enum definition, it indicates that the smallest integral type should be used.

Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members.

In the following example struct my_packed_struct's members are
packed closely together, but the internal layout of its s member is not packed. To
do that, struct my_unpacked_struct would need to be packed, too.

 struct my_unpacked_struct
 {

 char c;
 int i;
 };

 struct __attribute__ ((packed)) my_packed_struct
 {
 char c;
 int i;
 struct my_unpacked_struct s;
 };

You may only specify this attribute on the definition of a enum, struct or
union, not on a typedef which does not also define the enumerated type,
structure or union.

Last Revision Date: 11/14/12 Page 241

6.11.2 Specifying Attributes of Functions

Refer to section 6.7 for the function attribute qualifiers currently supported.

6.11.3 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure
fields. This keyword is followed by an attribute specification inside double parentheses. The
following attribute qualifiers are currently defined:

aligned (alignment)

This attribute specifies a minimum alignment for the variable or structure field, measured
in bytes. For example, the declaration:

 int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. The
alignment value specified must be a power of two.

You can also specify the alignment of structure fields. For example, to create double-
word aligned int pair, you could write:

 struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces the union to
be double-word aligned.

As in the preceding examples, you can explicitly specify the alignment (in bytes) that you
wish the compiler to use for a given variable or structure field. Alternatively, you can
leave out the alignment factor and just ask the compiler to align a variable or field to the
maximum useful alignment for the target machine you are compiling for. For example,
you could write:

 short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification, the
OpenCL compiler automatically sets the alignment for the declared variable or field to
the largest alignment which is ever used for any data type on the target device you are
compiling for.

When used on a struct, or struct member, the aligned attribute can only increase

Last Revision Date: 11/14/12 Page 242

the alignment; in order to decrease it, the packed attribute must be specified as well.
When used as part of a typedef, the aligned attribute can both increase and decrease
alignment, and specifying the packed attribute will generate a warning.

Note that the effectiveness of aligned attributes may be limited by inherent limitations of
the OpenCL device and compiler. For some devices, the OpenCL compiler may only be
able to arrange for variables to be aligned up to a certain maximum alignment. If the
OpenCL compiler is only able to align variables up to a maximum of 8 byte alignment,
then specifying aligned(16) in an __attribute__ will still only provide you with
8 byte alignment. See your platform-specific documentation for further information.

packed

The packed attribute specifies that a variable or structure field should have the smallest
possible alignment—one byte for a variable, unless you specify a larger value with the
aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows a:

 struct foo
 {
 char a;
 int x[2] __attribute__ ((packed));
 };

An attribute list placed at the beginning of a user-defined type applies to the variable of
that type and not the type, while attributes following the type body apply to the type.
For example:

 /* a has alignment of 128 */

__attribute__((aligned(128))) struct A {int i;} a;

/* b has alignment of 16 */
__attribute__((aligned(16))) struct B {double d;}

 __attribute__((aligned(32))) b ;

struct A a1; /* a1 has alignment of 4 */

struct B b1; /* b1 has alignment of 32 */

endian (endiantype)

The endian attribute determines the byte ordering of a variable. endiantype can be
set to host indicating the variable uses the endianness of the host processor or can be set
to device indicating the variable uses the endianness of the device on which the kernel
will be executed. The default is device.

Last Revision Date: 11/14/12 Page 243

For example:

 global float4 *p __attribute__ ((endian(host)));

specifies that data stored in memory pointed to by p will be in the host endian format.

The endian attribute can only be applied to pointer types that are in the global or
constant address space. The endian attribute cannot be used for variables that are
not a pointer type. The endian attribute value for both pointers must be the same when
one pointer is assigned to another.

6.11.4 Specifying Attributes of Blocks and Control-Flow-
Statements

For basic blocks and control-flow-statements the attribute is placed before the structure
in question, for example:

__attribute__((attr1)) {…}

for __attribute__((attr2)) (…) __attribute__((attr3)) {…}

Here attr1 applies to the block in braces and attr2 and attr3 apply to the loop’s control
construct and body, respectively.

No attribute qualifiers for blocks and control-flow-statements are currently defined.

6.11.5 Extending Attribute Qualifiers

The attribute syntax can be extended for standard language extensions and vendor specific
extensions. Any extensions should follow the naming conventions outlined in the introduction to
section 9 in the OpenCL 1.2 Extension Specification.

Attributes are intended as useful hints to the compiler. It is our intention that a particular
implementation of OpenCL be free to ignore all attributes and the resulting executable binary
will produce the same result. This does not preclude an implementation from making use of the
additional information provided by attributes and performing optimizations or other
transformations as it sees fit. In this case it is the programmer’s responsibility to guarantee that
the information provided is in some sense correct.

Last Revision Date: 11/14/12 Page 244

6.12 Built-in Functions

The OpenCL C programming language provides a rich set of built-in functions for scalar and
vector operations. Many of these functions are similar to the function names provided in
common C libraries but they support scalar and vector argument types. Applications should use
the built-in functions wherever possible instead of writing their own version.

User defined OpenCL C functions, behave per C standard rules for functions (C99, TC2, Section
6.9.1). On entry to the function, the size of each variably modified parameter is evaluated and
the value of each argument expression is converted to the type of the corresponding parameter as
per usual arithmetic conversion rules described in section 6.2.6. Built-in functions described in
this section behave similarly, except that in order to avoid ambiguity between multiple forms of
the same built-in function, implicit scalar widening shall not occur. Note that some built-in
functions described in this section do have forms that operate on mixed scalar and vector types,
however.

6.12.1 Work-Item Functions

Table 6.7 describes the list of built-in work-item functions that can be used to query the number
of dimensions, the global and local work size specified to clEnqueueNDRangeKernel, and the
global and local identifier of each work-item when this kernel is being executed on a device.
The number of dimensions, the global and local work size when executing a kernel using the
function clEnqueueTask is one.

Function Description
uint get_work_dim () Returns the number of dimensions in use. This is the

value given to the work_dim argument specified in
clEnqueueNDRangeKernel.

For clEnqueueTask, this returns 1.

size_t get_global_size (uint dimindx) Returns the number of global work-items specified for
dimension identified by dimindx. This value is given by
the global_work_size argument to
clEnqueueNDRangeKernel. Valid values of dimindx
are 0 to get_work_dim() – 1. For other values of
dimindx, get_global_size() returns 1.

For clEnqueueTask, this always returns 1.

size_t get_global_id (uint dimindx) Returns the unique global work-item ID value for
dimension identified by dimindx. The global work-item
ID specifies the work-item ID based on the number of
global work-items specified to execute the kernel. Valid
values of dimindx are 0 to get_work_dim() – 1. For

Last Revision Date: 11/14/12 Page 245

other values of dimindx, get_global_id() returns 0.

For clEnqueueTask, this returns 0.

size_t get_local_size (uint dimindx) Returns the number of local work-items specified in
dimension identified by dimindx. This value is given by
the local_work_size argument to
clEnqueueNDRangeKernel if local_work_size is not
NULL; otherwise the OpenCL implementation chooses
an appropriate local_work_size value which is returned
by this function. Valid values of dimindx are 0 to
get_work_dim() – 1. For other values of dimindx,
get_local_size() returns 1.

For clEnqueueTask, this always returns 1.

size_t get_local_id (uint dimindx) Returns the unique local work-item ID i.e. a work-item
within a specific work-group for dimension identified
by dimindx. Valid values of dimindx are 0 to
get_work_dim() – 1. For other values of dimindx,
get_local_id() returns 0.

For clEnqueueTask, this returns 0.

size_t get_num_groups (uint dimindx) Returns the number of work-groups that will execute a
kernel for dimension identified by dimindx. Valid
values of dimindx are 0 to get_work_dim() – 1. For
other values of dimindx, get_num_groups () returns 1.

For clEnqueueTask, this always returns 1.

size_t get_group_id (uint dimindx) get_group_id returns the work-group ID which is a
number from 0 .. get_num_groups(dimindx) – 1. Valid
values of dimindx are 0 to get_work_dim() – 1. For
other values, get_group_id() returns 0.

For clEnqueueTask, this returns 0.

size_t get_global_offset (uint dimindx) get_global_offset returns the offset values specified in
global_work_offset argument to
clEnqueueNDRangeKernel. Valid values of dimindx
are 0 to get_work_dim() – 1. For other values,
get_global_offset() returns 0.

For clEnqueueTask, this returns 0.

Table 6.7 Work-Item Functions Table

Last Revision Date: 11/14/12 Page 246

6.12.2 Math Functions

The list of built-in math functions is described in table 6.8. The built-in math functions are
categorized into the following:

 A list of built-in functions that have scalar or vector argument versions, and,
 A list of built-in functions that only take scalar float arguments.

The vector versions of the math functions operate component-wise. The description is per-
component.

The built-in math functions are not affected by the prevailing rounding mode in the calling
environment, and always return the same value as they would if called with the round to nearest
even rounding mode.

Table 6.8 describes the list of built-in math functions that can take scalar or vector arguments.
We use the generic type name gentype to indicate that the function can take float,
float2, float3, float4, float8, float16, double, double2, double3,
double4, double8 or double16 as the type for the arguments. We use the generic type
name gentypef to indicate that the function can take float, float2, float3,
float4, float8, or float16 as the type for the arguments. We use the generic type
name gentyped to indicate that the function can take double, double2, double3,
double4, double8 or double16 as the type for the arguments. For any specific use of a
function, the actual type has to be the same for all arguments and the return type, unless
otherwise specified.

Function Description
gentype acos (gentype) Arc cosine function.
gentype acosh (gentype) Inverse hyperbolic cosine.
gentype acospi (gentype x) Compute acos (x) / π.
gentype asin (gentype) Arc sine function.
gentype asinh (gentype) Inverse hyperbolic sine.
gentype asinpi (gentype x) Compute asin (x) / π.
gentype atan (gentype y_over_x) Arc tangent function.
gentype atan2 (gentype y, gentype x) Arc tangent of y / x.
gentype atanh (gentype) Hyperbolic arc tangent.
gentype atanpi (gentype x) Compute atan (x) / π.
gentype atan2pi (gentype y, gentype x) Compute atan2 (y, x) / π.
gentype cbrt (gentype) Compute cube-root.
gentype ceil (gentype) Round to integral value using the round to positive

infinity rounding mode.
gentype copysign (gentype x, gentype y) Returns x with its sign changed to match the sign of

Last Revision Date: 11/14/12 Page 247

y.
gentype cos (gentype) Compute cosine.
gentype cosh (gentype) Compute hyperbolic consine.
gentype cospi (gentype x) Compute cos (π x).
gentype erfc (gentype) Complementary error function.
gentype erf (gentype) Error function encountered in integrating the

normal distribution.
gentype exp (gentype x) Compute the base- e exponential of x.
gentype exp2 (gentype) Exponential base 2 function.
gentype exp10 (gentype) Exponential base 10 function.
gentype expm1 (gentype x) Compute ex- 1.0.
gentype fabs (gentype) Compute absolute value of a floating-point number.
gentype fdim (gentype x, gentype y) x - y if x > y, +0 if x is less than or equal to y.
gentype floor (gentype) Round to integral value using the round to negative

infinity rounding mode.
gentype fma (gentype a,
 gentype b, gentype c)

Returns the correctly rounded floating-point
representation of the sum of c with the infinitely
precise product of a and b. Rounding of
intermediate products shall not occur. Edge case
behavior is per the IEEE 754-2008 standard.

gentype fmax (gentype x, gentype y)

gentypef fmax (gentypef x, float y)

gentyped fmax (gentyped x, double y)

Returns y if x < y, otherwise it returns x. If one
argument is a NaN, fmax() returns the other
argument. If both arguments are NaNs, fmax()
returns a NaN.

gentype fmin48 (gentype x, gentype y)

gentypef fmin (gentypef x, float y)

gentyped fmin (gentyped x, double y)

Returns y if y < x, otherwise it returns x. If one
argument is a NaN, fmin() returns the other
argument. If both arguments are NaNs, fmin()
returns a NaN.

gentype fmod (gentype x, gentype y) Modulus. Returns x – y * trunc (x/y).
gentype fract (gentype x,
 __global gentype *iptr)49
gentype fract (gentype x,
 __local gentype *iptr)
gentype fract (gentype x,
 __private gentype *iptr)

Returns fmin(x – floor (x), 0x1.fffffep-1f).
floor(x) is returned in iptr.

floatn frexp (floatn x,
 __global intn *exp)
floatn frexp (floatn x,
 __local intn *exp)

Extract mantissa and exponent from x. For each
component the mantissa returned is a float with
magnitude in the interval [1/2, 1) or 0. Each
component of x equals mantissa returned * 2exp.

48 fmin and fmax behave as defined by C99 and may not match the IEEE 754-2008 definition for minNum and
maxNum with regard to signaling NaNs. Specifically, signaling NaNs may behave as quiet NaNs.
49 The min() operator is there to prevent fract(-small) from returning 1.0. It returns the largest positive floating-
point number less than 1.0.

Last Revision Date: 11/14/12 Page 248

floatn frexp (floatn x,
 __private intn *exp)
float frexp (float x,
 __global int *exp)
float frexp (float x,
 __local int *exp)
float frexp (float x,
 __private int *exp)
doublen frexp (doublen x,
 __global intn *exp)
doublen frexp (doublen x,
 __local intn *exp)
doublen frexp (doublen x,
 __private intn *exp)
double frexp (double x,
 __global int *exp)
double frexp (double x,
 __local int *exp)
double frexp (double x,
 __private int *exp)

Extract mantissa and exponent from x. For each
component the mantissa returned is a float with
magnitude in the interval [1/2, 1) or 0. Each
component of x equals mantissa returned * 2exp.

gentype hypot (gentype x, gentype y) Compute the value of the square root of x2+ y2
without undue overflow or underflow.

intn ilogb (floatn x)
int ilogb (float x)

intn ilogb (doublen x)
int ilogb (double x)

Return the exponent as an integer value.

floatn ldexp (floatn x, intn k)
floatn ldexp (floatn x, int k)
float ldexp (float x, int k)

doublen ldexp (doublen x, intn k)
doublen ldexp (doublen x, int k)
double ldexp (double x, int k)

Multiply x by 2 to the power k.

gentype lgamma (gentype x)
floatn lgamma_r (floatn x,
 __global intn *signp)
floatn lgamma_r (floatn x,
 __local intn *signp)
floatn lgamma_r (floatn x,
 __private intn *signp)
float lgamma_r (float x,
 __global int *signp)
float lgamma_r (float x,
 __local int *signp)
float lgamma_r (float x,

Log gamma function. Returns the natural
logarithm of the absolute value of the gamma
function. The sign of the gamma function is
returned in the signp argument of lgamma_r.

Last Revision Date: 11/14/12 Page 249

 __private int *signp)

doublen lgamma_r (doublen x,
 __global intn *signp)
doublen lgamma_r (doublen x,
 __local intn *signp)
doublen lgamma_r (doublen x,
 __private intn *signp)
double lgamma_r (double x,
 __global int *signp)
double lgamma_r (double x,
 __local int *signp)
double lgamma_r (double x,
 __private int *signp)
gentype log (gentype) Compute natural logarithm.
gentype log2 (gentype) Compute a base 2 logarithm.
gentype log10 (gentype) Compute a base 10 logarithm.
gentype log1p (gentype x) Compute loge(1.0 + x).
gentype logb (gentype x) Compute the exponent of x, which is the integral

part of logr | x |.
gentype mad (gentype a,
 gentype b, gentype c)

mad approximates a * b + c. Whether or how the
product of a * b is rounded and how supernormal or
subnormal intermediate products are handled is not
defined. mad is intended to be used where speed is
preferred over accuracy50.

gentype maxmag (gentype x, gentype y)

Returns x if | x | > | y |, y if | y | > | x |, otherwise
fmax(x, y).

gentype minmag (gentype x, gentype y)

Returns x if | x | < | y |, y if | y | < | x |, otherwise
fmin(x, y).

gentype modf (gentype x,
 __global gentype *iptr)
gentype modf (gentype x,
 __local gentype *iptr)
gentype modf (gentype x,
 __private gentype *iptr)

Decompose a floating-point number. The modf
function breaks the argument x into integral and
fractional parts, each of which has the same sign as
the argument. It stores the integral part in the object
pointed to by iptr.

floatn nan (uintn nancode)
float nan (uint nancode)

doublen nan (ulongn nancode)
double nan (ulong nancode)

Returns a quiet NaN. The nancode may be placed
in the significand of the resulting NaN.

gentype nextafter (gentype x,
 gentype y)

Computes the next representable single-precision
floating-point value following x in the direction of
y. Thus, if y is less than x, nextafter() returns the

50 The user is cautioned that for some usages, e.g. mad(a, b, -a*b), the definition of mad() is loose enough that
almost any result is allowed from mad() for some values of a and b.

Last Revision Date: 11/14/12 Page 250

largest representable floating-point number less
than x.

gentype pow (gentype x, gentype y) Compute x to the power y.
floatn pown (floatn x, intn y)
float pown (float x, int y)

doublen pown (doublen x, intn y)
double pown (double x, int y)

Compute x to the power y, where y is an integer.

gentype powr (gentype x, gentype y) Compute x to the power y, where x is >= 0.
gentype remainder (gentype x,
 gentype y)

Compute the value r such that r = x - n*y, where n
is the integer nearest the exact value of x/y. If there
are two integers closest to x/y, n shall be the even
one. If r is zero, it is given the same sign as x.

floatn remquo (floatn x,
 floatn y,
 __global intn *quo)

floatn remquo (floatn x,
 floatn y,
 __local intn *quo)

floatn remquo (floatn x,
 floatn y,
 __private intn *quo)

float remquo (float x,
 float y,
 __global int *quo)

float remquo (float x,
 float y,
 __local int *quo)

float remquo (float x,
 float y,
 __private int *quo)

The remquo function computes the value r such
that r = x - k*y, where k is the integer nearest the
exact value of x/y. If there are two integers closest
to x/y, k shall be the even one. If r is zero, it is
given the same sign as x. This is the same value
that is returned by the remainder function.
remquo also calculates the lower seven bits of the
integral quotient x/y, and gives that value the same
sign as x/y. It stores this signed value in the object
pointed to by quo.

doublen remquo (doublen x,
 doublen y,
 __global intn *quo)
doublen remquo (doublen x,
 doublen y,
 __local intn *quo)
doublen remquo (doublen x,
 doublen y,
 __private intn *quo)
double remquo (double x,

The remquo function computes the value r such
that r = x - k*y, where k is the integer nearest the
exact value of x/y. If there are two integers closest
to x/y, k shall be the even one. If r is zero, it is
given the same sign as x. This is the same value
that is returned by the remainder function.
remquo also calculates the lower seven bits of the
integral quotient x/y, and gives that value the same
sign as x/y. It stores this signed value in the object
pointed to by quo.

Last Revision Date: 11/14/12 Page 251

 double y,
 __global int *quo)
double remquo (double x,
 double y,
 __local int *quo)
double remquo (double x,
 double y,
 __private int *quo)
gentype rint (gentype) Round to integral value (using round to nearest

even rounding mode) in floating-point format.
Refer to section 7.1 for description of rounding
modes.

floatn rootn (floatn x, intn y)
float rootn (float x, int y)

doublen rootn (doublen x, intn y)
doublen rootn (double x, int y)

Compute x to the power 1/y.

gentype round (gentype x) Return the integral value nearest to x rounding
halfway cases away from zero, regardless of the
current rounding direction.

gentype rsqrt (gentype) Compute inverse square root.
gentype sin (gentype) Compute sine.
gentype sincos (gentype x,
 __global gentype *cosval)
gentype sincos (gentype x,
 __local gentype *cosval)
gentype sincos (gentype x,
 __private gentype *cosval)

Compute sine and cosine of x. The computed sine
is the return value and computed cosine is returned
in cosval.

gentype sinh (gentype) Compute hyperbolic sine.
gentype sinpi (gentype x) Compute sin (π x).
gentype sqrt (gentype) Compute square root.
gentype tan (gentype) Compute tangent.
gentype tanh (gentype) Compute hyperbolic tangent.
gentype tanpi (gentype x) Compute tan (π x).
gentype tgamma (gentype) Compute the gamma function.
gentype trunc (gentype) Round to integral value using the round to zero

rounding mode.

Table 6.8 Scalar and Vector Argument Built-in Math Function Table

Table 6.9 describes the following functions:

 A subset of functions from table 6.8 that are defined with the half_ prefix . These
functions are implemented with a minimum of 10-bits of accuracy i.e. an ULP value <=
8192 ulp.

Last Revision Date: 11/14/12 Page 252

 A subset of functions from table 6.8 that are defined with the native_ prefix. These

functions may map to one or more native device instructions and will typically have
better performance compared to the corresponding functions (without the native__
prefix) described in table 6.8. The accuracy (and in some cases the input range(s)) of
these functions is implementation-defined.

 half_ and native_ functions for following basic operations: divide and reciprocal.

We use the generic type name gentype to indicate that the functions in table 6.9 can take
float, float2, float3, float4, float8 or float16 as the type for the
arguments.

Function Description
gentype half_cos (gentype x) Compute cosine. x must be in the range -216 … +216.
gentype half_divide (gentype x,
 gentype y)

Compute x / y.

gentype half_exp (gentype x) Compute the base- e exponential of x.
gentype half_exp2 (gentype x) Compute the base- 2 exponential of x.
gentype half_exp10 (gentype x) Compute the base- 10 exponential of x.
gentype half_log (gentype x) Compute natural logarithm.
gentype half_log2 (gentype x) Compute a base 2 logarithm.
gentype half_log10 (gentype x) Compute a base 10 logarithm.
gentype half_powr (gentype x,
 gentype y)

Compute x to the power y, where x is >= 0.

gentype half_recip (gentype x) Compute reciprocal.
gentype half_rsqrt (gentype x) Compute inverse square root.
gentype half_sin (gentype x) Compute sine. x must be in the range -216 … +216.
gentype half_sqrt (gentype x) Compute square root.
gentype half_tan (gentype x) Compute tangent. x must be in the range -216 … +216.

gentype native_cos (gentype x) Compute cosine over an implementation-defined range.

The maximum error is implementation-defined.
gentype native_divide (gentype x,
 gentype y)

Compute x / y over an implementation-defined range.
The maximum error is implementation-defined.

gentype native_exp (gentype x) Compute the base- e exponential of x over an
implementation-defined range. The maximum error is
implementation-defined.

gentype native_exp2 (gentype x) Compute the base- 2 exponential of x over an
implementation-defined range. The maximum error is
implementation-defined.

gentype native_exp10 (gentype x) Compute the base- 10 exponential of x over an
implementation-defined range. The maximum error is
implementation-defined.

gentype native_log (gentype x) Compute natural logarithm over an implementation-

Last Revision Date: 11/14/12 Page 253

defined range. The maximum error is implementation-
defined.

gentype native_log2 (gentype x) Compute a base 2 logarithm over an implementation-
defined range. The maximum error is implementation-
defined.

gentype native_log10 (gentype x) Compute a base 10 logarithm over an implementation-
defined range. The maximum error is implementation-
defined.

gentype native_powr (gentype x,
 gentype y)

Compute x to the power y, where x is >= 0. The range of
x and y are implementation-defined. The maximum error
is implementation-defined.

gentype native_recip (gentype x) Compute reciprocal over an implementation-defined
range. The maximum error is implementation-defined.

gentype native_rsqrt (gentype x) Compute inverse square root over an implementation-
defined range. The maximum error is implementation-
defined.

gentype native_sin (gentype x) Compute sine over an implementation-defined range.
The maximum error is implementation-defined.

gentype native_sqrt (gentype x) Compute square root over an implementation-defined
range. The maximum error is implementation-defined.

gentype native_tan (gentype x) Compute tangent over an implementation-defined range.
The maximum error is implementation-defined.

Table 6.9 Scalar and Vector Argument Built-in half__ and native__ Math Functions

Support for denormal values is optional for half_ functions. The half_ functions may return any
result allowed by section 7.5.3, even when -cl-denorms-are-zero (see section 5.6.4.2) is not in
force. Support for denormal values is implementation-defined for native_ functions.

The following symbolic constants are available. Their values are of type float and are
accurate within the precision of a single precision floating-point number.

Constant Name Description
MAXFLOAT Value of maximum non-infinite single-precision floating-point

number.
HUGE_VALF A positive float constant expression. HUGE_VALF evaluates

to +infinity. Used as an error value returned by the built-in
math functions.

INFINITY A constant expression of type float representing positive or
unsigned infinity.

NAN A constant expression of type float representing a quiet NaN.

If double precision is supported by the device, the following symbolic constant will also be
available:

Last Revision Date: 11/14/12 Page 254

Constant Name Description
HUGE_VAL A positive double constant expression. HUGE_VAL evaluates

to +infinity. Used as an error value returned by the built-in
math functions.

6.12.2.1 Floating-point macros and pragmas

The FP_CONTRACT pragma can be used to allow (if the state is on) or disallow (if the state is
off) the implementation to contract expressions. Each pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined.

The pragma definition to set FP_CONTRACT is:

 #pragma OPENCL FP_CONTRACT on-off-switch

 on-off-switch is one of:

 ON, OFF or DEFAULT.
The DEFAULT value is ON.

The FP_FAST_FMAF macro indicates whether the fma function is fast compared with direct
code for single precision floating-point. If defined, the FP_FAST_FMAF macro shall indicate
that the fma function generally executes about as fast as, or faster than, a multiply and an add of
float operands.

The macro names given in the following list must use the values specified. These constant
expressions are suitable for use in #if preprocessing directives.

#define FLT_DIG 6
#define FLT_MANT_DIG 24
#define FLT_MAX_10_EXP +38
#define FLT_MAX_EXP +128
#define FLT_MIN_10_EXP -37
#define FLT_MIN_EXP -125
#define FLT_RADIX 2
#define FLT_MAX 0x1.fffffep127f
#define FLT_MIN 0x1.0p-126f
#define FLT_EPSILON 0x1.0p-23f

Last Revision Date: 11/14/12 Page 255

The following table describes the built-in macro names given above in the OpenCL C
programming language and the corresponding macro names available to the application.

Macro in OpenCL Language Macro for application
FLT_DIG CL_FLT_DIG

FLT_MANT_DIG CL_FLT_MANT_DIG
FLT_MAX_10_EXP CL_FLT_MAX_10_EXP

FLT_MAX_EXP CL_FLT_MAX_EXP
FLT_MIN_10_EXP CL_FLT_MIN_10_EXP

FLT_MIN_EXP CL_FLT_MIN_EXP
FLT_RADIX CL_FLT_RADIX
FLT_MAX CL_FLT_MAX
FLT_MIN CL_FLT_MIN

FLT_EPSILSON CL_FLT_EPSILON

The following macros shall expand to integer constant expressions whose values are returned by
ilogb(x) if x is zero or NaN, respectively. The value of FP_ILOGB0 shall be either {INT_MIN}
or – {INT_MAX}. The value of FP_ILOGBNAN shall be either {INT_MAX} or {INT_MIN}.

The following constants are also available. They are of type float and are accurate within the
precision of the float type.

Constant Description
M_E_F Value of e
M_LOG2E_F Value of log2e
M_LOG10E_F Value of log10e
M_LN2_F Value of loge2
M_LN10_F Value of loge10
M_PI_F Value of π
M_PI_2_F Value of π / 2
M_PI_4_F Value of π / 4
M_1_PI_F Value of 1 / π
M_2_PI_F Value of 2 / π
M_2_SQRTPI_F Value of 2 / √π
M_SQRT2_F Value of √2
M_SQRT1_2_F Value of 1 / √2

If double precision is supported by the device, the following macros and constants are also
available:

The FP_FAST_FMA macro indicates whether the fma() family of functions are fast compared
with direct code for double precision floating-point. If defined, the FP_FAST_FMA macro shall

Last Revision Date: 11/14/12 Page 256

indicate that the fma() function generally executes about as fast as, or faster than, a multiply and
an add of double operands

The macro names given in the following list must use the values specified. These constant
expressions are suitable for use in #if preprocessing directives.

#define DBL_DIG 15
#define DBL_MANT_DIG 53
#define DBL_MAX_10_EXP +308
#define DBL_MAX_EXP +1024
#define DBL_MIN_10_EXP -307
#define DBL_MIN_EXP -1021
#define DBL_MAX 0x1.fffffffffffffp1023
#define DBL_MIN 0x1.0p-1022
#define DBL_EPSILON 0x1.0p-52

The following table describes the built-in macro names given above in the OpenCL C
programming language and the corresponding macro names available to the application.

Macro in OpenCL Language Macro for application
DBL_DIG CL_DBL_DIG

DBL_MANT_DIG CL_DBL_MANT_DIG
DBL_MAX_10_EXP CL_DBL_MAX_10_EXP

DBL_MAX_EXP CL_DBL_MAX_EXP
DBL_MIN_10_EXP CL_DBL_MIN_10_EXP

DBL_MIN_EXP CL_DBL_MIN_EXP
DBL_MAX CL_DBL_MAX
DBL_MIN CL_DBL_MIN

DBL_EPSILSON CL_DBL_EPSILON

The following constants are also available. They are of type double and are accurate within
the precision of the double type.

Constant Description
M_E Value of e
M_LOG2E Value of log2e
M_LOG10E Value of log10e
M_LN2 Value of loge2
M_LN10 Value of loge10
M_PI Value of π
M_PI_2 Value of π / 2
M_PI_4 Value of π / 4
M_1_PI Value of 1 / π
M_2_PI Value of 2 / π
M_2_SQRTPI Value of 2 / √π

Last Revision Date: 11/14/12 Page 257

M_SQRT2 Value of √2
M_SQRT1_2 Value of 1 / √2

Last Revision Date: 11/14/12 Page 258

6.12.3 Integer Functions

Table 6.10 describes the built-in integer functions that take scalar or vector arguments. The
vector versions of the integer functions operate component-wise. The description is per-
component.

We use the generic type name gentype to indicate that the function can take char,
char{2|3|4|8|16}, uchar, uchar{2|3|4|8|16}, short,
short{2|3|4|8|16}, ushort, ushort{2|3|4|8|16}, int,
int{2|3|4|8|16}, uint, uint{2|3|4|8|16}, long, long{2|3|4|8|16}
ulong, or ulong{2|3|4|8|16} as the type for the arguments. We use the generic type
name ugentype to refer to unsigned versions of gentype. For example, if gentype is
char4, ugentype is uchar4. We also use the generic type name sgentype to indicate
that the function can take a scalar data type i.e. char, uchar, short, ushort, int,
uint, long, or ulong as the type for the arguments. For built-in integer functions that
take gentype and sgentype arguments, the gentype argument must be a vector or scalar
version of the sgentype argument. For example, if sgentype is uchar, gentype must be
uchar or uchar{2|3|4|8|16}. For vector versions, sgentype is implicitly widened to
gentype as described in section 6.3.a.

For any specific use of a function, the actual type has to be the same for all arguments and the
return type unless otherwise specified.

Function Description
ugentype abs (gentype x) Returns | x |.
ugentype abs_diff (gentype x, gentype y) Returns | x – y | without modulo overflow.
gentype add_sat (gentype x, gentype y) Returns x + y and saturates the result.
gentype hadd (gentype x, gentype y) Returns (x + y) >> 1. The intermediate sum does

not modulo overflow.
gentype rhadd (gentype x, gentype y)51 Returns (x + y + 1) >> 1. The intermediate sum

does not modulo overflow.
gentype clamp (gentype x,
 gentype minval,
 gentype maxval)

gentype clamp (gentype x,
 sgentype minval,
 sgentype maxval)

Returns min(max(x, minval), maxval).

Results are undefined if minval > maxval.

gentype clz (gentype x) Returns the number of leading 0-bits in x, starting
at the most significant bit position.

gentype mad_hi (gentype a, Returns mul_hi(a, b) + c.

51 Frequently vector operations need n + 1 bits temporarily to calculate a result. The rhadd instruction gives you an
extra bit without needing to upsample and downsample. This can be a profound performance win.

Last Revision Date: 11/14/12 Page 259

 gentype b, gentype c)
gentype mad_sat (gentype a,
 gentype b, gentype c)

Returns a * b + c and saturates the result.

gentype max (gentype x, gentype y)
gentype max (gentype x, sgentype y)

Returns y if x < y, otherwise it returns x.

gentype min (gentype x, gentype y)
gentype min (gentype x, sgentype y)

Returns y if y < x, otherwise it returns x.

gentype mul_hi (gentype x, gentype y) Computes x * y and returns the high half of the
product of x and y.

gentype rotate (gentype v, gentype i) For each element in v, the bits are shifted left by
the number of bits given by the corresponding
element in i (subject to usual shift modulo rules
described in section 6.3). Bits shifted off the left
side of the element are shifted back in from the
right.

gentype sub_sat (gentype x, gentype y) Returns x - y and saturates the result.
short upsample (char hi, uchar lo)
ushort upsample (uchar hi, uchar lo)
shortn upsample (charn hi, ucharn lo)
ushortn upsample (ucharn hi, ucharn lo)

int upsample (short hi, ushort lo)
uint upsample (ushort hi, ushort lo)
intn upsample (shortn hi, ushortn lo)
uintn upsample (ushortn hi, ushortn lo)

long upsample (int hi, uint lo)
ulong upsample (uint hi, uint lo)
longn upsample (intn hi, uintn lo)
ulongn upsample (uintn hi, uintn lo)

result[i] = ((short)hi[i] << 8) | lo[i]
result[i] = ((ushort)hi[i] << 8) | lo[i]

result[i] = ((int)hi[i] << 16) | lo[i]
result[i] = ((uint)hi[i] << 16) | lo[i]

result[i] = ((long)hi[i] << 32) | lo[i]
result[i] = ((ulong)hi[i] << 32) | lo[i]

gentype popcount (gentype x) Returns the number of non-zero bits in x.

 Table 6.10 Scalar and Vector Integer Argument Built-in Functions

Table 6.11 describes fast integer functions that can be used for optimizing performance of
kernels. We use the generic type name gentype to indicate that the function can take int,
int2, int3, int4, int8, int16, uint, uint2, uint3, uint4, uint8
or uint16 as the type for the arguments.

Function Description
gentype mad24 (gentype x,
 gentype y, gentype z)

Multipy two 24-bit integer values x and y and add
the 32-bit integer result to the 32-bit integer z.
Refer to definition of mul24 to see how the 24-bit
integer multiplication is performed.

Last Revision Date: 11/14/12 Page 260

gentype mul24 (gentype x, gentype y) Multiply two 24-bit integer values x and y. x and y
are 32-bit integers but only the low 24-bits are used
to perform the multiplication. mul24 should only
be used when values in x and y are in the range [-
223, 223-1] if x and y are signed integers and in the
range [0, 224-1] if x and y are unsigned integers. If
x and y are not in this range, the multiplication
result is implementation-defined.

 Table 6.11 Fast Integer Built-in Functions

The macro names given in the following list must use the values specified. The values shall all
be constant expressions suitable for use in #if preprocessing directives.

#define CHAR_BIT 8
#define CHAR_MAX SCHAR_MAX
#define CHAR_MIN SCHAR_MIN
#define INT_MAX 2147483647
#define INT_MIN (-2147483647 – 1)
#define LONG_MAX 0x7fffffffffffffffL
#define LONG_MIN (-0x7fffffffffffffffL – 1)
#define SCHAR_MAX 127
#define SCHAR_MIN (-127 – 1)
#define SHRT_MAX 32767
#define SHRT_MIN (-32767 – 1)
#define UCHAR_MAX 255
#define USHRT_MAX 65535
#define UINT_MAX 0xffffffff
#define ULONG_MAX 0xffffffffffffffffUL

The following table describes the built-in macro names given above in the OpenCL C
programming language and the corresponding macro names available to the application.

Macro in OpenCL Language Macro for application
CHAR_BIT CL_CHAR_BIT

CHAR_MAX CL_CHAR_MAX
CHAR_MIN CL_CHAR_MIN
INT_MAX CL_INT_MAX
INT_MIN CL_INT_MIN

LONG_MAX CL_LONG_MAX
LONG_MIN CL_LONG_MIN

SCHAR_MAX CL_SCHAR_MAX
SCHAR_MIN CL_SCHAR_MIN
SHRT_MAX CL_SHRT_MAX
SHRT_MIN CL_SHRT_MIN

UCHAR_MAX CL_UCHAR_MAX

Last Revision Date: 11/14/12 Page 261

USHRT_MAX CL_USHRT_MAX
UINT_MAX CL_UINT_MAX

ULONG_MAX CL_ULONG_MAX

Last Revision Date: 11/14/12 Page 262

6.12.4 Common Functions52

Table 6.12 describes the list of built-in common functions. These all operate component-wise.
The description is per-component. We use the generic type name gentype to indicate that the
function can take float, float2, float3, float4, float8, float16,
double, double2, double3, double4, double8 or double16 as the type for
the arguments. We use the generic type name gentypef to indicate that the function can take
float, float2, float3, float4, float8, or float16 as the type for the
arguments. We use the generic type name gentyped to indicate that the function can take
double, double2, double3, double4, double8 or double16 as the type for
the arguments.

The built-in common functions are implemented using the round to nearest even rounding mode.

Function Description
gentype clamp (gentype x,
 gentype minval,
 gentype maxval)

gentypef clamp (gentypef x,
 float minval,
 float maxval)

gentyped clamp (gentyped x,
 double minval,
 double maxval)

Returns fmin(fmax(x, minval), maxval).

Results are undefined if minval > maxval.

gentype degrees (gentype radians) Converts radians to degrees, i.e. (180 / π) *
radians.

gentype max (gentype x, gentype y)

gentypef max (gentypef x, float y)

gentyped max (gentyped x, double y)

Returns y if x < y, otherwise it returns x. If x or y
are infinite or NaN, the return values are undefined.

gentype min (gentype x, gentype y)

gentypef min (gentypef x, float y)

gentyped min (gentyped x, double y)

Returns y if y < x, otherwise it returns x. If x or y
are infinite or NaN, the return values are undefined.

gentype mix (gentype x,
 gentype y, gentype a)

Returns the linear blend of x & y implemented as:

x + (y – x) * a

52 The mix and smoothstep functions can be implemented using contractions such as mad or fma.

Last Revision Date: 11/14/12 Page 263

gentypef mix (gentypef x,
 gentypef y, float a)

gentyped mix (gentyped x,
 gentyped y, double a)

a must be a value in the range 0.0 … 1.0. If a is not
in the range 0.0 … 1.0, the return values are
undefined.

gentype radians (gentype degrees) Converts degrees to radians, i.e. (π / 180) *
degrees.

gentype step (gentype edge, gentype x)

gentypef step (float edge, gentypef x)

gentyped step (double edge, gentyped x)

Returns 0.0 if x < edge, otherwise it returns 1.0.

gentype smoothstep (gentype edge0,
 gentype edge1,
 gentype x)

gentypef smoothstep (float edge0,
 float edge1,
 gentypef x)

gentyped smoothstep (double edge0,
 double edge1,
 gentyped x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
performs smooth Hermite interpolation between 0
and 1when edge0 < x < edge1. This is useful in
cases where you would want a threshold function
with a smooth transition.

This is equivalent to:
 gentype t;
 t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
 return t * t * (3 – 2 * t);

Results are undefined if edge0 >= edge1 or if x,
edge0 or edge1 is a NaN.

gentype sign (gentype x) Returns 1.0 if x > 0, -0.0 if x = -0.0, +0.0 if x =
+0.0, or –1.0 if x < 0. Returns 0.0 if x is a NaN.

Table 6.12 Scalar and Vector Argument Built-in Common Function Table

Last Revision Date: 11/14/12 Page 264

6.12.5 Geometric Functions53

Table 6.13 describes the list of built-in geometric functions. These all operate component-wise.
The description is per-component. floatn is float, float2, float3, or float4 and
doublen is double, double2, double3, or double4. The built-in geometric functions
are implemented using the round to nearest even rounding mode.

Function Description
float4 cross (float4 p0, float4 p1)

float3 cross (float3 p0, float3 p1)

double4 cross (double4 p0, double4 p1)

double3 cross (double3 p0, double3 p1)

Returns the cross product of p0.xyz and p1.xyz. The
w component of float4 result returned will be 0.0.

float dot (floatn p0, floatn p1)

double dot (doublen p0, doublen p1)

Compute dot product.

float distance (floatn p0, floatn p1)

double distance (doublen p0,
 doublen p1)

Returns the distance between p0 and p1. This is
calculated as length(p0 – p1).

float length (floatn p)

double length (doublen p)

Return the length of vector p, i.e.,
√ p.x2 + p.y 2 + …

floatn normalize (floatn p)

doublen normalize (doublen p)

Returns a vector in the same direction as p but with a
length of 1.

float fast_distance (floatn p0,
 floatn p1)

Returns fast_length(p0 – p1).

float fast_length (floatn p) Returns the length of vector p computed as:
half_sqrt(p.x2 + p.y2 + ….)

floatn fast_normalize (floatn p) Returns a vector in the same direction as p but with a
length of 1. fast_normalize is computed as:

 p * half_rsqrt (p.x2 + p.y2 + …)

The result shall be within 8192 ulps error from the
infinitely precise result of

53 The geometric functions can be implemented using contractions such as mad or fma.

Last Revision Date: 11/14/12 Page 265

 if (all(p == 0.0f))
 result = p;
 else
 result = p / sqrt (p.x2 + p.y2 + ...);

with the following exceptions:

1) If the sum of squares is greater than FLT_MAX
then the value of the floating-point values in the
result vector are undefined.

2) If the sum of squares is less than FLT_MIN then
the implementation may return back p.

3) If the device is in “denorms are flushed to zero”
mode, individual operand elements with magnitude
less than sqrt(FLT_MIN) may be flushed to zero
before proceeding with the calculation.

Table 6.13 Scalar and Vector Argument Built-in Geometric Function Table

Last Revision Date: 11/14/12 Page 266

6.12.6 Relational Functions

The relational and equality operators (<, <=, >, >=, !=, ==) can be used with scalar and vector
built-in types and produce a scalar or vector signed integer result respectively as described in
section 6.3.

The functions54 described in table 6.14 can be used with built-in scalar or vector types as
arguments and return a scalar or vector integer result. The argument type gentype refers to the
following built-in types: char, charn, uchar, ucharn, short, shortn,
ushort, ushortn, int, intn, uint, uintn, long, longn, ulong,
ulongn, float, floatn, double, and doublen. The argument type igentype
refers to the built-in signed integer types i.e. char, charn, short, shortn, int, intn,
long and longn. The argument type ugentype refers to the built-in unsigned integer types
i.e. uchar, ucharn, ushort, ushortn, uint, uintn, ulong and ulongn. n is 2, 3, 4,
8, or 16.

The functions isequal, isnotequal, isgreater, isgreaterequal, isless, islessequal, islessgreater,
isfinite, isinf, isnan, isnormal, isordered, isunordered and signbit described in table 6.14 shall
return a 0 if the specified relation is false and a 1 if the specified relation is true for scalar
argument types. These functions shall return a 0 if the specified relation is false and a –1 (i.e. all
bits set) if the specified relation is true for vector argument types.

The relational functions isequal, isgreater, isgreaterequal, isless, islessequal, and islessgreater
always return 0 if either argument is not a number (NaN). isnotequal returns 1 if one or both
arguments are not a number (NaN) and the argument type is a scalar and returns -1 if one or both
arguments are not a number (NaN) and the argument type is a vector.

Function Description
int isequal (float x, float y)
intn isequal (floatn x, floatn y)

int isequal (double x, double y)
longn isequal (doublen x, doublen y)

Returns the component-wise compare of x == y.

int isnotequal (float x, float y)
intn isnotequal (floatn x, floatn y)

int isnotequal (double x, double y)
longn isnotequal (doublen x, doublen y)

Returns the component-wise compare of x != y.

int isgreater (float x, float y) Returns the component-wise compare of x > y.

54 If an implementation extends this specification to support IEEE-754 flags or exceptions, then all builtin functions
defined in table 6.14 shall proceed without raising the invalid floating-point exception when one or more of the
operands are NaNs.

Last Revision Date: 11/14/12 Page 267

intn isgreater (floatn x, floatn y)

int isgreater (double x, double y)
longn isgreater (doublen x, doublen y)
int isgreaterequal (float x, float y)
intn isgreaterequal (floatn x, floatn y)

int isgreaterequal (double x,
 double y)
longn isgreaterequal (doublen x,
 doublen y)

Returns the component-wise compare of x >= y.

int isless (float x, float y)
intn isless (floatn x, floatn y)

int isless (double x, double y)
longn isless (doublen x, doublen y)

Returns the component-wise compare of x < y.

int islessequal (float x, float y)
intn islessequal (floatn x, floatn y)

int islessequal (double x, double y)
longn islessequal (doublen x, doublen y)

Returns the component-wise compare of x <= y.

int islessgreater (float x, float y)
intn islessgreater (floatn x, floatn y)

int islessgreater (double x, double y)
longn islessgreater (doublen x, doublen y)

Returns the component-wise compare of
(x < y) || (x > y) .

int isfinite (float)
intn isfinite (floatn)

int isfinite (double)
longn isfinite (doublen)

Test for finite value.

int isinf (float)
intn isinf (floatn)

int isinf (double)
longn isinf (doublen)

Test for infinity value (positive or negative) .

int isnan (float)
intn isnan (floatn)

int isnan (double)
longn isnan (doublen)

Test for a NaN.

int isnormal (float)
intn isnormal (floatn)

int isnormal (double)

Test for a normal value.

Last Revision Date: 11/14/12 Page 268

longn isnormal (doublen)
int isordered (float x, float y)
intn isordered (floatn x, floatn y)

int isordered (double x, double y)
longn isordered (doublen x, doublen y)

Test if arguments are ordered. isordered() takes
arguments x and y, and returns the result
isequal(x, x) && isequal(y, y).

int isunordered (float x, float y)
intn isunordered (floatn x, floatn y)

int isunordered (double x, double y)
longn isunordered (doublen x, doublen y)

Test if arguments are unordered. isunordered()
takes arguments x and y, returning non-zero if x or
y is NaN, and zero otherwise.

int signbit (float)
intn signbit (floatn)

int signbit (double)
longn signbit (doublen)

Test for sign bit. The scalar version of the
function returns a 1 if the sign bit in the float is set
else returns 0. The vector version of the function
returns the following for each component in floatn:
-1 (i.e all bits set) if the sign bit in the float is set
else returns 0.

int any (igentype x) Returns 1 if the most significant bit in any

component of x is set; otherwise returns 0.
int all (igentype x) Returns 1 if the most significant bit in all

components of x is set; otherwise returns 0.

gentype bitselect (gentype a,
 gentype b,
 gentype c)

Each bit of the result is the corresponding bit of a
if the corresponding bit of c is 0. Otherwise it is
the corresponding bit of b.

gentype select (gentype a,
 gentype b,
 igentype c)

gentype select (gentype a,
 gentype b,
 ugentype c)

For each component of a vector type,
result[i] = if MSB of c[i] is set ? b[i] : a[i].

For a scalar type, result = c ? b : a.

igentype and ugentype must have the same number
of elements and bits as gentype.

 Table 6.14 Scalar and Vector Relational Functions

Last Revision Date: 11/14/12 Page 269

6.12.7 Vector Data Load and Store Functions

Table 6.15 describes the list of supported functions that allow you to read and write vector types
from a pointer to memory. We use the generic type gentype to indicate the built-in data types
char, uchar, short, ushort, int, uint, long, ulong, float or
double. We use the generic type name gentypen to represent n-element vectors of
gentype elements. We use the type name halfn to represent n-element vectors of half
elements55. The suffix n is also used in the function names (i.e. vloadn, vstoren etc.), where n =
2, 3, 4, 8 or 16.

Function Description
gentypen vloadn (size_t offset,
 const __global gentype *p)

gentypen vloadn (size_t offset,
 const __local gentype *p)

gentypen vloadn (size_t offset,
 const __constant gentype *p)

gentypen vloadn (size_t offset,
 const __private gentype *p)

Return sizeof (gentypen) bytes of data read
from address (p + (offset * n)). The
address computed as (p + (offset * n)) must
be 8-bit aligned if gentype is char, uchar;
16-bit aligned if gentype is short, ushort;
32-bit aligned if gentype is int, uint, float;
64-bit aligned if gentype is long, ulong.

void vstoren (gentypen data,
 size_t offset, __global gentype *p)

void vstoren (gentypen data,
 size_t offset, __local gentype *p)

void vstoren (gentypen data,
 size_t offset, __private gentype *p)

Write sizeof (gentypen) bytes given by
data to address (p + (offset * n)). The
address computed as (p + (offset * n)) must
be 8-bit aligned if gentype is char, uchar;
16-bit aligned if gentype is short, ushort;
32-bit aligned if gentype is int, uint, float;
64-bit aligned if gentype is long, ulong.

float vload_half (size_t offset,
 const __global half *p)

float vload_half (size_t offset,
 const __local half *p)

float vload_half (size_t offset,

Read sizeof (half) bytes of data from
address (p + offset). The data read is
interpreted as a half value. The half value
is converted to a float value and the float
value is returned. The read address
computed as (p + offset) must be 16-bit
aligned.

55 The halfn type is only defined by the cl_khr_fp16 extension described in section 9.5 of the OpenCL 1.2
Extension Specification.

Last Revision Date: 11/14/12 Page 270

 const __constant half *p)

float vload_half (size_t offset,
 const __private half *p)

floatn vload_halfn (size_t offset,
 const __global half *p)

floatn vload_halfn (size_t offset,
 const __local half *p)

floatn vload_halfn (size_t offset,
 const __constant half *p)

floatn vload_halfn (size_t offset,
 const __private half *p)

Read sizeof (halfn) bytes of data from
address (p + (offset * n)). The data read is
interpreted as a halfn value. The halfn
value read is converted to a floatn value
and the floatn value is returned. The read
address computed as (p + (offset * n)) must
be 16-bit aligned.

void vstore_half (float data,
 size_t offset, __global half *p)
void vstore_half_rte (float data,
 size_t offset, __global half *p)
void vstore_half_rtz (float data,
 size_t offset, __global half *p)
void vstore_half_rtp (float data,
 size_t offset, __global half *p)
void vstore_half_rtn (float data,
 size_t offset, __global half *p)

void vstore_half (float data,
 size_t offset, __local half *p)
void vstore_half_rte (float data,
 size_t offset, __local half *p)
void vstore_half_rtz (float data,
 size_t offset, __local half *p)
void vstore_half_rtp (float data,
 size_t offset, __local half *p)
void vstore_half_rtn (float data,
 size_t offset, __local half *p)

void vstore_half (float data,
 size_t offset, __private half *p)
void vstore_half_rte (float data,
 size_t offset, __private half *p)
void vstore_half_rtz (float data,
 size_t offset, __private half *p)
void vstore_half_rtp (float data,

The float value given by data is first
converted to a half value using the
appropriate rounding mode. The half value
is then written to address computed as (p +
offset). The address computed as (p +
offset) must be 16-bit aligned.

vstore_half uses the default rounding
mode. The default rounding mode is round
to nearest even.

Last Revision Date: 11/14/12 Page 271

 size_t offset, __private half *p)
void vstore_half_rtn (float data,
 size_t offset, __private half *p)

void vstore_halfn (floatn data,
 size_t offset, __global half *p)
void vstore_halfn_rte (floatn data,
 size_t offset, __global half *p)
void vstore_halfn_rtz (floatn data,
 size_t offset, __global half *p)
void vstore_halfn_rtp (floatn data,
 size_t offset, __global half *p)
void vstore_halfn_rtn (floatn data,
 size_t offset, __global half *p)

void vstore_halfn (floatn data,
 size_t offset, __local half *p)
void vstore_halfn_rte (floatn data,
 size_t offset, __local half *p)
void vstore_halfn_rtz (floatn data,
 size_t offset, __local half *p)
void vstore_halfn_rtp (floatn data,
 size_t offset, __local half *p)
void vstore_halfn_rtn (floatn data,
 size_t offset, __local half *p)

void vstore_halfn (floatn data,
 size_t offset, __private half *p)
void vstore_halfn_rte (floatn data,
 size_t offset, __private half *p)
void vstore_halfn_rtz (floatn data,
 size_t offset, __private half *p)
void vstore_halfn_rtp (floatn data,
 size_t offset, __private half *p)
void vstore_halfn_rtn (floatn data,
 size_t offset, __private half *p)

The floatn value given by data is converted
to a halfn value using the appropriate
rounding mode. The halfn value is then
written to address computed as (p + (offset
* n)). The address computed as (p + (offset
* n)) must be 16-bit aligned.

vstore_halfn uses the default rounding
mode. The default rounding mode is round
to nearest even.

void vstore_half (double data,
 size_t offset, __global half *p)
void vstore_half_rte (double data,
 size_t offset, __global half *p)
void vstore_half_rtz (double data,
 size_t offset, __global half *p)
void vstore_half_rtp (double data,
 size_t offset, __global half *p)
void vstore_half_rtn (double data,

The double value given by data is first
converted to a half value using the
appropriate rounding mode. The half value
is then written to address computed as (p +
offset). The address computed as (p +
offset) must be16-bit aligned.

vstore_half use the default rounding mode.
The default rounding mode is round to

Last Revision Date: 11/14/12 Page 272

 size_t offset, __global half *p)

void vstore_half (double data,
 size_t offset, __local half *p)
void vstore_half_rte (double data,
 size_t offset, __local half *p)
void vstore_half_rtz (double data,
 size_t offset, __local half *p)
void vstore_half_rtp (double data,
 size_t offset, __local half *p)
void vstore_half_rtn (double data,
 size_t offset, __local half *p)

void vstore_half (double data,
 size_t offset, __private half *p)
void vstore_half_rte (double data,
 size_t offset, __private half *p)
void vstore_half_rtz (double data,
 size_t offset, __private half *p)
void vstore_half_rtp (double data,
 size_t offset, __private half *p)
void vstore_half_rtn (double data,
 size_t offset, __private half *p)

nearest even.

void vstore_halfn (doublen data,
 size_t offset, __global half *p)
void vstore_halfn_rte (doublen data,
 size_t offset, __global half *p)
void vstore_halfn_rtz (doublen data,
 size_t offset, __global half *p)
void vstore_halfn_rtp (doublen data,
 size_t offset, __global half *p)
void vstore_halfn_rtn (doublen data,
 size_t offset, __global half *p)

void vstore_halfn (doublen data,
 size_t offset, __local half *p)
void vstore_halfn_rte (doublen data,
 size_t offset, __local half *p)
void vstore_halfn_rtz (doublen data,
 size_t offset, __local half *p)
void vstore_halfn_rtp (doublen data,
 size_t offset, __local half *p)
void vstore_halfn_rtn (doublen data,
 size_t offset, __local half *p)

The doublen value given by data is
converted to a halfn value using the
appropriate rounding mode. The halfn
value is then written to address computed
as (p + (offset * n)). The address computed
as (p + (offset * n)) must be 16-bit aligned.

vstore_halfn uses the default rounding
mode. The default rounding mode is round
to nearest even.

Last Revision Date: 11/14/12 Page 273

void vstore_halfn (doublen data,
 size_t offset, __private half *p)
void vstore_halfn_rte (doublen data,
 size_t offset, __private half *p)
void vstore_halfn_rtz (doublen data,
 size_t offset, __private half *p)
void vstore_halfn_rtp (doublen data,
 size_t offset, __private half *p)
void vstore_halfn_rtn (doublen data,
 size_t offset, __private half *p)

floatn vloada_halfn (size_t offset,
 const __global half *p)

floatn vloada_halfn (size_t offset,
 const __local half *p)

floatn vloada_halfn (size_t offset,
 const __constant half *p)

floatn vloada_halfn (size_t offset,
 const __private half *p)

For n = 2, 4, 8 and 16 read sizeof (halfn)
bytes of data from address (p + (offset *
n)). The data read is interpreted as a halfn
value. The halfn value read is converted to
a floatn value and the floatn value is
returned.

The address computed as (p + (offset * n))
must be aligned to sizeof (halfn) bytes.

For n = 3, vloada_half3 reads a half3 from
address (p + (offset * 4)) and returns a
float3. The address computed as (p +
(offset * 4)) must be aligned to sizeof (half)
* 4 bytes.

void vstorea_halfn (floatn data,
 size_t offset, __global half *p)
void vstorea_halfn_rte (floatn data,
 size_t offset, __global half *p)
void vstorea_halfn_rtz (floatn data,
 size_t offset, __global half *p)
void vstorea_halfn_rtp (floatn data,
 size_t offset, __global half *p)
void vstorea_halfn_rtn (floatn data,
 size_t offset, __global half *p)

void vstorea_halfn (floatn data,
 size_t offset, __local half *p)
void vstorea_halfn_rte (floatn data,
 size_t offset, __local half *p)
void vstorea_halfn_rtz (floatn data,
 size_t offset, __local half *p)
void vstorea_halfn_rtp (floatn data,

The floatn value given by data is converted
to a halfn value using the appropriate
rounding mode.

For n = 2, 4, 8 and 16, the halfn value is
written to the address computed as (p +
(offset * n)). The address computed as (p +
(offset * n)) must be aligned to sizeof
(halfn) bytes.

For n = 3, the half3 value is written to the
address computed as (p + (offset * 4)). The
address computed as (p + (offset * 4)) must
be aligned to sizeof (half) * 4 bytes.

vstorea_halfn uses the default rounding
mode. The default rounding mode is round
to nearest even.

Last Revision Date: 11/14/12 Page 274

 size_t offset, __local half *p)
void vstorea_halfn_rtn (floatn data,
 size_t offset, __local half *p)

void vstorea_halfn (floatn data,
 size_t offset, __private half *p)
void vstorea_halfn_rte (floatn data,
 size_t offset, __private half *p)
void vstorea_halfn_rtz (floatn data,
 size_t offset, __private half *p)
void vstorea_halfn_rtp (floatn data,
 size_t offset, __private half *p)
void vstorea_halfn_rtn (floatn data,
 size_t offset, __private half *p)

void vstorea_halfn (doublen data,
 size_t offset, __global half *p)
void vstorea_halfn_rte (doublen data,
 size_t offset, __global half *p)
void vstorea_halfn_rtz (doublen data,
 size_t offset, __global half *p)
void vstorea_halfn_rtp (doublen data,
 size_t offset, __global half *p)
void vstorea_halfn_rtn (doublen data,
 size_t offset, __global half *p)

void vstorea_halfn (doublen data,
 size_t offset, __local half *p)
void vstorea_halfn_rte (doublen data,
 size_t offset, __local half *p)
void vstorea_halfn_rtz (doublen data,
 size_t offset, __local half *p)
void vstorea_halfn_rtp (doublen data,
 size_t offset, __local half *p)
void vstorea_halfn_rtn (doublen data,
 size_t offset, __local half *p)

void vstorea_halfn (doublen data,
 size_t offset, __private half *p)
void vstorea_halfn_rte (doublen data,
 size_t offset, __private half *p)
void vstorea_halfn_rtz (doublen data,
 size_t offset, __private half *p)
void vstorea_halfn_rtp (doublen data,
 size_t offset, __private half *p)
void vstorea_halfn_rtn (doublen data,

The doublen value is converted to a halfn
value using the appropriate rounding mode.

For n = 2, 4, 8 or 16, the halfn value is
written to the address computed as (p +
(offset * n)). The address computed as (p +
(offset * n)) must be aligned to sizeof
(halfn) bytes.

For n = 3, the half3 value is written to the
address computed as (p + (offset * 4)). The
address computed as (p + (offset * 4)) must
be aligned to sizeof (half) * 4 bytes.

vstorea_halfn uses the default rounding
mode. The default rounding mode is round
to nearest even.

Last Revision Date: 11/14/12 Page 275

 size_t offset, __private half *p)

 Table 6.15 Vector Data Load and Store Functions56

The results of vector data load and store functions are undefined if the address being read from
or written to is not correctly aligned as described in table 6.15. The pointer argument p can be a
pointer to __global, __local or __private memory for store functions described in
table 6.15. The pointer argument p can be a pointer to __global, __local, __constant
or __private memory for load functions described in table 6.15.

56 vload3, and vload_half3 read x, y, z components from address (p + (offset * 3)) into a 3-component vector.
vstore3, and vstore_half3 write x, y, z components from a 3-component vector to address (p + (offset * 3)).

In addition vloada_half3 reads x, y, z components from address (p + (offset * 4)) into a 3-component vector and
vstorea_half3 writes x, y, z components from a 3-component vector to address (p + (offset * 4)).

Last Revision Date: 11/14/12 Page 276

6.12.8 Synchronization Functions

The OpenCL C programming language implements the following synchronization function.

Function Description
void barrier (cl_mem_fence_flags flags) All work-items in a work-group executing the

kernel on a processor must execute this function
before any are allowed to continue execution
beyond the barrier. This function must be
encountered by all work-items in a work-group
executing the kernel.

If barrier is inside a conditional statement, then
all work-items must enter the conditional if any
work-item enters the conditional statement and
executes the barrier.

If barrier is inside a loop, all work-items must
execute the barrier for each iteration of the loop
before any are allowed to continue execution
beyond the barrier.

The barrier function also queues a memory fence
(reads and writes) to ensure correct ordering of
memory operations to local or global memory.

The flags argument specifies the memory address
space and can be set to a combination of the
following literal values.

CLK_LOCAL_MEM_FENCE - The barrier
function will either flush any variables stored in
local memory or queue a memory fence to ensure
correct ordering of memory operations to local
memory.

CLK_GLOBAL_MEM_FENCE – The barrier
function will queue a memory fence to ensure
correct ordering of memory operations to global
memory. This can be useful when work-items, for
example, write to buffer or image objects and
then want to read the updated data.

 Table 6.16 Built-in Synchronization Functions

Last Revision Date: 11/14/12 Page 277

6.12.9 Explicit Memory Fence Functions

The OpenCL C programming language implements the following explicit memory fence
functions to provide ordering between memory operations of a work-item.

Function Description
void mem_fence (cl_mem_fence_flags flags) Orders loads and stores of a work-item

executing a kernel. This means that
loads and stores preceding the
mem_fence will be committed to
memory before any loads and stores
following the mem_fence.

The flags argument specifies the
memory address space and can be set to
a combination of the following literal
values:

CLK_LOCAL_MEM_FENCE
CLK_GLOBAL_MEM_FENCE.

void read_mem_fence (cl_mem_fence_flags flags) Read memory barrier that orders only
loads.

The flags argument specifies the
memory address space and can be set to
to a combination of the following
literal values:

CLK_LOCAL_MEM_FENCE
CLK_GLOBAL_MEM_FENCE.

void write_mem_fence (cl_mem_fence_flags flags) Write memory barrier that orders only
stores.

The flags argument specifies the
memory address space and can be set to
to a combination of the following
literal values:

CLK_LOCAL_MEM_FENCE
CLK_GLOBAL_MEM_FENCE.

 Table 6.17 Built-in Explicit Memory Fence Functions

Last Revision Date: 11/14/12 Page 278

6.12.10 Async Copies from Global to Local Memory, Local
to Global Memory, and Prefetch

The OpenCL C programming language implements the following functions that provide
asynchronous copies between global and local memory and a prefetch from global memory.

We use the generic type name gentype to indicate the built-in data types char,
char{2|357|4|8|16}, uchar, uchar{2|3|4|8|16}, short,
short{2|3|4|8|16}, ushort, ushort{2|3|4|8|16}, int,
int{2|3|4|8|16}, uint, uint{2|3|4|8|16}, long, long{2|3|4|8|16},
ulong, ulong{2|3|4|8|16}, float, float{2|3|4|8|16}, or double,
double{2|3|4|8|16} as the type for the arguments unless otherwise stated.

Function Description
event_t async_work_group_copy (
 __local gentype *dst,
 const __global gentype *src,
 size_t num_gentypes,
 event_t event)

event_t async_work_group_copy (
 __global gentype *dst,
 const __local gentype *src,
 size_t num_gentypes,
 event_t event)

Perform an async copy of num_gentypes
gentype elements from src to dst. The
async copy is performed by all work-items
in a work-group and this built-in function
must therefore be encountered by all work-
items in a work-group executing the kernel
with the same argument values; otherwise
the results are undefined.

Returns an event object that can be used by
wait_group_events to wait for the async
copy to finish. The event argument can
also be used to associate the
async_work_group_copy with a previous
async copy allowing an event to be shared
by multiple async copies; otherwise event
should be zero.

If event argument is non-zero, the event
object supplied in event argument will be
returned.

This function does not perform any
implicit synchronization of source data
such as using a barrier before performing
the copy.

57 async_work_group_copy and async_work_group_strided_copy for 3-component vector types behave as
async_work_group_copy and async_work_group_strided_copy respectively for 4-component vector types.

Last Revision Date: 11/14/12 Page 279

event_t async_work_group_strided_copy (
 __local gentype *dst,
 const __global gentype *src,
 size_t num_gentypes,
 size_t src_stride,
 event_t event)

event_t async_work_group_strided_copy (
 __global gentype *dst,
 const __local gentype *src,
 size_t num_gentypes,
 size_t dst_stride,
 event_t event)

Perform an async gather of num_gentypes
gentype elements from src to dst. The
src_stride is the stride in elements for each
gentype element read from src. The
dst_stride is the stride in elements for each
gentype element written to dst. The async
gather is performed by all work-items in a
work-group. This built-in function must
therefore be encountered by all work-items
in a work-group executing the kernel with
the same argument values; otherwise the
results are undefined.

Returns an event object that can be used by
wait_group_events to wait for the async
copy to finish. The event argument can
also be used to associate the
async_work_group_strided_copy with a
previous async copy allowing an event to
be shared by multiple async copies;
otherwise event should be zero.

If event argument is non-zero, the event
object supplied in event argument will be
returned.

This function does not perform any
implicit synchronization of source data
such as using a barrier before performing
the copy.

The behavior of
async_work_group_strided_copy is
undefined if src_stride or dst_stride is 0, or
if the src_stride or dst_stride values cause
the src or dst pointers to exceed the upper
bounds of the address space during the
copy.

void wait_group_events (int num_events,
 event_t *event_list)

Wait for events that identify the
async_work_group_copy operations to
complete. The event objects specified in
event_list will be released after the wait is
performed.

This function must be encountered by all

Last Revision Date: 11/14/12 Page 280

work-items in a work-group executing the
kernel with the same num_events and event
objects specified in event_list; otherwise
the results are undefined.

void prefetch (const __global gentype *p,
 size_t num_gentypes)

Prefetch num_gentypes *
sizeof(gentype) bytes into the global
cache. The prefetch instruction is applied
to a work-item in a work-group and does
not affect the functional behavior of the
kernel.

 Table 6.18 Built-in Async Copy and Prefetch Functions

NOTE: The kernel must wait for the completion of all async copies using the
wait_group_events built-in function before exiting; otherwise the behavior is undefined.

Last Revision Date: 11/14/12 Page 281

6.12.11 Atomic Functions

The OpenCL C programming language implements the following functions that provide atomic
operations on 32-bit signed, unsigned integers and single precision floating-point58 to locations
in __global or __local memory.

Function Description
int atomic_add (volatile __global int *p, int val)
unsigned int atomic_add (
 volatile __global unsigned int *p,
 unsigned int val)

int atomic_add (volatile __local int *p, int val)
unsigned int atomic_add (
 volatile __local unsigned int *p,
 unsigned int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute (old + val) and store result at
location pointed by p. The function
returns old.

int atomic_sub (volatile __global int *p, int val)
unsigned int atomic_sub (
 volatile __global unsigned int *p,
 unsigned int val)

int atomic_sub (volatile __local int *p, int val)
unsigned int atomic_sub (
 volatile __local unsigned int *p,
 unsigned int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute (old - val) and store result at
location pointed by p. The function
returns old.

int atomic_xchg (volatile __global int *p, int val)
unsigned int atomic_xchg (
 volatile __global unsigned int *p,
 unsigned int val)
float atomic_xchg (volatile __global float *p,
 float val)

int atomic_xchg (volatile __local int *p, int val)
unsigned int atomic_xchg (
 volatile __local unsigned int *p,
 unsigned int val)
float atomic_xchg (volatile __local float *p,
 float val)

Swaps the old value stored at location p
with new value given by val. Returns
old value.

int atomic_inc (volatile __global int *p) Read the 32-bit value (referred to as

58 Only the atomic_xchg operation is supported for single precision floating-point data type.

Last Revision Date: 11/14/12 Page 282

unsigned int atomic_inc (
 volatile __global unsigned int *p)

int atomic_inc (volatile __local int *p)
unsigned int atomic_inc (
 volatile __local unsigned int *p)

old) stored at location pointed by p.
Compute (old + 1) and store result at
location pointed by p. The function
returns old.

int atomic_dec (volatile __global int *p)
unsigned int atomic_dec (
 volatile __global unsigned int *p)

int atomic_dec (volatile __local int *p)
unsigned int atomic_dec (
 volatile __local unsigned int *p)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute (old - 1) and store result at
location pointed by p. The function
returns old.

int atomic_cmpxchg (volatile __global int *p,
 int cmp, int val)
unsigned int atomic_cmpxchg (
 volatile __global unsigned int *p,
 unsigned int cmp,
 unsigned int val)

int atomic_cmpxchg (volatile __local int *p,
 int cmp,
 int val)
unsigned int atomic_cmpxchg (
 volatile __local unsigned int *p,
 unsigned int cmp,
 unsigned int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute (old == cmp) ? val : old and
store result at location pointed by p.
The function returns old.

int atomic_min (volatile __global int *p, int val)
unsigned int atomic_min (
 volatile __global unsigned int *p,
 unsigned int val)

int atomic_min (volatile __local int *p, int val)
unsigned int atomic_min (
 volatile __local unsigned int *p,
 unsigned int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute min(old, val) and store
minimum value at location pointed by
p. The function returns old.

int atomic_max (volatile __global int *p, int val)
unsigned int atomic_max (
 volatile __global unsigned int *p,
 unsigned int val)

int atomic_max (volatile __local int *p, int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute max(old, val) and store
maximum value at location pointed by
p. The function returns old.

Last Revision Date: 11/14/12 Page 283

unsigned int atomic_max (
 volatile __local unsigned int *p,
 unsigned int val)

int atomic_and (volatile __global int *p, int val)
unsigned int atomic_and (volatile __global unsigned
int *p,
 unsigned int val)

int atomic_and (volatile __local int *p, int val)
unsigned int atomic_and (
 volatile __local unsigned int *p,
 unsigned int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute (old & val) and store result at
location pointed by p. The function
returns old.

int atomic_or (volatile __global int *p, int val)
unsigned int atomic_or (
 volatile __global unsigned int *p,
 unsigned int val)

int atomic_or (volatile __local int *p, int val)
unsigned int atomic_or (
 volatile __local unsigned int *p,
 unsigned int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute (old | val) and store result at
location pointed by p. The function
returns old.

int atomic_xor (volatile __global int *p, int val)
unsigned int atomic_xor (
 volatile __global unsigned int *p,
 unsigned int val)

int atomic_xor (volatile __local int *p, int val)
unsigned int atomic_xor (
 volatile __local unsigned int *p,
 unsigned int val)

Read the 32-bit value (referred to as
old) stored at location pointed by p.
Compute (old ^ val) and store result at
location pointed by p. The function
returns old.

 Table 6.19 Built-in Atomic Functions

NOTE: The atomic built-in functions that use the atom_ prefix and are described by the
following extensions

 cl_khr_global_int32_base_atomics
 cl_khr_global_int32_extended_atomics
 cl_khr_local_int32_base_atomics
 cl_khr_local_int32_extended_atomics

in sections 9.5 and 9.6 of the OpenCL 1.0 specification are also supported.

Last Revision Date: 11/14/12 Page 284

6.12.12 Miscellaneous Vector Functions

The OpenCL C programming language implements the following additional built-in vector
functions. We use the generic type name gentypen (or gentypem) to indicate the built-in
data types char{2|4|8|16}, uchar{2|4|8|16}, short{2|4|8|16},
ushort{2|4|8|16}, half{2|4|8|16}59, int{2|4|8|16},
uint{2|4|8|16}, long{2|4|8|16}, ulong{2|4|8|16}, float{2|4|8|16}
or double{2|4|8|16}60 as the type for the arguments unless otherwise stated. We use the
generic name ugentypen to indicate the built-in unsigned integer data types.

Function Description
int vec_step (gentypen a)

int vec_step (char3 a)
int vec_step (uchar3 a)
int vec_step (short3 a)
int vec_step (ushort3 a)
int vec_step (half3 a)
int vec_step (int3 a)
int vec_step (uint3 a)
int vec_step (long3 a)
int vec_step (ulong3 a)
int vec_step (float3 a)
int vec_step(double3 a)

int vec_step(type)

The vec_step built-in function takes a built-in
scalar or vector data type argument and returns an
integer value representing the number of elements
in the scalar or vector.

For all scalar types, vec_step returns 1.

The vec_step built-in functions that take a 3-
component vector return 4.

vec_step may also take a pure type as an
argument, e.g. vec_step(float2)

gentypen shuffle (gentypem x,
 ugentypen mask)

gentypen shuffle2 (gentypem x,
 gentypem y,
 ugentypen mask)

The shuffle and shuffle2 built-in functions
construct a permutation of elements from one or
two input vectors respectively that are of the same
type, returning a vector with the same element
type as the input and length that is the same as the
shuffle mask. The size of each element in the mask
must match the size of each element in the result.
For shuffle, only the ilogb(2m-1) least significant
bits of each mask element are considered. For
shuffle2, only the ilogb(2m-1)+1 least significant
bits of each mask element are considered. Other
bits in the mask shall be ignored.

The elements of the input vectors are numbered
from left to right across one or both of the vectors.

59 Only if the cl_khr_fp16 extension is supported.
60 Only if double precision is supported.

Last Revision Date: 11/14/12 Page 285

For this purpose, the number of elements in a
vector is given by vec_step(gentypem). The
shuffle mask operand specifies, for each element
of the result vector, which element of the one or
two input vectors the result element gets.

Examples:

 uint4 mask = (uint4)(3, 2,
 1, 0);
 float4 a;
 float4 r = shuffle(a, mask);
 // r.s0123 = a.wzyx

 uint8 mask = (uint8)
 (0, 1, 2, 3,
 4, 5, 6, 7);
 float4 a, b;
 float8 r = shuffle2(a, b, mask);
 // r.s0123 = a.xyzw
 // r.s4567 = b.xyzw

 uint4 mask;
 float8 a;
 float4 b;
 b = shuffle(a, mask);

Examples that are not valid are:

 uint8 mask;
 short16 a;
 short8 b;
 b = shuffle(a, mask); ß not valid

 Table 6.20 Built-in Miscellaneous Vector Functions

Last Revision Date: 11/14/12 Page 286

6.12.13 printf

The OpenCL C programming language implements the printf function.

Function Description
int printf(constant char * restrict format, …)

The printf built-in function writes output to an
implementation-defined stream such as stdout
under control of the string pointed to by format
that specifies how subsequent arguments are
converted for output. If there are insufficient
arguments for the format, the behavior is
undefined. If the format is exhausted while
arguments remain, the excess arguments are
evaluated (as always) but are otherwise
ignored. The printf function returns when the
end of the format string is encountered.

printf returns 0 if it was executed successfully
and -1 otherwise.

 Table 6.21 Built-in printf Function

6.12.13.1 printf output synchronization

When the event that is associated with a particular kernel invocation is completed, the output of
all printf() calls executed by this kernel invocation is flushed to the implementation-defined
output stream. Calling clFinish on a command queue flushes all pending output by printf in
previously enqueued and completed commands to the implementation-defined output stream. In
the case that printf is executed from multiple work-items concurrently, there is no guarantee of
ordering with respect to written data. For example, it is valid for the output of a work-item with a
global id (0,0,1) to appear intermixed with the output of a work-item with a global id (0,0,4) and
so on.

6.12.13.2 printf format string

The format shall be a character sequence, beginning and ending in its initial shift state. The
format is composed of zero or more directives: ordinary characters (not %), which are copied
unchanged to the output stream; and conversion specifications, each of which results in fetching
zero or more subsequent arguments, converting them, if applicable, according to the
corresponding conversion specifier, and then writing the result to the output stream. As format is
in the constant address space it must be resolvable at compile time and thus cannot be
dynamically created by the executing program, itself.

Last Revision Date: 11/14/12 Page 287

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

 Zero or more flags (in any order) that modify the meaning of the
conversion specification.

 An optional minimum field width. If the converted value has fewer characters than
the field width, it is padded with spaces (by default) on the left (or right, if the
left adjustment flag, described later, has been given) to the field width. The field
width takes the form of a nonnegative decimal integer.61)

 An optional precision that gives the minimum number of digits to appear for

the d, i, o, u, x, and X conversions, the number of digits to appear after the decimal-
point character for a, A, e, E, f, and F conversions, the maximum number of
significant digits for the g and G conversions, or the maximum number of bytes to be
written for s conversions. The precision takes the form of a period (.) followed by an
optional decimal integer; if only the period is specified, the precision is taken as zero. If a
precision appears with any other conversion specifier, the behavior is undefined.

 An optional vector specifier.

 A length modifier that specifies the size of the argument. The length modifier is required

with a vector specifier and together specifies the vector type. Implicit conversions
between vector types are disallowed (as per section 6.2.1). If the vector specifier is not
specified, the length modifier is optional.

 A conversion specifier character that specifies the type of conversion to be applied.

The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if this

flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with

a sign only when a negative value is converted if this flag is not specified.)62)

space If the first character of a signed conversion is not a sign, or if a signed conversion results

in no characters, a space is prefixed to the result. If the space and + flags both appear,
the space flag is ignored.

The result is converted to an ‘‘alternative form’’. For o conversion, it increases the

precision, if and only if necessary, to force the first digit of the result to be a zero (if the
value and precision are both 0, a single 0 is printed). For x (or X) conversion, a nonzero

61 Note that 0 is taken as a flag, not as the beginning of a field width.
62 The results of all floating conversions of a negative zero, and of negative values that round to zero, include a
minus sign.

Last Revision Date: 11/14/12 Page 288

result has 0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result of
converting a floating-point number always contains a decimal-point character, even if no
digits follow it. (Normally, a decimal-point character appears in the result of these
conversions only if a digit follows it.) For g and G conversions, trailing zeros
are not removed from the result. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any

indication of sign or base) are used to pad to the field width rather than performing space
padding, except when converting an infinity or NaN. If the 0 and - flags both appear,
the 0 flag is ignored. For d, i, o, u, x, and X conversions, if a precision is specified,
the 0 flag is ignored. For other conversions, the behavior is undefined.

The vector specifier and its meaning is:

vn Specifies that a following a, A, e, E, f, F, g, G, d, i, o, u, x, or X conversion specifier

applies to a vector argument, where n is the size of the vector and must be 2, 3, 4, 8 or 16.

The vector value is displayed in the following general form:

 value1 C value2 C …. C valuen

where C is a separator character. The value for this separator character is a comma.

If the vector specifier is not used, the length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to

a char or uchar argument (the argument will have been promoted according to the
integer promotions, but its value shall be converted to char or uchar before printing).

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to
 a short or ushort argument (the argument will have been promoted according to the

integer promotions, but its value shall be converted to short or unsigned short before
printing).

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to

a long or ulong argument. The l modifier is supported by the full profile. For the
embedded profile, the l modifier is supported only if 64-bit integers are supported by the
device.

If the vector specifier is used, the length modifiers and their meanings are:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to

a charn or ucharn argument (the argument will not be promoted).

h Specifies that a following d, i, o, u, x, or X conversion specifier applies to
 a shortn or ushortn argument (the argument will not be promoted); that

Last Revision Date: 11/14/12 Page 289

 a following a, A, e, E, f, F, g, or G conversion specifier applies to a halfn63 argument.

hl This modifier can only be used with the vector specifier. Specifies that a
 following d, i, o, u, x, or X conversion specifier applies to a intn or uintn argument; that
 a following a, A, e, E, f, F, g, or G conversion specifier applies to a floatn argument.

l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to

a longn or ulongn argument; that a following a, A, e, E, f, F, g, or G conversion specifier
applies to a doublen argument. The l modifier is supported by the full profile. For the
embedded profile, the l modifier is supported only if 64-bit integers or double-precision
floating-point are supported by the device.

If a vector specifier appears without a length modifier, the behavior is undefined. The vector
data type described by the vector specifier and length modifier must match the data type of the
argument; otherwise the behavior is undefined.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d,i The int, charn, shortn, intn or longn argument is converted to signed decimal in the

style [−]dddd. The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it is expanded with leading
zeros. The default precision is 1. The result of converting a zero value with a precision of
zero is no characters.

o,u,
x,X The unsigned int, ucharn, ushortn, uintn or ulongn argument is converted to unsigned

octal (o), unsigned decimal (u), or unsigned hexadecimal notation (x or X) in the
style dddd; the letters abcdef are used for x conversion and the
letters ABCDEF for X conversion. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no characters.

f,F A double, halfn, floatn or doublen argument representing a floating-point number is

converted to decimal notation in the style [−]ddd.ddd, where the number of digits
after the decimal-point character is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is zero and the # flag is not specified, no
decimal-point character appears. If a decimal-point character appears, at least one digit
appears before it. The value is rounded to the appropriate number of digits. A double,
halfn, floatn or doublen argument representing an infinity is converted in one of the
styles [-]inf or [-]infinity — which style is implementation-defined. A double, halfn,

63 Only if the cl_khr_fp16 extension is supported.

Last Revision Date: 11/14/12 Page 290

floatn or doublen argument representing a NaN is converted in one of the styles [-
]nan or [-]nan(n-char-sequence) — which style, and the meaning of any n-char-
sequence, is implementation-defined. The F conversion
specifier produces INF, INFINITY, or NAN instead of inf, infinity,
or nan, respectively.64)

e,E A double, halfn, floatn or doublen argument representing a floating-point number is

converted in the style [−]d.ddd e±dd, where there is one digit (which is nonzero if
the argument is nonzero) before the decimal-point character and the number of digits
after it is equal to the precision; if the precision is missing, it is taken as 6; if the precision
is zero and the # flag is not specified, no decimal-point character appears. The value is
rounded to the appropriate number of digits. The E conversion specifier produces a
number with E instead of e introducing the exponent. The exponent always contains at
least two digits, and only as many more digits as necessary to represent the exponent. If
the value is zero, the exponent is zero. A double, halfn, floatn or doublen argument
representing an infinity or NaN is converted in the style of an f or F conversion specifier.

g,G A double, halfn, floatn or doublen argument representing a floating-point number is

converted in style f or e (or in style F or E in the case of a G conversion
specifier), depending on the value converted and the precision. Let P equal the precision
if nonzero, 6 if the precision is omitted, or 1 if the precision is zero. Then, if a
conversion with style E would have an exponent of X: — if P > X ≥ −4, the conversion is
with style f (or F) and precision P − (X + 1). — otherwise, the conversion is with
style e (or E) and precision P − 1. Finally, unless the # flag is used, any trailing zeros are
removed from the fractional portion of the result and the decimal-point character is
removed if there is no fractional portion remaining. A double, halfn, floatn or doublen
e argument representing an infinity or NaN is converted in the style of
an f or F conversion specifier.

a,A A double, halfn, floatn or doublen argument representing a floating-point number is

converted in the style [−]0xh.hhhh p±d, where there is one hexadecimal digit (which
is nonzero if the argument is a normalized floating-point number and is otherwise
unspecified) before the decimal-point character65) and the number of hexadecimal digits
after it is equal to the precision; if the precision is missing, then the precision is sufficient
for an exact representation of the value; if the precision is zero and the # flag is not
specified, no decimal point character appears. The letters abcdef are used
for a conversion and the letters ABCDEF for A conversion. The A conversion specifier
produces a number with X and P instead of x and p. The exponent always contains
at least one digit, and only as many more digits as necessary to represent the decimal
exponent of 2. If the value is zero, the exponent is zero. A double, halfn, floatn or
doublen argument representing an infinity or NaN is converted in the style of
an f or F conversion specifier.

64 When applied to infinite and NaN values, the -, +, and space flag characters have their usual
meaning; the # and 0 flag characters have no effect.
65 Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so that
subsequent digits align to nibble (4-bit) boundaries.

Last Revision Date: 11/14/12 Page 291

NOTE: The conversion specifiers e,E,g,G,a,A convert a float or half argument that is a scalar
type to a double only if the double data type is supported. If the double data type is not
supported, the argument will be a float instead of a double and the half type will be converted to
a float.

c The int argument is converted to an unsigned char, and the resulting character is

written.

s The argument shall be a literal string.66 Characters from the literal string array are written

up to (but not including) the terminating null character. If the precision is specified, no
more than that many bytes are written. If the precision is not specified or is greater than
the size of the array, the array shall contain a null character.

p The argument shall be a pointer to void. The pointer can refer to a memory region in the

global, constant, local or private address space. The value of the pointer is
converted to a sequence of printing characters in an implementation-defined manner.

% A % character is written. No argument is converted. The complete conversion

specification shall be %%.

If a conversion specification is invalid, the behavior is undefined. If any argument is not the
correct type for the corresponding conversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

For a and A conversions, the value is correctly rounded to a hexadecimal floating number with
the given precision.

A few examples of printf are given below:

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
uchar4 uc = (uchar4)(0xFA, 0xFB, 0xFC, 0xFD);

printf("f4 = %2.2v4hlf\n", f);
printf("uc = %#v4hhx\n", uc);

The above two printf calls print the following:

f4 = 1.00,2.00,3.00,4.00
uc = 0xfa,0xfb,0xfc,0xfd

66 No special provisions are made for multibyte characters. The behavior of printf with the s conversion specifier
is undefined if the argument value is not a pointer to a literal string.

Last Revision Date: 11/14/12 Page 292

A few examples of valid use cases of printf for the conversion specifier s are given below. The
argument value must be a pointer to a literal string.

kernel void my_kernel(…)
{

printf(“%s\n”, “this is a test string\n”);
 }

A few examples of invalid use cases of printf for the conversion specifier s are given below:

kernel void my_kernel(global char *s, …)
{

printf(“%s\n”, s);

constant char *p = “this is a test string\n”;
printf(“%s\n”, p);
printf(“%s\n”, &p[3]);

}

A few examples of invalid use cases of printf where data types given by the vector specifier and
length modifier do not match the argument type are given below:

kernel void my_kernel(global char *s, …)
{

uint2 ui = (uint2)(0x12345678, 0x87654321);
printf("unsigned short value = (%#v2hx)\n", ui)
printf("unsigned char value = (%#v2hhx)\n", ui)

 }

6.12.13.3 Differences between OpenCL C and C99 printf

 The l modifier followed by a c conversion specifier or s conversion specifier is not
supported by OpenCL C.

 The ll, j, z, t, and L length modifiers are not supported by OpenCL C but are reserved.

 The n conversion specifier is not supported by OpenCL C but is reserved.

 OpenCL C adds the optional vn vector specifier to support printing of vector types.

 The conversion specifiers f, F, e, E, g, G, a, A convert a float argument to a double only
if the double data type is supported. Refer to the description of
CL_DEVICE_DOUBLE_FP_CONFIG in table 4.3. If the double data type is not supported,
the argument will be a float instead of a double.

 For the embedded profile, the l length modifier is supported only if 64-bit integers are

Last Revision Date: 11/14/12 Page 293

supported.

 In OpenCL C, printf returns 0 if it was executed successfully and -1 otherwise vs. C99
where printf returns the number of characters printed or a negative value if an output or
encoding error occurred.

 In OpenCL C, the conversion specifier s can only be used for arguments that are literal

strings.

Last Revision Date: 11/14/12 Page 294

6.12.14 Image Read and Write Functions

The built-in functions defined in this section can only be used with image memory objects. An
image memory object can be accessed by specific function calls that read from and/or write to
specific locations in the image.

Image memory objects that are being read by a kernel should be declared with the
__read_only qualifier. write_image calls to image memory objects declared with the
__read_only qualifier will generate a compilation error. Image memory objects that are
being written to by a kernel should be declared with the __write_only qualifier.
read_image calls to image memory objects declared with the __write_only qualifier will
generate a compilation error. read_image and write_image calls to the same image memory
object in a kernel are not supported.

The read_image calls returns a four component floating-point, integer or unsigned integer color
value. The color values returned by read_image are identified as x, y, z, w where x refers to
the red component, y refers to the green component, z refers to the blue component and w refers
to the alpha component.

6.12.14.1 Samplers

The image read functions take a sampler argument. The sampler can be passed as an argument
to the kernel using clSetKernelArg, or can be declared in the outermost scope of kernel
functions, or it can be a constant variable of type sampler_t declared in the program source.

Sampler variables in a program are declared to be of type sampler_t. A variable of
sampler_t type declared in the program source must be initialized with a 32-bit unsigned
integer constant, which is interpreted as a bit-field specifiying the following properties:

 Addressing Mode
 Filter Mode
 Normalized Coordinates

These properties control how elements of an image object are read by read_image{f|i|ui}.

Samplers can also be declared as global constants in the program source using the following
syntax.

const sampler_t <sampler name> = <value>
 or
 constant sampler_t <sampler name> = <value>
 or
 __constant sampler_t <sampler_name> = <value>

Last Revision Date: 11/14/12 Page 295

Note that samplers declared using the constant qualifier are not counted towards the
maximum number of arguments pointing to the constant address space or the maximum size of
the constant address space allowed per device (i.e. CL_DEVICE_MAX_CONSTANT_ARGS and
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE as described in table 4.3).

The sampler fields are described in table 6.22.

Sampler State Description
<normalized coords> Specifies whether the x, y and z coordinates are passed in

as normalized or unnormalized values. This must be a
literal value and can be one of the following predefined
enums:

CLK_NORMALIZED_COORDS_TRUE or
CLK_NORMALIZED_COORDS_FALSE.

The samplers used with an image in multiple calls to
read_image{f|i|ui} declared in a kernel must use the
same value for <normalized coords>.

<addressing mode> Specifies the image addressing-mode i.e. how out-of-
range image coordinates are handled. This must be a
literal value and can be one of the following predefined
enums:

CLK_ADDRESS_MIRRORED_REPEAT - Flip the image
coordinate at every integer junction. This addressing
mode can only be used with normalized coordinates. If
normalized coordinates are not used, this addressing
mode may generate image coordinates that are
undefined.

CLK_ADDRESS_REPEAT – out-of-range image
coordinates are wrapped to the valid range. This
addressing mode can only be used with
normalized coordinates. If normalized coordinates are
not used, this addressing mode may generate image
coordinates that are undefined.

CLK_ADDRESS_CLAMP_TO_EDGE – out-of-range
image coordinates are clamped to the extent.

CLK_ADDRESS_CLAMP67 – out-of-range image
coordinates will return a border color.

67 This is similar to the GL_ADDRESS_CLAMP_TO_BORDER addressing mode.

Last Revision Date: 11/14/12 Page 296

CLK_ADDRESS_NONE – for this addressing mode the
programmer guarantees that the image coordinates used
to sample elements of the image refer to a location inside
the image; otherwise the results are undefined.

For 1D and 2D image arrays, the addressing mode
applies only to the x and (x, y) coordinates. The
addressing mode for the coordinate which specifies the
array index is always
CLK_ADDRESS_CLAMP_TO_EDGE.

<filter mode> Specifies the filter mode to use. This must be a literal
value and can be one of the following predefined enums:
CLK_FILTER_NEAREST or CLK_FILTER_LINEAR.

Refer to section 8.2 for a description of these filter
modes.

 Table 6.22 Sampler Descriptor

Examples:

const sampler_t samplerA = CLK_NORMALIZED_COORDS_TRUE |
 CLK_ADDRESS_REPEAT |

 CLK_FILTER_NEAREST;

samplerA specifies a sampler that uses normalized coordinates, the repeat addressing mode and
a nearest filter.

The maximum number of samplers that can be declared in a kernel can be queried using the
CL_DEVICE_MAX_SAMPLERS token in clGetDeviceInfo.

6.12.14.1.1 Determining the border color

If <addressing mode> in sampler is CLK_ADDRESS_CLAMP, then out-of-range image
coordinates return the border color. The border color selected depends on the image channel
order and can be one of the following values:

 If the image channel order is CL_A, CL_INTENSITY, CL_Rx, CL_RA, CL_RGx,
CL_RGBx, CL_ARGB, CL_BGRA, or CL_RGBA, the border color is (0.0f, 0.0f,
0.0f, 0.0f).

 If the image channel order is CL_R, CL_RG, CL_RGB, or CL_LUMINANCE, the border
color is (0.0f, 0.0f, 0.0f, 1.0f).

Last Revision Date: 11/14/12 Page 297

6.12.14.2 Built-in Image Read Functions

The following built-in function calls to read images with a sampler68 are supported.

Function Description
float4 read_imagef (image2d_t image,
 sampler_t sampler,
 int2 coord)

float4 read_imagef (image2d_t image,
 sampler_t sampler,
 float2 coord)

Use the coordinate (coord.x, coord.y) to do an
element lookup in the 2D image object specified by
image.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

The read_imagef calls that take integer coordinates
must use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set
to CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image2d_t image,
 sampler_t sampler,
 int2 coord)

int4 read_imagei (image2d_t image,

Use the coordinate (coord.x, coord.y) to do an
element lookup in the 2D image object specified by
image.

read_imagei and read_imageui return

68 The built-in function calls to read images with a sampler are not supported for
image1d_buffer_t image types.

Last Revision Date: 11/14/12 Page 298

 sampler_t sampler,
 float2 coord)

uint4 read_imageui (
 image2d_t image,
 sampler_t sampler,
 int2 coord)

uint4 read_imageui (
 image2d_t image,
 sampler_t sampler,
 float2 coord)

unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

The read_image{i|ui} calls support a nearest filter
only. The filter_mode specified in sampler
must be set to CLK_FILTER_NEAREST; otherwise
the values returned are undefined.

Furthermore, the read_image{i|ui} calls that take
integer coordinates must use a sampler with
normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

float4 read_imagef (image3d_t image,
 sampler_t sampler,
 int4 coord)

float4 read_imagef (image3d_t image,
 sampler_t sampler,
 float4 coord)

Use the coordinate (coord.x, coord.y, coord.z) to do
an element lookup in the 3D image object specified
by image. coord.w is ignored.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or

Last Revision Date: 11/14/12 Page 299

 CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

The read_imagef calls that take integer coordinates
must use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set
to CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description are undefined.

int4 read_imagei (image3d_t image,
 sampler_t sampler,
 int4 coord)

int4 read_imagei (image3d_t image,
 sampler_t sampler,
 float4 coord)

uint4 read_imageui (
 image3d_t image,
 sampler_t sampler,
 int4 coord)

uint4 read_imageui (
 image3d_t image,
 sampler_t sampler,
 float4 coord)

Use the coordinate (coord.x, coord.y, coord.z) to do
an element lookup in the 3D image object specified
by image. coord.w is ignored.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:

Last Revision Date: 11/14/12 Page 300

CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

The read_image{i|ui} calls support a nearest filter
only. The filter_mode specified in sampler
must be set to CLK_FILTER_NEAREST; otherwise
the values returned are undefined.

Furthermore, the read_image{i|ui} calls that take
integer coordinates must use a sampler with
normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

float4 read_imagef (
 image2d_array_t image,
 sampler_t sampler,
 int4 coord)

float4 read_imagef (
 image2d_array_t image,
 sampler_t sampler,
 float4 coord)

Use coord.xy to do an element lookup in the 2D
image identified by coord.z in the 2D image array
specified by image.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

The read_imagef calls that take integer coordinates
must use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set
to CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,

Last Revision Date: 11/14/12 Page 301

CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image2d_array_t image,
 sampler_t sampler,
 int4 coord)

int4 read_imagei (image2d_array_t image,
 sampler_t sampler,
 float4 coord)

uint4 read_imageui (
 image2d_array_t image,
 sampler_t sampler,
 int4 coord)

uint4 read_imageui (
 image2d_array_t image,
 sampler_t sampler,
 float4 coord)

Use coord.xy to do an element lookup in the 2D
image identified by coord.z in the 2D image array
specified by image.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

The read_image{i|ui} calls support a nearest filter
only. The filter_mode specified in sampler
must be set to CLK_FILTER_NEAREST; otherwise
the values returned are undefined.

Furthermore, the read_image{i|ui} calls that take
integer coordinates must use a sampler with
normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,

Last Revision Date: 11/14/12 Page 302

CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

float4 read_imagef (image1d_t image,
 sampler_t sampler,
 int coord)

float4 read_imagef (image1d_t image,
 sampler_t sampler,
 float coord)

Use coord to do an element lookup in the 1D image
object specified by image.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

The read_imagef calls that take integer coordinates
must use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set
to CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image1d_t image,
 sampler_t sampler,
 int coord)

int4 read_imagei (image1d_t image,
 sampler_t sampler,
 float coord)

uint4 read_imageui (
 image1d_t image,

Use coord to do an element lookup in the 1D image
object specified by image.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,

Last Revision Date: 11/14/12 Page 303

 sampler_t sampler,
 int coord)

uint4 read_imageui (
 image1d_t image,
 sampler_t sampler,
 float coord)

CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

The read_image{i|ui} calls support a nearest filter
only. The filter_mode specified in sampler
must be set to CLK_FILTER_NEAREST; otherwise
the values returned are undefined.

Furthermore, the read_image{i|ui} calls that take
integer coordinates must use a sampler with
normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

float4 read_imagef (
 image1d_array_t image,
 sampler_t sampler,
 int2 coord)

float4 read_imagef (
 image1d_array_t image,
 sampler_t sampler,
 float2 coord)

Use coord.x to do an element lookup in the 1D
image identified by coord.y in the 1D image array
specified by image.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image

Last Revision Date: 11/14/12 Page 304

objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

The read_imagef calls that take integer coordinates
must use a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set
to CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image1d_array_t image,
 sampler_t sampler,
 int2 coord)

int4 read_imagei (image1d_array_t image,
 sampler_t sampler,
 float2 coord)

uint4 read_imageui (
 image1d_array_t image,
 sampler_t sampler,
 int2 coord)

uint4 read_imageui (
 image1d_array_t image,
 sampler_t sampler,
 float2 coord)

Use coord.x to do an element lookup in the 1D
image identified by coord.y in the 1D image array
specified by image.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

The read_image{i|ui} calls support a nearest filter
only. The filter_mode specified in sampler

Last Revision Date: 11/14/12 Page 305

must be set to CLK_FILTER_NEAREST; otherwise
the values returned are undefined.

Furthermore, the read_image{i|ui} calls that take
integer coordinates must use a sampler with
normalized coordinates set to
CLK_NORMALIZED_COORDS_FALSE and
addressing mode set to
CLK_ADDRESS_CLAMP_TO_EDGE,
CLK_ADDRESS_CLAMP or CLK_ADDRESS_NONE;
otherwise the values returned are undefined.

 Table 6.23 Built-in Image Read Functions

6.12.14.3 Built-in Image Sampler-less Read Functions

The following built-in function calls to read images with a sampler are supported. The sampler-
less read image functions behave exactly as the corresponding read image functions described in
section 6.12.14.2 that take integer coordinates and a sampler with filter mode set to
CLK_FILTER_NEAREST, normalized coordinates set to CLK_NORMALIZED_COORDS_FALSE
and addressing mode to CLK_ADDRESS_NONE.

Function Description
float4 read_imagef (image2d_t image,
 int2 coord)

Use the coordinate (coord.x, coord.y) to do an
element lookup in the 2D image object specified by
image.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

Values returned by read_imagef for image objects

Last Revision Date: 11/14/12 Page 306

with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image2d_t image,
 int2 coord)

uint4 read_imageui (
 image2d_t image,
 int2 coord)

Use the coordinate (coord.x, coord.y) to do an
element lookup in the 2D image object specified by
image.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

float4 read_imagef (image3d_t image,
 int4 coord)

Use the coordinate (coord.x, coord.y, coord.z) to do
an element lookup in the 3D image object specified
by image. coord.w is ignored.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

Last Revision Date: 11/14/12 Page 307

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description are undefined.

int4 read_imagei (image3d_t image,
 int4 coord)

uint4 read_imageui (
 image3d_t image,
 int4 coord)

Use the coordinate (coord.x, coord.y, coord.z) to do
an element lookup in the 3D image object specified
by image. coord.w is ignored.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

float4 read_imagef (
 image2d_array_t image,
 int4 coord)

Use coord.xy to do an element lookup in the 2D
image identified by coord.z in the 2D image array
specified by image.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or

Last Revision Date: 11/14/12 Page 308

CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image2d_array_t image,
 int4 coord)

uint4 read_imageui (
 image2d_array_t image,
 int4 coord)

Use coord.xy to do an element lookup in the 2D
image identified by coord.z in the 2D image array
specified by image.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

float4 read_imagef (image1d_t image,
 int coord)

Use coord to do an element lookup in the 1D image
or 1D image buffer object specified by image.

Last Revision Date: 11/14/12 Page 309

float4 read_imagef (
 image1d_buffer_t image,
 int coord)

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image1d_t image,
 int coord)

uint4 read_imageui (
 image1d_t image,
 int coord)

int4 read_imagei (
 image1d_buffer_t image,
 int coord)

uint4 read_imageui (
 image1d_buffer_t image,
 int coord)

Use coord to do an element lookup in the 1D image
or 1D image buffer object specified by image.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui

Last Revision Date: 11/14/12 Page 310

are undefined.

float4 read_imagef (
 image1d_array_t image,
 int2 coord)

Use coord.x to do an element lookup in the 1D
image identified by coord.y in the 1D image array
specified by image.

read_imagef returns floating-point values in the
range [0.0 … 1.0] for image objects created with
image_channel_data_type set to one of the pre-
defined packed formats or CL_UNORM_INT8, or
CL_UNORM_INT16.

read_imagef returns floating-point values in the
range [-1.0 … 1.0] for image objects created with
image_channel_data_type set to CL_SNORM_INT8,
or CL_SNORM_INT16.

read_imagef returns floating-point values for image
objects created with image_channel_data_type set to
CL_HALF_FLOAT or CL_FLOAT.

Values returned by read_imagef for image objects
with image_channel_data_type values not specified
in the description above are undefined.

int4 read_imagei (image1d_array_t image,
 int2 coord)

uint4 read_imageui (
 image1d_array_t image,
 int2 coord)

Use coord.x to do an element lookup in the 1D
image identified by coord.y in the 1D image array
specified by image.

read_imagei and read_imageui return
unnormalized signed integer and unsigned integer
values respectively. Each channel will be stored in a
32-bit integer.

read_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imagei
are undefined.

read_imageui can only be used with image objects
created with image_channel_data_type set to one of

Last Revision Date: 11/14/12 Page 311

the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.
If the image_channel_data_type is not one of the
above values, the values returned by read_imageui
are undefined.

 Table 6.24 Built-in Image Sampler-less Read Functions

6.12.14.4 Built-in Image Write Functions

The following built-in function calls to write images are supported.

Function Description
void write_imagef (image2d_t image,
 int2 coord,
 float4 color)

void write_imagei (image2d_t image,
 int2 coord,
 int4 color)

void write_imageui (image2d_t image,
 int2 coord,
 uint4 color)

Write color value to location specified by coord.xy
in the 2D image object specified by image.
Appropriate data format conversion to the specified
image format is done before writing the color value.
coord.x and coord.y are considered to be
unnormalized coordinates and must be in the range 0
... image width – 1, and 0 … image height – 1.

write_imagef can only be used with image objects
created with image_channel_data_type set to one of
the pre-defined packed formats or set to
CL_SNORM_INT8, CL_UNORM_INT8,
CL_SNORM_INT16, CL_UNORM_INT16,
CL_HALF_FLOAT or CL_FLOAT. Appropriate data
format conversion will be done to convert channel
data from a floating-point value to actual data format
in which the channels are stored.

write_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.

write_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and

Last Revision Date: 11/14/12 Page 312

CL_UNSIGNED_INT32.

The behavior of write_imagef, write_imagei and
write_imageui for image objects created with
image_channel_data_type values not specified in
the description above or with (x, y) coordinate
values that are not in the range (0 … image width –
1, 0 … image height – 1), respectively, is undefined.

void write_imagef (
 image2d_array_t image,
 int4 coord,
 float4 color)

void write_imagei (
 image2d_array_t image,
 int4 coord,
 int4 color)

void write_imageui (
 image2d_array_t image,
 int4 coord,
 uint4 color)

Write color value to location specified by coord.xy
in the 2D image identified by coord.z in the 2D
image array specified by image. Appropriate data
format conversion to the specified image format is
done before writing the color value. coord.x,
coord.y and coord.z are considered to be
unnormalized coordinates and must be in the range 0
... image width – 1, 0 … image height – 1 and 0 …
image number of layers – 1.

write_imagef can only be used with image objects
created with image_channel_data_type set to one of
the pre-defined packed formats or set to
CL_SNORM_INT8, CL_UNORM_INT8,
CL_SNORM_INT16, CL_UNORM_INT16,
CL_HALF_FLOAT or CL_FLOAT. Appropriate data
format conversion will be done to convert channel
data from a floating-point value to actual data format
in which the channels are stored.

write_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.

write_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.

The behavior of write_imagef, write_imagei and
write_imageui for image objects created with
image_channel_data_type values not specified in

Last Revision Date: 11/14/12 Page 313

the description above or with (x, y, z) coordinate
values that are not in the range (0 … image width –
1, 0 … image height – 1, 0 … image number of
layers – 1), respectively, is undefined.

void write_imagef (image1d_t image,
 int coord,
 float4 color)

void write_imagei (image1d_t image,
 int coord,
 int4 color)

void write_imageui (image1d_t image,
 int coord,
 uint4 color)

void write_imagef (
 image1d_buffer_t image,
 int coord,
 float4 color)

void write_imagei (
 image1d_buffer_t image,
 int coord,
 int4 color)

void write_imageui (
 image1d_buffer_t image,
 int coord,
 uint4 color)

Write color value to location specified by coord in
the 1D image or 1D image buffer object specified by
image. Appropriate data format conversion to the
specified image format is done before writing the
color value. coord is considered to be unnormalized
coordinates and must be in the range 0 ... image
width – 1.

write_imagef can only be used with image objects
created with image_channel_data_type set to one of
the pre-defined packed formats or set to
CL_SNORM_INT8, CL_UNORM_INT8,
CL_SNORM_INT16, CL_UNORM_INT16,
CL_HALF_FLOAT or CL_FLOAT. Appropriate data
format conversion will be done to convert channel
data from a floating-point value to actual data format
in which the channels are stored.

write_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.

write_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.

The behavior of write_imagef, write_imagei and
write_imageui for image objects created with
image_channel_data_type values not specified in
the description above or with coordinate values that
is not in the range (0 … image width – 1), is
undefined.

void write_imagef (
 image1d_array_t image,

Write color value to location specified by coord.x in
the 1D image identified by coord.y in the 1D image

Last Revision Date: 11/14/12 Page 314

 int2 coord,
 float4 color)

void write_imagei (
 image1d_array_t image,
 int2 coord,
 int4 color)

void write_imageui (
 image1d_array_t image,
 int2 coord,
 uint4 color)

array specified by image. Appropriate data format
conversion to the specified image format is done
before writing the color value. coord.x and coord.y
are considered to be unnormalized coordinates and
must be in the range 0 ... image width – 1 and 0 …
image number of layers – 1.

write_imagef can only be used with image objects
created with image_channel_data_type set to one of
the pre-defined packed formats or set to
CL_SNORM_INT8, CL_UNORM_INT8,
CL_SNORM_INT16, CL_UNORM_INT16,
CL_HALF_FLOAT or CL_FLOAT. Appropriate data
format conversion will be done to convert channel
data from a floating-point value to actual data format
in which the channels are stored.

write_imagei can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_SIGNED_INT8,
CL_SIGNED_INT16 and
CL_SIGNED_INT32.

write_imageui can only be used with image objects
created with image_channel_data_type set to one of
the following values:
CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and
CL_UNSIGNED_INT32.

The behavior of write_imagef, write_imagei and
write_imageui for image objects created with
image_channel_data_type values not specified in
the description above or with (x, y) coordinate
values that are not in the range (0 … image width –
1, 0 … image number of layers – 1), respectively, is
undefined.

 Table 6.25 Built-in Image Write Functions

6.12.14.5 Built-in Image Query Functions

The following built-in function calls to query image information are supported.

Last Revision Date: 11/14/12 Page 315

Function Description
int get_image_width (image1d_t image)
int get_image_width (
 image1d_buffer_t image)
int get_image_width (image2d_t image)
int get_image_width (image3d_t image)
int get_image_width (
 image1d_array_t image)
int get_image_width (
 image2d_array_t image)

Return the image width in pixels.

int get_image_height (image2d_t image)
int get_image_height (image3d_t image)
int get_image_height (
 image2d_array_t image)

Return the image height in pixels.

int get_image_depth (image3d_t image) Return the image depth in pixels.

int get_image_channel_data_type (
 image1d_t image)
int get_image_channel_data_type (
 image1d_buffer_t image)
int get_image_channel_data_type (
 image2d_t image)
int get_image_channel_data_type (
 image3d_t image)
int get_image_channel_data_type (
 image1d_array_t image)
int get_image_channel_data_type (
 image2d_array_t image)

Return the channel data type. Valid values are:

CLK_SNORM_INT8
CLK_SNORM_INT16
CLK_UNORM_INT8
CLK_UNORM_INT16
CLK_UNORM_SHORT_565
CLK_UNORM_SHORT_555
CLK_UNORM_SHORT_101010
CLK_SIGNED_INT8
CLK_SIGNED_INT16
CLK_SIGNED_INT32
CLK_UNSIGNED_INT8
CLK_UNSIGNED_INT16
CLK_UNSIGNED_INT32
CLK_HALF_FLOAT
CLK_FLOAT

int get_image_channel_order (
 image1d_t image)
int get_image_channel_order (
 image1d_buffer_t image)
int get_image_channel_order (
 image2d_t image)
int get_image_channel_order (
 image3d_t image)
int get_image_channel_order (

Return the image channel order. Valid values
are:

CLK_A
CLK_R
CLK_Rx
CLK_RG
CLK_RGx
CLK_RA
CLK_RGB

Last Revision Date: 11/14/12 Page 316

 image1d_array_t image)
int get_image_channel_order (
 image2d_array_t image)

CLK_RGBx
CLK_RGBA
CLK_ARGB
CLK_BGRA
CLK_INTENSITY
CLK_LUMINANCE

int2 get_image_dim (image2d_t image)
int2 get_image_dim (
 image2d_array_t image)

Return the 2D image width and height as an
int2 type. The width is returned in the x
component, and the height in the y component.

int4 get_image_dim (image3d_t image) Return the 3D image width, height, and depth as
an int4 type. The width is returned in the x
component, height in the y component, depth in
the z component and the w component is 0.

size_t get_image_array_size(
 image2d_array_t image)

Return the number of images in the 2D image
array.

size_t get_image_array_size(
 image1d_array_t image)

Return the number of images in the 1D image
array.

 Table 6.26 Built-in Image Query Functions

The values returned by get_image_channel_data_type and get_image_channel_order as
specified in table 6.26 with the CLK_ prefixes correspond to the CL_ prefixes used to describe
the image channel order and data type in tables 5.4 and 5.5. For example, both
CL_UNORM_INT8 and CLK_UNORM_INT8 refer to an image channel data type that is an
unnormalized unsigned 8-bit integer.

6.12.14.6 Mapping image channels to color values returned by read_image
and color values passed to write_image to image channels

The following table describes the mapping of the number of channels of an image element to the
appropriate components in the float4, int4 or uint4 vector data type for the color values returned
by read_image{f|i|ui} or supplied to write_image{f|i|ui}. The unmapped components will be
set to 0.0 for red, green and blue channels and will be set to 1.0 for the alpha channel.

Channel Order float4, int4 or uint4
components of channel data

CL_R, CL_Rx (r, 0.0, 0.0, 1.0)
CL_A (0.0, 0.0, 0.0, a)

CL_RG, CL_RGx (r, g, 0.0, 1.0)
CL_RA (r, 0.0, 0.0, a)

CL_RGB, CL_RGBx (r, g, b, 1.0)
CL_RGBA, CL_BGRA, CL_ARGB (r, g, b, a)

Last Revision Date: 11/14/12 Page 317

CL_INTENSITY (I, I, I, I)
CL_LUMINANCE (L, L, L, 1.0)

NOTE: A kernel that uses a sampler with the CL_ADDRESS_CLAMP addressing mode with
multiple images may result in additional samplers being used internally by an implementation. If
the same sampler is used with multiple images called via read_image{f | i | ui}, then it is
possible that an implementation may need to allocate an additional sampler to handle the
different border color values that may be needed depending on the image formats being used.
These implementation allocated samplers will count against the maximum sampler values
supported by the device and given by CL_DEVICE_MAX_SAMPLERS. Enqueuing a kernel that
requires more samplers than the implementation can support will result in a
CL_OUT_OF_RESOURCES error being returned.

Last Revision Date: 11/14/12 Page 318

7. OpenCL Numerical Compliance

This section describes features of the C99 and IEEE 754 standards that must be supported by all
OpenCL compliant devices.

This section describes the functionality that must be supported by all OpenCL devices for single
precision floating-point numbers. Currently, only single precision floating-point is a
requirement. Double precision floating-point is an optional feature.

7.1 Rounding Modes

Floating-point calculations may be carried out internally with extra precision and then rounded to
fit into the destination type. IEEE 754 defines four possible rounding modes:

 Round to nearest even
 Round toward + ∞
 Round toward - ∞
 Round toward zero

Round to nearest even is currently the only rounding mode required by the OpenCL specification
for single precision and double precision operations and is therefore the default rounding mode.
In addition, only static selection of rounding mode is supported. Dynamically reconfiguring the
rounding modes as specified by the IEEE 754 spec is unsupported.

7.2 INF, NaN and Denormalized Numbers

INF and NaNs must be supported. Support for signaling NaNs is not required.

Support for denormalized numbers with single precision floating-point is optional.
Denormalized single precision floating-point numbers passed as input or produced as the output
of single precision floating-point operations such as add, sub, mul, divide, and the functions
defined in sections 6.11.2 (math functions), 6.11.4 (common functions) and 6.11.5 (geometric
functions) may be flushed to zero.

Last Revision Date: 11/14/12 Page 319

7.3 Floating-Point Exceptions

Floating-point exceptions are disabled in OpenCL. The result of a floating-point exception must
match the IEEE 754 spec for the exceptions not enabled case. Whether and when the
implementation sets floating-point flags or raises floating-point exceptions is implementation-
defined. This standard provides no method for querying, clearing or setting floating-point flags
or trapping raised exceptions. Due to non-performance, non-portability of trap mechanisms and
the impracticality of servicing precise exceptions in a vector context (especially on
heterogeneous hardware), such features are discouraged.

Implementations that nevertheless support such operations through an extension to the standard
shall initialize with all exception flags cleared and the exception masks set so that exceptions
raised by arithmetic operations do not trigger a trap to be taken. If the underlying work is reused
by the implementation, the implementation is however not responsible for reclearing the flags or
resetting exception masks to default values before entering the kernel. That is to say that kernels
that do not inspect flags or enable traps are licensed to expect that their arithmetic will not trigger
a trap. Those kernels that do examine flags or enable traps are responsible for clearing flag state
and disabling all traps before returning control to the implementation. Whether or when the
underlying work-item (and accompanying global floating-point state if any) is reused is
implementation-defined.

The expressions math_errorhandling and MATH_ERREXCEPT are reserved for use by this
standard, but not defined. Implementations that extend this specification with support for
floating-point exceptions shall define math_errorhandling and MATH_ERREXCEPT per ISO /
IEC 9899 : TC2.

7.4 Relative Error as ULPs

In this section we discuss the maximum relative error defined as ulp (units in the last place).
Addition, subtraction, multiplication, fused multiply-add and conversion between integer and a
single precision floating-point format are IEEE 754 compliant and are therefore correctly
rounded. Conversion between floating-point formats and explicit conversions specified in
section 6.2.3 must be correctly rounded.

The ULP is defined as follows:

If x is a real number that lies between two finite
consecutive floating-point numbers a and b, without being
equal to one of them, then ulp(x) = |b − a|, otherwise
ulp(x) is the distance between the two non-equal finite
floating-point numbers nearest x. Moreover, ulp(NaN) is
NaN.

Last Revision Date: 11/14/12 Page 320

Attribution: This definition was taken with consent from Jean-Michel Muller with slight
clarification for behavior at zero. Refer to ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-
5504.pdf.

Table 7.169 describes the minimum accuracy of single precision floating-point arithmetic
operations given as ULP values. The reference value used to compute the ULP value of an
arithmetic operation is the infinitely precise result.

Function Min Accuracy - ULP values70
x + y Correctly rounded
x – y Correctly rounded
x * y Correctly rounded

1.0 / x <= 2.5 ulp
x / y <= 2.5 ulp

acos <= 4 ulp

acospi <= 5 ulp
asin <= 4 ulp

asinpi <= 5 ulp
atan <= 5 ulp

atan2 <= 6 ulp
atanpi <= 5 ulp

atan2pi <= 6 ulp
acosh <= 4 ulp
asinh <= 4 ulp
atanh <= 5 ulp

cbrt <= 2 ulp
ceil Correctly rounded

copysign 0 ulp
cos <= 4 ulp

cosh <= 4 ulp
cospi <= 4 ulp

erfc <= 16 ulp
erf <= 16 ulp

exp <= 3 ulp
exp2 <= 3 ulp

exp10 <= 3 ulp
expm1 <= 3 ulp

fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded

69 The ULP values for built-in math functions lgamma and lgamma_r is currently undefined.
70 0 ulp is used for math functions that do not require rounding.

Last Revision Date: 11/14/12 Page 321

fma Correctly rounded
fmax 0 ulp
fmin 0 ulp
fmod 0 ulp
fract Correctly rounded
frexp 0 ulp
hypot <= 4 ulp
ilogb 0 ulp
ldexp Correctly rounded

log <= 3 ulp
log2 <= 3 ulp

log10 <= 3 ulp
log1p <= 2 ulp
logb 0 ulp
mad Any value allowed (infinite ulp)

maxmag 0 ulp
minmag 0 ulp

modf 0 ulp
nan 0 ulp

nextafter 0 ulp
pow(x, y) <= 16 ulp

pown(x, y) <= 16 ulp
powr(x, y) <= 16 ulp
remainder 0 ulp

remquo 0 ulp
rint Correctly rounded

rootn <= 16 ulp
round Correctly rounded
rsqrt <= 2 ulp

sin <= 4 ulp
sincos <= 4 ulp for sine and cosine values

sinh <= 4 ulp
sinpi <= 4 ulp
sqrt <= 3 ulp
tan <= 5 ulp

tanh <= 5 ulp
tanpi <= 6 ulp

tgamma <= 16 ulp
trunc Correctly rounded

half_cos <= 8192 ulp

half_divide <= 8192 ulp
half_exp <= 8192 ulp

half_exp2 <= 8192 ulp
half_exp10 <= 8192 ulp

Last Revision Date: 11/14/12 Page 322

half_log <= 8192 ulp
half_log2 <= 8192 ulp

half_log10 <= 8192 ulp
half_powr <= 8192 ulp
half_recip <= 8192 ulp
half_rsqrt <= 8192 ulp

half_sin <= 8192 ulp
half_sqrt <= 8192 ulp
half_tan <= 8192 ulp

native_cos Implementation-defined

native_divide Implementation-defined
native_exp Implementation-defined

native_exp2 Implementation-defined
native_exp10 Implementation-defined

native_log Implementation-defined
native_log2 Implementation-defined

native_log10 Implementation-defined
native_powr Implementation-defined
native_recip Implementation-defined
native_rsqrt Implementation-defined

native_sin Implementation-defined
native_sqrt Implementation-defined
native_tan Implementation-defined

 Table 7.1 ULP values for single precision built-in math functions

Table 7.2 describes the minimum accuracy of double precision floating-point arithmetic
operations given as ULP values. The reference value used to compute the ULP value of an
arithmetic operation is the infinitely precise result.

Function Min Accuracy - ULP values71
x + y Correctly rounded
x – y Correctly rounded
x * y Correctly rounded

1.0 / x Correctly rounded
x / y Correctly rounded

acos <= 4 ulp

acospi <= 5 ulp
asin <= 4 ulp

asinpi <= 5 ulp
atan <= 5 ulp

71 0 ulp is used for math functions that do not require rounding.

Last Revision Date: 11/14/12 Page 323

atan2 <= 6 ulp
atanpi <= 5 ulp

atan2pi <= 6 ulp
acosh <= 4 ulp
asinh <= 4 ulp
atanh <= 5 ulp

cbrt <= 2 ulp
ceil Correctly rounded

copysign 0 ulp
cos <= 4 ulp

cosh <= 4 ulp
cospi <= 4 ulp

erfc <= 16 ulp
erf <= 16 ulp

exp <= 3 ulp
exp2 <= 3 ulp

exp10 <= 3 ulp
expm1 <= 3 ulp

fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded

fmax 0 ulp
fmin 0 ulp
fmod 0 ulp
fract Correctly rounded
frexp 0 ulp
hypot <= 4 ulp
ilogb 0 ulp
ldexp Correctly rounded

log <= 3 ulp
log2 <= 3 ulp

log10 <= 3 ulp
log1p <= 2 ulp
logb 0 ulp
mad Any value allowed (infinite ulp)

maxmag 0 ulp
minmag 0 ulp

modf 0 ulp
nan 0 ulp

nextafter 0 ulp
pow(x, y) <= 16 ulp

pown(x, y) <= 16 ulp
powr(x, y) <= 16 ulp
remainder 0 ulp

Last Revision Date: 11/14/12 Page 324

remquo 0 ulp
rint Correctly rounded

rootn <= 16 ulp
round Correctly rounded
rsqrt <= 2 ulp

sin <= 4 ulp
sincos <= 4 ulp for sine and cosine values

sinh <= 4 ulp
sinpi <= 4 ulp
sqrt Correctly rounded
tan <= 5 ulp

tanh <= 5 ulp
tanpi <= 6 ulp

tgamma <= 16 ulp
trunc Correctly rounded

 Table 7.2 ULP values for double precision built-in math functions

7.5 Edge Case Behavior

The edge case behavior of the math functions (section 6.12.2) shall conform to sections F.9 and
G.6 of ISO/IEC 9899:TC 2 (commonly known as C99, TC2), except where noted below in
section 7.5.1.

7.5.1 Additional Requirements Beyond C99 TC2

Functions that return a NaN with more than one NaN operand shall return one of the NaN
operands. Functions that return a NaN operand may silence the NaN if it is a signaling NaN. A
non-signaling NaN shall be converted to a non-signaling NaN. A signaling NaN shall be
converted to a NaN, and should be converted to a non-signaling NaN. How the rest of the NaN
payload bits or the sign of NaN is converted is undefined.

half_<funcname> functions behave identically to the function of the same name without the
half_ prefix. They must conform to the same edge case requirements (see sections F.9 and G.6
of C99, TC2). For other cases, except where otherwise noted, these single precision functions
are permitted to have up to 8192 ulps of error (as measured in the single precision result),
although better accuracy is encouraged.

The usual allowances for rounding error (section 7.4) or flushing behavior (section 7.5.3) shall
not apply for those values for which section F.9 of C99, TC2, or sections 7.5.1 and 7.5.3 below
(and similar sections for other floating-point precisions) prescribe a result (e.g. ceil (-1 <
x < 0) returns -0). Those values shall produce exactly the prescribed answers, and no

Last Revision Date: 11/14/12 Page 325

other. Where the ± symbol is used, the sign shall be preserved. For example, sin(±0) = ±0
shall be interpreted to mean sin(+0) is +0 and sin(-0) is -0.

acospi (1) = +0.
acospi (x) returns a NaN for | x | > 1.

asinpi (±0) = ±0.
asinpi (x) returns a NaN for | x | > 1.

atanpi (±0) = ±0.
atanpi (±∞) = ±0.5.

atan2pi (±0, -0) = ±1.
atan2pi (±0, +0) = ± 0.
atan2pi (±0, x) returns ± 1 for x < 0.
atan2pi (±0, x) returns ± 0 for x > 0.
atan2pi (y, ±0) returns -0.5 for y < 0.
atan2pi (y, ±0) returns 0.5 for y > 0.
atan2pi (±y, -∞) returns ± 1 for finite y > 0.
atan2pi (±y, +∞) returns ± 0 for finite y > 0.
atan2pi (±∞, x) returns ± 0.5 for finite x.
atan2pi (±∞, -∞) returns ±0.75.
atan2pi (±∞, +∞) returns ±0.25.

ceil (-1 < x < 0) returns -0.

cospi (±0) returns 1
cospi (n + 0.5) is +0 for any integer n where n + 0.5 is representable.
cospi (±∞) returns a NaN.

exp10 (±0) returns 1.
exp10 (-∞) returns +0.
exp10 (+∞) returns +∞.

distance (x, y) calculates the distance from x to y without overflow or extraordinary
precision loss due to underflow.

fdim (any, NaN) returns NaN.
fdim (NaN, any) returns NaN.

fmod (±0, NaN) returns NaN.

frexp (±∞, exp) returns ±∞ and stores 0 in exp.
frexp (NaN, exp) returns the NaN and stores 0 in exp.

Last Revision Date: 11/14/12 Page 326

fract (x, iptr) shall not return a value greater than or equal to 1.0, and shall not return a
 value less than 0.

fract (+0, iptr) returns +0 and +0 in iptr.
fract (-0, iptr) returns -0 and -0 in iptr.
fract (+inf, iptr) returns +0 and +inf in iptr.
fract (-inf, iptr) returns -0 and -inf in iptr.
fract (NaN, iptr) returns the NaN and NaN in iptr.

length calculates the length of a vector without overflow or extraordinary precision loss
due to underflow.

lgamma_r (x, signp) returns 0 in signp if x is zero or a negative integer.

nextafter (-0, y > 0) returns smallest positive denormal value.
nextafter (+0, y < 0) returns smallest negative denormal value.

normalize shall reduce the vector to unit length, pointing in the same direction without
overflow or extraordinary precision loss due to underflow.
normalize (v) returns v if all elements of v are zero.
normalize (v) returns a vector full of NaNs if any element is a NaN.

normalize (v) for which any element in v is infinite shall proceed as if the elements in v
were replaced as follows:

for(i = 0; i < sizeof(v) / sizeof(v[0]); i++)

 v[i] = isinf(v[i]) ? copysign(1.0, v[i]) : 0.0 * v [i];

pow (±0, -∞) returns +∞

pown (x, 0) is 1 for any x, even zero, NaN or infinity.
pown (±0, n) is ±∞ for odd n < 0.
pown (±0, n) is +∞ for even n < 0.
pown (±0, n) is +0 for even n > 0.
pown (±0, n) is ±0 for odd n > 0.

powr (x, ±0) is 1 for finite x > 0.
powr (±0, y) is +∞ for finite y < 0.
powr (±0, -∞) is +∞.
powr (±0, y) is +0 for y > 0.
powr (+1, y) is 1 for finite y.
powr (x, y) returns NaN for x < 0.
powr (±0, ±0) returns NaN.
powr (+∞, ±0) returns NaN.
powr (+1, ±∞) returns NaN.
powr (x, NaN) returns the NaN for x >= 0.
powr (NaN, y) returns the NaN.

Last Revision Date: 11/14/12 Page 327

rint (-0.5 <= x < 0) returns -0.

remquo (x, y, &quo) returns a NaN and 0 in quo if x is ±∞, or if y is 0 and the other
argument is non-NaN or if either argument is a NaN.

rootn (±0, n) is ±∞ for odd n < 0.
rootn (±0, n) is +∞ for even n < 0.
rootn (±0, n) is +0 for even n > 0.
rootn (±0, n) is ±0 for odd n > 0.
rootn (x, n) returns a NaN for x < 0 and n is even.
rootn (x, 0) returns a NaN.

round (-0.5 < x < 0) returns -0.

sinpi (±0) returns ±0.
sinpi (+n) returns +0 for positive integers n.
sinpi (-n) returns -0 for negative integers n.
sinpi (±∞) returns a NaN.

tanpi (±0) returns ±0.
tanpi (±∞) returns a NaN.
tanpi (n) is copysign(0.0, n) for even integers n.
tanpi (n) is copysign(0.0, - n) for odd integers n.
tanpi (n + 0.5) for even integer n is +∞ where n + 0.5 is representable.
tanpi (n + 0.5) for odd integer n is -∞ where n + 0.5 is representable.

trunc (-1 < x < 0) returns -0.

7.5.2 Changes to C99 TC2 Behavior

modf behaves as though implemented by:

gentype modf (gentype value, gentype *iptr)
{

 *iptr = trunc(value);
 return copysign(isinf(value) ? 0.0 : value – *iptr, value);
}

rint always rounds according to round to nearest even rounding mode even if the caller is in
some other rounding mode.

Last Revision Date: 11/14/12 Page 328

7.5.3 Edge Case Behavior in Flush To Zero Mode

If denormals are flushed to zero, then a function may return one of four results:

1. Any conforming result for non-flush-to-zero mode

2. If the result given by 1. is a sub-normal before rounding, it may be flushed to zero

3. Any non-flushed conforming result for the function if one or more of its sub-normal

operands are flushed to zero.

4. If the result of 3. is a sub-normal before rounding, the result may be flushed to zero.

In each of the above cases, if an operand or result is flushed to zero, the sign of the zero is
undefined.

If subnormals are flushed to zero, a device may choose to conform to the following edge cases
for nextafter instead of those listed in section 7.5.1:

nextafter (+smallest normal, y < +smallest normal) = +0.
nextafter (-smallest normal, y > -smallest normal) = -0.
nextafter (-0, y > 0) returns smallest positive normal value.
nextafter (+0, y < 0) returns smallest negative normal value.

For clarity, subnormals or denormals are defined to be the set of representable numbers in the
range 0 < x < TYPE_MIN and -TYPE_MIN < x < -0. They do not include ±0. A
non-zero number is said to be sub-normal before rounding if after normalization, its radix-2
exponent is less than (TYPE_MIN_EXP - 1). 72

72 Here TYPE_MIN and TYPE_MIN_EXP should be substituted by constants appropriate to the floating-point type
under consideration, such as FLT_MIN and FLT_MIN_EXP for float.

Last Revision Date: 11/14/12 Page 329

8. Image Addressing and Filtering

Let wt, ht and dt be the width, height (or image array size for a 1D image array) and depth (or
image array size for a 2D image array) of the image in pixels. Let coord.xy also referred to as
(s,t) or coord.xyz also referred to as (s,t,r) be the coordinates specified to
read_image{f|i|ui}. The sampler specified in read_image{f|i|ui} is used to determine how to
sample the image and return an appropriate color.

8.1 Image Coordinates

This affects the interpretation of image coordinates. If image coordinates specified to
read_image{f|i|ui} are normalized (as specified in the sampler), the s,t, and r coordinate
values are multiplied by wt, ht, and dt respectively to generate the unnormalized coordinate
values.

Let (u,v,w) represent the unnormalized image coordinate values.

8.2 Addressing and Filter Modes

We first describe how the addressing and filter modes are applied to generate the appropriate
sample locations to read from the image if the addressing mode is not CLK_ADDRESS_REPEAT
nor CLK_ADDRESS_MIRRORED_REPEAT.

After generating the image coordinate (u,v,w) we apply the appropriate addressing and filter
mode to generate the appropriate sample locations to read from the image.

If values in (u,v,w) are INF or NaN, the behavior of read_image{f|i|ui} is undefined.

Filter Mode = CLK_FILTER_NEAREST

When filter mode is CLK_FILTER_NEAREST, the image element in the image that is nearest (in
Manhattan distance) to that specified by (u,v,w) is obtained. This means the image element at
location (i,j,k) becomes the image element value, where

i = address_mode((int)floor(u))
j = address_mode((int)floor(v))
k = address_mode((int)floor(w))

For a 3D image, the image element at location (i, j, k) becomes the color value. For a 2D
image, the image element at location (i, j) becomes the color value.

Last Revision Date: 11/14/12 Page 330

Table 8.1 describes the address_mode function.

Addressing Mode Result of address_mode(coord)
CLK_ADDRESS_CLAMP_TO_EDGE clamp (coord, 0, size – 1)
CLK_ADDRESS_CLAMP clamp (coord, -1, size)
CLK_ADDRESS_NONE coord

 Table 8.1 Addressing modes to generate texel location.

The size term in table 8.1 is wt for u, ht for v and dt for w.

The clamp function used in table 8.1 is defined as:

 clamp(a, b, c) = return (a < b) ? b : ((a > c) ? c : a)

If the selected texel location (i,j,k) refers to a location outside the image, the border color is
used as the color value for this texel.

Filter Mode = CLK_FILTER_LINEAR

When filter mode is CLK_FILTER_LINEAR, a 2 x 2 square of image elements for a 2D image
or a 2 x 2 x 2 cube of image elements for a 3D image is selected. This 2 x 2 square or 2
x 2 x 2 cube is obtained as follows.

Let

 i0 = address_mode((int)floor(u – 0.5))
 j0 = address_mode((int)floor(v – 0.5))
 k0 = address_mode((int)floor(w – 0.5))
 i1 = address_mode((int)floor(u – 0.5) + 1)
 j1 = address_mode((int)floor(v – 0.5) + 1)
 k1 = address_mode((int)floor(w – 0.5) + 1)
 a = frac(u – 0.5)
 b = frac(v – 0.5)
 c = frac(w – 0.5)

where frac(x) denotes the fractional part of x and is computed as x – floor(x).

For a 3D image, the image element value is found as

 T = (1 – a) * (1 – b) * (1 – c) * Ti0j0k0
 + a * (1 – b) * (1 – c) * Ti1j0k0
 + (1 – a) * b * (1 – c) * Ti0j1k0
 + a * b * (1 – c) * Ti1j1k0

Last Revision Date: 11/14/12 Page 331

 + (1 – a) * (1 – b) * c * Ti0j0k1
 + a * (1 – b) * c * Ti1j0k1
 + (1 – a) * b * c * Ti0j1k1
 + a * b * c * Ti1j1k1

where Tijk is the image element at location (i,j,k) in the 3D image.

For a 2D image, the image element value is found as

 T = (1 – a) * (1 – b) * Ti0j0
 + a * (1 – b) * Ti1j0
 + (1 – a) * b * Ti0j1
 + a * b * Ti1j1

where Tij is the image element at location (i,j) in the 2D image.

If any of the selected Tijk or Tij in the above equations refers to a location outside the image,
the border color is used as the color value for Tijk or Tij.

We now discuss how the addressing and filter modes are applied to generate the appropriate
sample locations to read from the image if the addressing mode is CLK_ADDRESS_REPEAT.

If values in (s,t,r) are INF or NaN, the behavior of the built-in image read functions is
undefined.

Filter Mode = CLK_FILTER_NEAREST

When filter mode is CLK_FILTER_NEAREST, the image element at location (i,j,k) becomes
the image element value, with i, j and k computed as

 u = (s – floor(s)) * wt
 i = (int)floor(u)
 if (i > wt – 1)
 i = i – wt

 v = (t – floor(t)) * ht
 j = (int)floor(v)
 if (j > ht – 1)
 j = j – ht

 w = (r – floor(r)) * dt
 k = (int)floor(w)
 if (k > dt – 1)

Last Revision Date: 11/14/12 Page 332

 k = k – dt

For a 3D image, the image element at location (i, j, k) becomes the color value. For a 2D
image, the image element at location (i, j) becomes the color value.

Filter Mode = CLK_FILTER_LINEAR

When filter mode is CLK_FILTER_LINEAR, a 2 x 2 square of image elements for a 2D image
or a 2 x 2 x 2 cube of image elements for a 3D image is selected. This 2 x 2 square or 2
x 2 x 2 cube is obtained as follows.

Let

 u = (s – floor(s)) * wt
 i0 = (int)floor(u – 0.5)
 i1 = i0 + 1
 if (i0 < 0)
 i0 = wt + i0
 if (i1 > wt – 1)
 i1 = i1 – wt

 v = (t – floor(t)) * ht
 j0 = (int)floor(v – 0.5)
 j1 = j0 + 1
 if (j0 < 0)
 j0 = ht + j0
 if (j1 > ht – 1)
 j1 = j1 – ht

 w = (r – floor(r)) * dt
 k0 = (int)floor(w – 0.5)
 k1 = k0 + 1
 if (k0 < 0)
 k0 = dt + k0
 if (k1 > dt – 1)
 k1 = k1 – dt

 a = frac(u – 0.5)
 b = frac(v – 0.5)
 c = frac(w – 0.5)

where frac(x) denotes the fractional part of x and is computed as x – floor(x).

For a 3D image, the image element value is found as

 T = (1 – a) * (1 – b) * (1 – c) * Ti0j0k0

Last Revision Date: 11/14/12 Page 333

 + a * (1 – b) * (1 – c) * Ti1j0k0
 + (1 – a) * b * (1 – c) * Ti0j1k0
 + a * b * (1 – c) * Ti1j1k0
 + (1 – a) * (1 – b) * c * Ti0j0k1
 + a * (1 – b) * c * Ti1j0k1
 + (1 – a) * b * c * Ti0j1k1
 + a * b * c * Ti1j1k1

where Tijk is the image element at location (i,j,k) in the 3D image.

For a 2D image, the image element value is found as

 T = (1 – a) * (1 – b) * Ti0j0
 + a * (1 – b) * Ti1j0
 + (1 – a) * b * Ti0j1
 + a * b * Ti1j1

where Tij is the image element at location (i,j) in the 2D image.

We now discuss how the addressing and filter modes are applied to generate the appropriate
sample locations to read from the image if the addressing mode is
CLK_ADDRESS_MIRRORED_REPEAT. The CLK_ADDRESS_MIRRORED_REPEAT addressing
mode causes the image to be read as if it is tiled at every integer seam with the interpretation of
the image data flipped at each integer crossing. For example, the (s,t,r) coordinates between
2 and 3 are addressed into the image as coordinates from 1 down to 0. If values in (s,t,r) are
INF or NaN, the behavior of the built-in image read functions is undefined.

Filter Mode = CLK_FILTER_NEAREST

When filter mode is CLK_FILTER_NEAREST, the image element at location (i,j,k) becomes
the image element value, with i,j and k computed as

 s’ = 2.0f * rint(0.5f * s)
 s’ = fabs(s – s’)
 u = s’ * wt
 i = (int)floor(u)
 i = min(i, wt – 1)

 t’ = 2.0f * rint(0.5f * t)
 t’ = fabs(t – t’)
 v = t’ * ht
 j = (int)floor(v)
 j = min(j, ht – 1)

Last Revision Date: 11/14/12 Page 334

 r’ = 2.0f * rint(0.5f * r)
 r’ = fabs(r – r’)
 w = r’ * dt
 k = (int)floor(w)
 k = min(k, dt – 1)

For a 3D image, the image element at location (i, j, k) becomes the color value. For a 2D
image, the image element at location (i, j) becomes the color value.

Filter Mode = CLK_FILTER_LINEAR

When filter mode is CLK_FILTER_LINEAR, a 2 x 2 square of image elements for a 2D image
or a 2 x 2 x 2 cube of image elements for a 3D image is selected. This 2 x 2 square or 2
x 2 x 2 cube is obtained as follows.

Let

 s’ = 2.0f * rint(0.5f * s)
 s’ = fabs(s – s’)
 u = s’ * wt
 i0 = (int)floor(u – 0.5f)
 i1 = i0 + 1
 i0 = max(i0, 0)
 i1 = min(i1, wt – 1)

 t’ = 2.0f * rint(0.5f * t)
 t’ = fabs(t – t’)
 v = t’ * ht
 j0 = (int)floor(v – 0.5f)
 j1 = j0 + 1
 j0 = max(j0, 0)
 j1 = min(j1, ht – 1)

 r’ = 2.0f * rint(0.5f * r)
 r’ = fabs(r – r’)
 w = r’ * dt
 k0 = (int)floor(w – 0.5f)
 k1 = k0 + 1
 k0 = max(k0, 0)
 k1 = min(k1, dt – 1)

 a = frac(u – 0.5)
 b = frac(v – 0.5)
 c = frac(w – 0.5)

Last Revision Date: 11/14/12 Page 335

where frac(x) denotes the fractional part of x and is computed as x – floor(x).

For a 3D image, the image element value is found as

 T = (1 – a) * (1 – b) * (1 – c) * Ti0j0k0
 + a * (1 – b) * (1 – c) * Ti1j0k0
 + (1 – a) * b * (1 – c) * Ti0j1k0
 + a * b * (1 – c) * Ti1j1k0
 + (1 – a) * (1 – b) * c * Ti0j0k1
 + a * (1 – b) * c * Ti1j0k1
 + (1 – a) * b * c * Ti0j1k1
 + a * b * c * Ti1j1k1

where Tijk is the image element at location (i,j,k) in the 3D image.

For a 2D image, the image element value is found as

 T = (1 – a) * (1 – b) * Ti0j0
 + a * (1 – b) * Ti1j0
 + (1 – a) * b * Ti0j1
 + a * b * Ti1j1

where Tij is the image element at location (i,j) in the 2D image.

For a 1D image, the image element value is found as

 T = (1 – a) * Ti0
 + a * Ti1

where Ti is the image element at location (i) in the 1D image.

NOTE

If the sampler is specified as using unnormalized coordinates (floating-point or integer
coordinates), filter mode set to CLK_FILTER_NEAREST and addressing mode set to one of the
following modes - CLK_ADDRESS_NONE, CLK_ADDRESS_CLAMP_TO_EDGE or
CLK_ADDRESS_CLAMP, the location of the image element in the image given by (i, j, k) in
section 8.2 will be computed without any loss of precision.

For all other sampler combinations of normalized or unnormalized coordinates, filter and
addressing modes, the relative error or precision of the addressing mode calculations and the
image filter operation are not defined by this revision of the OpenCL specification. To ensure a
minimum precision of image addressing and filter calculations across any OpenCL device, for

Last Revision Date: 11/14/12 Page 336

these sampler combinations, developers should unnormalize the image coordinate in the kernel
and implement the linear filter in the kernel with appropriate calls to read_image{f|i|ui} with a
sampler that uses unnormalized coordinates, filter mode set to CLK_FILTER_NEAREST,
addressing mode set to CLK_ADDRESS_NONE, CLK_ADDRESS_CLAMP_TO_EDGE or
CLK_ADDRESS_CLAMP and finally performing the interpolation of color values read from the
image to generate the filtered color value.

8.3 Conversion Rules

In this section we discuss conversion rules that are applied when reading and writing images in a
kernel.

8.3.1 Conversion rules for normalized integer channel data
types

In this section we discuss converting normalized integer channel data types to floating-point
values and vice-versa.

8.3.1.1 Converting normalized integer channel data types to floating-point
values

For images created with image channel data type of CL_UNORM_INT8 and CL_UNORM_INT16,
read_imagef will convert the channel values from an 8-bit or 16-bit unsigned integer to
normalized floating-point values in the range [0.0f … 1.0].

For images created with image channel data type of CL_SNORM_INT8 and CL_SNORM_INT16,
read_imagef will convert the channel values from an 8-bit or 16-bit signed integer to normalized
floating-point values in the range [-1.0 … 1.0].

These conversions are performed as follows:

CL_UNORM_INT8 (8-bit unsigned integer) à float

 normalized float value = (float)c / 255.0f

CL_UNORM_INT_101010 (10-bit unsigned integer) à float

 normalized float value = (float)c / 1023.0f

CL_UNORM_INT16 (16-bit unsigned integer) à float

 normalized float value = (float)c / 65535.0f

Last Revision Date: 11/14/12 Page 337

CL_SNORM_INT8 (8-bit signed integer) à float

normalized float value = max(-1.0f, (float)c / 127.0f)

CL_SNORM_INT16 (16-bit signed integer) à float

normalized float value = max(-1.0f, (float)c / 32767.0f)

The precision of the above conversions is <= 1.5 ulp except for the following cases.

For CL_UNORM_INT8

0 must convert to 0.0f and
255 must convert to 1.0f

For CL_UNORM_INT_101010

0 must convert to 0.0f and
1023 must convert to 1.0f

For CL_UNORM_INT16

0 must convert to 0.0f and
65535 must convert to 1.0f

For CL_SNORM_INT8

-128 and -127 must convert to -1.0f,
0 must convert to 0.0f and
127 must convert to 1.0f

For CL_SNORM_INT16

-32768 and -32767 must convert to -1.0f,
0 must convert to 0.0f and
32767 must convert to 1.0f

8.3.1.2 Converting floating-point values to normalized integer channel data
types

For images created with image channel data type of CL_UNORM_INT8 and CL_UNORM_INT16,
write_imagef will convert the floating-point color value to an 8-bit or 16-bit unsigned integer.

For images created with image channel data type of CL_SNORM_INT8 and CL_SNORM_INT16,
write_imagef will convert the floating-point color value to an 8-bit or 16-bit signed integer.

Last Revision Date: 11/14/12 Page 338

The preferred method for how conversions from floating-point values to normalized integer
values are performed is as follows:

float à CL_UNORM_INT8 (8-bit unsigned integer)

convert_uchar_sat_rte(f * 255.0f)

float à CL_UNORM_INT_101010 (10-bit unsigned integer)

min(convert_ushort_sat_rte(f * 1023.0f), 0x3ff)

float à CL_UNORM_INT16 (16-bit unsigned integer)

 convert_ushort_sat_rte(f * 65535.0f)

float à CL_SNORM_INT8 (8-bit signed integer)

convert_char_sat_rte(f * 127.0f)

float à CL_SNORM_INT16 (16-bit signed integer)

convert_short_sat_rte(f * 32767.0f)

Please refer to section 6.2.3.3 for out-of-range behavior and saturated conversions rules.

OpenCL implementations may choose to approximate the rounding mode used in the
conversions described above. If a rounding mode other than round to nearest even (_rte) is
used, the absolute error of the implementation dependant rounding mode vs. the result produced
by the round to nearest even rounding mode must be <= 0.6.

float à CL_UNORM_INT8 (8-bit unsigned integer)

Let fpreferred = convert_uchar_sat_rte(f * 255.0f)
Let fapprox =
 convert_uchar_sat_<impl-rounding-mode>(f * 255.0f)

fabs(fpreferred – fapprox) must be <= 0.6

float à CL_UNORM_INT_101010 (10-bit unsigned integer)

Let fpreferred = convert_ushort_sat_rte(f * 1023.0f)
Let fapprox =
 convert_ushort_sat_<impl-rounding-mode>(f * 1023.0f)

fabs(fpreferred – fapprox) must be <= 0.6

Last Revision Date: 11/14/12 Page 339

float à CL_UNORM_INT16 (16-bit unsigned integer)

Let fpreferred = convert_ushort_sat_rte(f * 65535.0f)
Let fapprox =
 convert_ushort_sat_<impl-rounding-mode>(f * 65535.0f)

fabs(fpreferred – fapprox) must be <= 0.6

float à CL_SNORM_INT8 (8-bit signed integer)

Let fpreferred = convert_char_sat_rte(f * 127.0f)
Let fapprox =
 convert_char_sat_<impl_rounding_mode>(f * 127.0f)

fabs(fpreferred – fapprox) must be <= 0.6

float à CL_SNORM_INT16 (16-bit signed integer)

Let fpreferred = convert_short_sat_rte(f * 32767.0f)
Let fapprox =
 convert_short_sat_<impl-rounding-mode>(f * 32767.0f)

fabs(fpreferred – fapprox) must be <= 0.6

8.3.2 Conversion rules for half precision floating-point
channel data type

For images created with a channel data type of CL_HALF_FLOAT, the conversions from half to
float are lossless (as described in section 6.1.1.1). Conversions from float to half round
the mantissa using the round to nearest even or round to zero rounding mode. Denormalized
numbers for the half data type which may be generated when converting a float to a half
may be flushed to zero. A float NaN must be converted to an appropriate NaN in the half
type. A float INF must be converted to an appropriate INF in the half type.

8.3.3 Conversion rules for floating-point channel data type

The following rules apply for reading and writing images created with channel data type of
CL_FLOAT.

 NaNs may be converted to a NaN value(s) supported by the device.

Last Revision Date: 11/14/12 Page 340

 Denorms can be flushed to zero.

 All other values must be preserved.

8.3.4 Conversion rules for signed and unsigned 8-bit, 16-bit
and 32-bit integer channel data types

Calls to read_imagei with channel data type values of CL_SIGNED_INT8, CL_SIGNED_INT16
and CL_SIGNED_INT32 return the unmodified integer values stored in the image at specified
location.

Calls to read_imageui with channel data type values of CL_UNSIGNED_INT8,
CL_UNSIGNED_INT16 and CL_UNSIGNED_INT32 return the unmodified integer values stored in
the image at specified location.

Calls to write_imagei will perform one of the following conversions:

32 bit signed integer à 8-bit signed integer

 convert_char_sat(i)

32 bit signed integer à 16-bit signed integer

 convert_short_sat(i)

32 bit signed integer à 32-bit signed integer

 no conversion is performed

Calls to write_imageui will perform one of the following conversions:

32 bit unsigned integer à 8-bit unsigned integer

 convert_uchar_sat(i)

32 bit unsigned integer à 16-bit unsigned integer

 convert_ushort_sat(i)

32 bit unsigned integer à 32-bit unsigned integer

 no conversion is performed

The conversions described in this section must be correctly saturated.

Last Revision Date: 11/14/12 Page 341

8.4 Selecting an Image from an Image Array

Let (u,v,w) represent the unnormalized image coordinate values for reading from and/or
writing to a 2D image in a 2D image array.

The 2D image layer selected is computed as:

 layer = clamp(rint(w), 0, dt – 1)

Let (u,v) represent the unnormalized image coordinate values for reading from and/or writing
to a 1D image in a 1D image array.

The 1D image layer selected is computed as:

 layer = clamp(rint(v), 0, ht – 1)

Last Revision Date: 11/14/12 Page 342

9. Optional Extensions

The list of optional features supported by OpenCL 1.2 is described in the OpenCL 1.2 Extension
Specification document.

Last Revision Date: 11/14/12 Page 343

10. OpenCL Embedded Profile

The OpenCL 1.2 specification describes the feature requirements for desktop platforms. This
section describes the OpenCL 1.2 embedded profile that allows us to target a subset of the
OpenCL 1.2 specification for handheld and embedded platforms. The optional extensions
defined in the OpenCL 1.2 Extension Specification apply to both profiles.

The OpenCL 1.2 embedded profile has the following restrictions:

1. 64 bit integers i.e. long, ulong including the appropriate vector data types and operations
on 64-bit integers are optional. The cles_khr_int6473 extension string will be reported if
the embedded profile implementation supports 64-bit integers.

2. Support for 3D images is optional.

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT and
CL_DEVICE_IMAGE3D_MAX_DEPTH are zero, the call to clCreateImage in the
embedded profile will fail to create the 3D image. The errcode_ret argument in
clCreateImage returns CL_INVALID_OPERATION. Declaring arguments of type
image3d_t in a kernel will result in a compilation error.

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_HEIGHT and
CL_DEVICE_IMAGE3D_MAX_DEPTH > 0, 3D images are supported by the OpenCL
embedded profile implementation. clCreateImage will work as defined by the OpenCL
specification. The image3d_t data type can be used in a kernel(s).

3. Support for 2D image array writes is optional. If the cles_khr_2d_image_array_writes

extension is supported by the embedded profile, writes to 2D image arrays are supported.

4. Image and image arrays created with an image_channel_data_type value of
CL_FLOAT or CL_HALF_FLOAT can only be used with samplers that use a filter mode of
CL_FILTER_NEAREST. The values returned by read_imagef and read_imageh74 for 2D
and 3D images if image_channel_data_type value is CL_FLOAT or
CL_HALF_FLOAT and sampler with filter_mode = CL_FILTER_LINEAR are
undefined.

5. The sampler addressing modes supported for image and image arrays are:

CLK_ADDRESS_NONE, CLK_ADDRESS_MIRRORED_REPEAT,
CLK_ADDRESS_REPEAT, CLK_ADDRESS_CLAMP_TO_EDGE and
CLK_ADDRESS_CLAMP.

73 Note that the performance of 64-bit integer arithmetic can vary significantly between embedded devices.
74 If cl_khr_fp16 extension is supported.

Last Revision Date: 11/14/12 Page 344

6. The mandated minimum single precision floating-point capability given by
CL_DEVICE_SINGLE_FP_CONFIG is CL_FP_ROUND_TO_ZERO or
CL_FP_ROUND_TO_NEAREST. If CL_FP_ROUND_TO_NEAREST is supported, the
default rounding mode will be round to nearest even; otherwise the default rounding
mode will be round to zero.

7. The single precision floating-point operations (addition, subtraction and multiplication)
shall be correctly rounded. Zero results may always be positive 0.0. The accuracy of
division and sqrt are given by table 10.1.

If CL_FP_INF_NAN is not set in CL_DEVICE_SINGLE_FP_CONFIG, and one of the
operands or the result of addition, subtraction, multiplication or division would signal the
overflow or invalid exception (see IEEE 754 specification), the value of the result is
implementation-defined. Likewise, single precision comparison operators (<, >, <=, >=,
==, !=) return implementation-defined values when one or more operands is a NaN.

In all cases, conversions (section 6.2 and 6.12.7) shall be correctly rounded as described
for the FULL_PROFILE, including those that consume or produce an INF or NaN. The
built-in math functions (section 6.12.2) shall behave as described for the FULL_PROFILE,
including edge case behavior described in section 7.5.1 but with accuracy as described by
table 10.1.

Note: If addition, subtraction and multiplication have default round to zero rounding
mode, then fract, fma and fdim shall produce the correctly rounded result for round to
zero rounding mode.

This relaxation of the requirement to adhere to IEEE 754 requirements for basic floating-
point operations, though extremely undesirable, is to provide flexibility for embedded
devices that have lot stricter requirements on hardware area budgets.

8. Denormalized numbers for the half data type which may be generated when converting a

float to a half using variants of the vstore_half function or when converting from a half
to a float using variants of the vload_half function can be flushed to zero. Refer to
section 6.1.1.1.

9. The precision of conversions from CL_UNORM_INT8, CL_SNORM_INT8,

CL_UNORM_INT16 and CL_SNORM_INT16 to float is <= 2 ulp for the embedded profile
instead of <= 1.5 ulp as defined in section 8.3.1.1. The exception cases described in
section 8.3.1.1 and given below apply to the embedded profile.

For CL_UNORM_INT8

0 must convert to 0.0f and
255 must convert to 1.0f

For CL_UNORM_INT16

Last Revision Date: 11/14/12 Page 345

0 must convert to 0.0f and
65535 must convert to 1.0f

For CL_SNORM_INT8

-128 and -127 must convert to -1.0f,
0 must convert to 0.0f and
127 must convert to 1.0f

For CL_SNORM_INT16

-32768 and -32767 must convert to -1.0f,
0 must convert to 0.0f and
32767 must convert to 1.0f

 For CL_UNORM_INT_101010

0 must convert to 0.0f and
1023 must convert to 1.0f

10. Built-in atomic functions as defined in section 6.12.11 are optional.

The following optional extensions defined in the OpenCL 1.2 Extension Specification are
available to the embedded profile:

 cl_khr_int64_base_atomics
 cl_khr_int64_extended_atomics
 cl_khr_fp16
 cles_khr_int64. If double precision is supported i.e. CL_DEVICE_DOUBLE_FP_CONFIG

is not zero, then cles_khr_int64 must also be supported.
 cles_khr_2d_image_array_writes. This extension indicates that the embedded profile

device supports writes to 2D image arrays.

The following optional extensions defined in the OpenCL 1.0 and OpenCL 1.1 specifications
(section 9) are also available to the embedded profile:

 cl_khr_global_int32_base_atomics
 cl_khr_global_int32_extended_atomics
 cl_khr_local_int32_base_atomics
 cl_khr_local_int32_extended_atomics

Table 10.1 describes the minimum accuracy of single precision floating-point arithmetic
operations given as ULP values for the embedded profile. The reference value used to compute
the ULP value of an arithmetic operation is the infinitely precise result.

Last Revision Date: 11/14/12 Page 346

Function Min Accuracy - ULP values75
x + y Correctly rounded
x – y Correctly rounded
x * y Correctly rounded

1.0 / x <= 3 ulp
x / y <= 3 ulp

acos <= 4 ulp

acospi <= 5 ulp
asin <= 4 ulp

asinpi <= 5 ulp
atan <= 5 ulp

atan2 <= 6 ulp
atanpi <= 5 ulp

atan2pi <= 6 ulp
acosh <= 4 ulp
asinh <= 4 ulp
atanh <= 5 ulp

cbrt <= 4 ulp
ceil Correctly rounded

copysign 0 ulp
cos <= 4 ulp

cosh <= 4 ulp
cospi <= 4 ulp

erfc <= 16 ulp
erf <= 16 ulp

exp <= 4 ulp
exp2 <= 4 ulp

exp10 <= 4 ulp
expm1 <= 4 ulp

fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded

fmax 0 ulp
fmin 0 ulp
fmod 0 ulp
fract Correctly rounded
frexp 0 ulp
hypot <= 4 ulp
ilogb 0 ulp

75 0 ulp is used for math functions that do not require rounding.

Last Revision Date: 11/14/12 Page 347

ldexp Correctly rounded
log <= 4 ulp

log2 <= 4 ulp
log10 <= 4 ulp
log1p <= 4 ulp
logb 0 ulp
mad Any value allowed (infinite ulp)

maxmag 0 ulp
minmag 0 ulp

modf 0 ulp
nan 0 ulp

nextafter 0 ulp
pow(x, y) <= 16 ulp

pown(x, y) <= 16 ulp
powr(x, y) <= 16 ulp
remainder 0 ulp

remquo 0 ulp
rint Correctly rounded

rootn <= 16 ulp
round Correctly rounded
rsqrt <= 4 ulp

sin <= 4 ulp
sincos <= 4 ulp for sine and cosine values

sinh <= 4 ulp
sinpi <= 4 ulp
sqrt <= 4 ulp
tan <= 5 ulp

tanh <= 5 ulp
tanpi <= 6 ulp

tgamma <= 16 ulp
trunc Correctly rounded

half_cos <= 8192 ulp

half_divide <= 8192 ulp
half_exp <= 8192 ulp

half_exp2 <= 8192 ulp
half_exp10 <= 8192 ulp

half_log <= 8192 ulp
half_log2 <= 8192 ulp

half_log10 <= 8192 ulp
half_powr <= 8192 ulp
half_recip <= 8192 ulp
half_rsqrt <= 8192 ulp

half_sin <= 8192 ulp
half_sqrt <= 8192 ulp

Last Revision Date: 11/14/12 Page 348

half_tan <= 8192 ulp

native_cos Implementation-defined
native_divide Implementation-defined

native_exp Implementation-defined
native_exp2 Implementation-defined

native_exp10 Implementation-defined
native_log Implementation-defined

native_log2 Implementation-defined
native_log10 Implementation-defined
native_powr Implementation-defined
native_recip Implementation-defined
native_rsqrt Implementation-defined

native_sin Implementation-defined
native_sqrt Implementation-defined
native_tan Implementation-defined

 Table 10.1 ULP values for built-in math functions

The __EMBEDDED_PROFILE__ macro is added to the language (refer to section 6.10). It will
be the integer constant 1 for OpenCL devices that implement the embedded profile and is
undefined otherwise.

CL_PLATFORM_PROFILE defined in table 4.1 will return the string EMBEDDED_PROFILE if
the OpenCL implementation supports the embedded profile only.

The minimum maximum values specified in table 4.3 have been modified for the OpenCL
embedded profile and are:

cl_device_info Return Type Description
CL_DEVICE_TYPE cl_device_type The OpenCL device type. Currently

supported values are:

CL_DEVICE_TYPE_CPU,
CL_DEVICE_TYPE_GPU,
CL_DEVICE_TYPE_ACCELERATOR,
CL_DEVICE_TYPE_DEFAULT, a
combination of the above types or
CL_DEVICE_TYPE_CUSTOM..

CL_DEVICE_VENDOR_ID cl_uint A unique device vendor identifier. An
example of a unique device identifier
could be the PCIe ID.

CL_DEVICE_MAX_COMPUTE_UNITS cl_uint The number of parallel compute cores
on the OpenCL device. The minimum
value is 1.

Last Revision Date: 11/14/12 Page 349

CL_DEVICE_MAX_WORK_ITEM_
DIMENSIONS

unsigned int Maximum dimensions that specify the
global and local work-item IDs. The
minimum value is 3 for devices that
are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_WORK_ITEM_SIZES size_t [] Maximum number of work-items that
can be specified in each dimension of
the work-group to
clEnqueueNDRangeKernel.

Returns n size_t entries, where n is the
value returned by the query for
CL_DEVICE_MAX_WORK_ITEM_DIMENSIO
NS.

The minimum value is (1, 1, 1) for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_WORK_GROUP_SIZE size_t Maximum number of work-items in a
work-group executing a kernel using
the data parallel execution model.
(Refer to clEnqueueNDRangeKernel).
The minimum value is 1.

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_CHAR

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_SHORT

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_INT

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_LONG

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_FLOAT

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_DOUBLE

CL_DEVICE_PREFERRED_
VECTOR_WIDTH_HALF

cl_uint Preferred native vector width size for
built-in scalar types that can be put
into vectors. The vector width is
defined as the number of scalar
elements that can be stored in the
vector.

If double precision is not supported,
CL_DEVICE_PREFERRED_VECTOR_WID
TH_DOUBLE must return 0.

If the cl_khr_fp16 extension is not
supported,
CL_DEVICE_PREFERRED_VECTOR_WID
TH_HALF must return 0.

CL_DEVICE_NATIVE_
VECTOR_WIDTH_CHAR

CL_DEVICE_NATIVE_
VECTOR_WIDTH_SHORT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_INT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_LONG

cl_uint Returns the native ISA vector width.
The vector width is defined as the
number of scalar elements that can be
stored in the vector.

If double precision is not supported,
CL_DEVICE_NATIVE_VECTOR_WIDTH_
DOUBLE must return 0.

Last Revision Date: 11/14/12 Page 350

CL_DEVICE_NATIVE_
VECTOR_WIDTH_FLOAT

CL_DEVICE_NATIVE_
VECTOR_WIDTH_DOUBLE

CL_DEVICE_NATIVE_
VECTOR_WIDTH_HALF

If the cl_khr_fp16 extension is not
supported,
CL_DEVICE_NATIVE_VECTOR_WIDTH_
HALF must return 0.

CL_DEVICE_MAX_CLOCK_FREQUENCY cl_uint Maximum configured clock frequency
of the device in MHz.

CL_DEVICE_ADDRESS_BITS cl_uint The default compute device address
space size specified as an unsigned
integer value in bits. Currently
supported values are 32 or 64 bits. If
the value reported by the embedded
profile is 64, then the cles_khr_int64
extension must be supported.

CL_DEVICE_MAX_WORK_GROUP_SIZE size_t Maximum number of work-items in a
work-group executing a kernel using
the data parallel execution model.
(Refer to clEnqueueNDRangeKernel).
The minimum value is 1.

CL_DEVICE_MAX_MEM_ALLOC_SIZE unsigned

long long
Max size of memory object allocation
in bytes. The minimum value is max
(1/4th of
CL_DEVICE_GLOBAL_MEM_SIZE ,
1*1024*1024) for devices that are not
of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_IMAGE_SUPPORT cl_bool Is CL_TRUE if images are supported

by the OpenCL device and CL_FALSE
otherwise.

CL_DEVICE_MAX_READ_IMAGE_ARGS

unsigned int Max number of simultaneous image
objects that can be read by a kernel.
The minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_WRITE_IMAGE_ARGS unsigned int Max number of simultaneous image
objects that can be written to by a
kernel. The minimum value is 1 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE2D_MAX_WIDTH size_t Max width of 2D image in pixels. The
minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

Last Revision Date: 11/14/12 Page 351

CL_DEVICE_IMAGE2D_MAX_HEIGHT size_t Max height of 2D image in pixels. The
minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_WIDTH size_t Max width of 3D image in pixels. The
minimum value is 0 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE3D_MAX_HEIGHT size_t Max height of 3D image in pixels. The
minimum value is 0.

CL_DEVICE_IMAGE3D_MAX_DEPTH size_t Max depth of 3D image in pixels. The
minimum value is 0.

CL_DEVICE_IMAGE_MAX_BUFFER_SIZE size_t Max number of pixels for a 1D image
created from a buffer object.

The minimum value is 2048 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_IMAGE_MAX_ARRAY_SIZE size_t Max number of images in a 1D or 2D
image array.

The minimum value is 256 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_SAMPLERS unsigned int Maximum number of samplers that
can be used in a kernel. Refer to
section 6.12.14 for a detailed
description on samplers. The
minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE.

CL_DEVICE_MAX_PARAMETER_SIZE size_t Max size in bytes of the arguments

that can be passed to a kernel. The
minimum value is 256 bytes for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MEM_BASE_ADDR_ALIGN

cl_uint The minimum value is the size (in
bits) of the largest OpenCL built-in
data
type supported by the device
(long16 in FULL profile, long16
or int16 in EMBEDDED profile) for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

Last Revision Date: 11/14/12 Page 352

CL_DEVICE_SINGLE_FP_CONFIG cl_device_

fp_config
Describes single precision floating-
point capability of the device. This is
a bit-field that describes one or more
of the following values:

CL_FP_DENORM – denorms are supported

CL_FP_INF_NAN – INF and quiet NaNs are
supported.

CL_FP_ROUND_TO_NEAREST– round to
nearest even rounding mode supported

CL_FP_ROUND_TO_ZERO – round to zero
rounding mode supported

CL_FP_ROUND_TO_INF – round to positive
and negative infinity rounding modes
supported

CL_FP_FMA – IEEE754-2008 fused
multiply-add is supported.

CL_FP_CORRECTLY_ROUNDED_DIVIDE
_SQRT – divide and sqrt are correctly
rounded as defined by the IEEE754
specification.

CL_FP_SOFT_FLOAT – Basic floating-
point operations (such as addition, subtraction,
multiplication) are implemented in software.

The mandated minimum floating-point
capability is:
CL_FP_ROUND_TO_ZERO or
CL_FP_ROUND_TO_NEAREST
for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_DOUBLE_FP_CONFIG cl_device_
fp_config

Describes double precision floating-
point capability of the OpenCL
device. This is a bit-field that
describes one or more of the following
values:

CL_FP_DENORM – denorms are supported

CL_FP_INF_NAN – INF and NaNs are supported.

CL_FP_ROUND_TO_NEAREST – round to
nearest even rounding mode supported.

CL_FP_ROUND_TO_ZERO – round to zero

Last Revision Date: 11/14/12 Page 353

rounding mode supported.

CL_FP_ROUND_TO_INF – round to positive and
negative infinity rounding modes supported.

CP_FP_FMA – IEEE754-2008 fused multiply-add
is supported.

CL_FP_SOFT_FLOAT – Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

Double precision is an optional feature
so the mandated minimum double
precision floating-point capability is 0.

If double precision is supported by the
device, then the minimum double
precision floating-point capability
must be:
CL_FP_FMA |
CL_FP_ROUND_TO_NEAREST |
CL_FP_ROUND_TO_ZERO |
CL_FP_ROUND_TO_INF |
CL_FP_INF_NAN |
CL_FP_DENORM.

CL_DEVICE_GLOBAL_MEM_CACHE_TYPE cl_device_mem_

cache_type
Type of global memory cache
supported. Valid values are:
CL_NONE,
CL_READ_ONLY_CACHE and
CL_READ_WRITE_CACHE.

CL_DEVICE_GLOBAL_MEM_CACHELINE_
SIZE

cl_uint Size of global memory cache line in
bytes.

CL_DEVICE_GLOBAL_MEM_CACHE_
SIZE

cl_ulong Size of global memory cache in bytes.
CL_DEVICE_GLOBAL_MEM_SIZE cl_ulong Size of global device memory in

bytes.

CL_DEVICE_MAX_CONSTANT_BUFFER_
SIZE

unsigned
long long

Max size in bytes of a constant buffer
allocation. The minimum value is 1
KB for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_ARGS unsigned int Max number of arguments declared
with the __constant qualifier in a
kernel. The minimum value is 4 for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_LOCAL_MEM_TYPE cl_device_

local_mem_type
Type of local memory supported.
This can be set to CL_LOCAL implying

Last Revision Date: 11/14/12 Page 354

dedicated local memory storage such
as SRAM, or CL_GLOBAL.

For custom devices, CL_NONE can
also be returned indicating no local
memory support.

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong Size of local memory arena in bytes.
The minimum value is 1 KB for
devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_ERROR_CORRECTION_
SUPPORT

cl_bool Is CL_TRUE if the device implements
error correction for all accesses to
compute device memory (global and
constant). Is CL_FALSE if the device
does not implement such error
correction.

CL_DEVICE_HOST_UNIFIED_MEMORY cl_bool Is CL_TRUE if the device and the host

have a unified memory subsystem and
is CL_FALSE otherwise.

CL_DEVICE_PROFILING_TIMER_
RESOLUTION

size_t Describes the resolution of device
timer. This is measured in
nanoseconds. Refer to section 5.12
for details.

CL_DEVICE_ENDIAN_LITTLE cl_bool Is CL_TRUE if the OpenCL device is a

little endian device and CL_FALSE
otherwise.

CL_DEVICE_AVAILABLE cl_bool Is CL_TRUE if the device is available
and CL_FALSE if the device is not
available.

CL_DEVICE_COMPILER_AVAILABLE cl_bool Is CL_FALSE if the implementation

does not have a compiler available to
compile the program source.
Is CL_TRUE if the compiler is
available.

This can be CL_FALSE for the
embedded platform profile only.

CL_DEVICE_LINKER_AVAILABLE cl_bool Is CL_FALSE if the implementation
does not have a linker available.
Is CL_TRUE if the linker is available.

Last Revision Date: 11/14/12 Page 355

This can be CL_FALSE for the
embedded platform profile only.

This must be CL_TRUE if
CL_DEVICE_COMPILER_AVAILABLE is
CL_TRUE.

CL_DEVICE_EXECUTION_CAPABILITIES cl_device_exec_

capabilities
Describes the execution capabilities of
the device. This is a bit-field that
describes one or more of the following
values:

CL_EXEC_KERNEL – The OpenCL
device can execute OpenCL kernels.

CL_EXEC_NATIVE_KERNEL – The
OpenCL device can execute native
kernels.

The mandated minimum capability is:
CL_EXEC_KERNEL.

CL_DEVICE_QUEUE_PROPERTIES cl_command_

queue_properties
Describes the command-queue
properties supported of the device.
This is a bit-field that describes one or
more of the following values:

CL_QUEUE_OUT_OF_ORDER_EXEC_
MODE_ENABLE

CL_QUEUE_PROFILING_ENABLE

These properties are described in table
5.1.

The mandated minimum capability is:
CL_QUEUE_PROFILING_ENABLE.

CL_DEVICE_BUILT_IN_KERNELS char[] A semi-colon separated list of built-in

kernels supported by the device. An
empty string is returned if no built-in
kernels are supported by the device.

CL_DEVICE_PRINTF_BUFFER_SIZE size_t Maximum size of the internal buffer

that holds the output of printf calls
from a kernel. The minimum value
for the EMBEDDED profile is 1 KB.

Last Revision Date: 11/14/12 Page 356

CL_DEVICE_PREFERRED_INTEROP_USER_
SYNC

cl_bool Is CL_TRUE if the device’s preference
is for the user to be responsible for
synchronization, when sharing
memory objects between OpenCL and
other APIs such as DirectX,
CL_FALSE if the device /
implementation has a performant path
for performing synchronization of
memory object shared between
OpenCL and other APIs such as
DirectX.

CL_DEVICE_PARENT_DEVICE cl_device_id Returns the cl_device_id of the parent

device to which this sub-device
belongs. If device is a root-level
device, a NULL value is returned.

CL_DEVICE_PARTITION_MAX_SUB_DEVIC
ES

cl_uint Returns the maximum number of sub-
devices that can be created when a
device is partitioned.

The value returned cannot exceed
CL_DEVICE_MAX_COMPUTE_UNITS.

CL_DEVICE_PARTITION_
PROPERTIES

cl_device_
partition_
property[]

Returns the list of partition types
supported by device. The return type
is an array of
cl_device_partition_property values
drawn from the following list:

CL_DEVICE_PARTITION_EQUALLY
CL_DEVICE_PARTITION_BY_COUNTS
CL_DEVICE_PARTITION_BY_AFFINITY_DO
MAIN

If the device does not support any
partition types, a value of 0 will be
returned.

CL_DEVICE_PARTITION_AFFINITY_
DOMAIN

cl_device_
affinity_domain

Returns the list of supported affinity
domains for partitioning the device
using
CL_DEVICE_PARTITION_BY_AFFINITY_DO
MAIN. This is a bit-field that describes
one or more of the following values:

CL_AFFINITY_DOMAIN_NUMA
CL_AFFINITY_DOMAIN_L4_CACHE
CL_AFFINITY_DOMAIN_L3_CACHE
CL_AFFINITY_DOMAIN_L2_CACHE
CL_AFFINITY_DOMAIN_L1_CACHE

Last Revision Date: 11/14/12 Page 357

CL_AFFINITY_DOMAIN_NEXT_PARTITIONA
BLE

If the device does not support any
affinity domains, a value of 0 will be
returned.

CL_DEVICE_PARTITION_TYPE cl_device_
partition_
property[]

Returns the properties argument
specified in clCreateSubDevices if
device is a sub-device. Otherwise the
implementation may either return a
param_value_size_ret of 0 i.e. there is
no partition type associated with
device or can return a property value
of 0 (where 0 is used to terminate the
partition property list) in the memory
that param_value points to.

CL_DEVICE_REFERENCE_COUNT cl_uint Returns the device reference count. If
the device is a root-level device, a
reference count of one is returned.

If CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_TRUE, the values assigned to
CL_DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS,
CL_DEVICE_IMAGE2D_MAX_WIDTH, CL_DEVICE_IMAGE2D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_DEPTH and CL_DEVICE_MAX_SAMPLERS by the
implementation must be greater than or equal to the minimum values specified in the embedded
profile version of table 4.3 given above. In addition, the following list of image formats must be
supported by the OpenCL embedded profile implementation.

For 1D, 2D, optional 3D images,1D and 2D image array objects, the minimum list of supported
image formats (for reading and writing) is:

image_num_channels image_channel_order image_channel_data_type
4 CL_RGBA CL_UNORM_INT8

CL_UNORM_INT16

CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32

CL_HALF_FLOAT
CL_FLOAT

Last Revision Date: 11/14/12 Page 358

11. References

1. The ISO/IEC 9899:1999 “C” Language Specification.

2. The ISO/IEC JTC1 SC22 WG14 N1169 Specification.

3. The ANSI/IEEE Std 754-1985 and 754-2008 Specifications.

4. The AltiVec™ Technology Programming Interface Manual.

5. Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugarman, Kayvon Fatahalian, Mike Houston, Pat
Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware

6. Ian Buck. Brook Specification v0.2.
http://merrimac.stanford.edu/brook/brookspec-v0.2.pdf

7. NVIDIA CUDA Programming Guide.
http://developer.nvidia.com/object/cuda.html

8. ATI CTM Guide – Technical Reference Manual
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf

9. OpenMP Application Program Interface.
http://www.openmp.org/drupal/mp-documents/spec25.pdf

10. The OpenGL Specification and the OpenGL Shading Language Specification
http://www.opengl.org/registry/

11. NESL – A nested data parallel language.
http://www.cs.cmu.edu/~scandal/nesl.html

12. On the definition of ulp (x) by Jean-Michel Muller
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5504.pdf

13. Explicit Memory Fences
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2262.html

14. Lefohn, Kniss, Strzodka, Sengupta, Owens, "Glift: Generic, Efficient, Random-Access GPU Data
Structures," ACM Transactions on Graphics, Jan. 2006. pp 60--99.

15. Pharr, Lefohn, Kolb, Lalonde, Foley, Berry, "Programmable Graphics---The Future of Interactive
Rendering," Neoptica Whitepaper, Mar. 2007.

16. Jens Maurer, Michael Wong. Towards support for attributes in C++ (Revision 4).
March 2008. Proposed to WG21 “Programming Language C++, Core Working Group”.

17. GCC Attribute Syntax. http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html.

Last Revision Date: 11/14/12 Page 359

Appendix A

A.1 Shared OpenCL Objects

This section describes which objects can be shared across multiple command-queues created
within a host process.

OpenCL memory objects, program objects and kernel objects are created using a context and can
be shared across multiple command-queues created using the same context. Event objects can be
created when a command is queued to a command-queue. These event objects can be shared
across multiple command-queues created using the same context.

The application needs to implement appropriate synchronization across threads on the host
processor to ensure that the changes to the state of a shared object (such as a command-queue
object, memory object, program or kernel object) happen in the correct order (deemed correct by
the application) when multiple command-queues in multiple threads are making changes to the
state of a shared object.

A command-queue can cache changes to the state of a memory object on the device associated
with the command-queue. To synchronize changes to a memory object across command-queues,
the application must do the following:

In the command-queue that includes commands that modify the state of a memory object, the
application must do the following:

 Get appropriate event objects for commands that modify the state of the shared memory
object.

 Call the clFlush (or clFinish) API to issue any outstanding commands from this

command-queue.

In the command-queue that wants to synchronize to the latest state of a memory object,
commands queued by the application must use the appropriate event objects that represent
commands that modify the state of the shared memory object as event objects to wait on. This is
to ensure that commands that use this shared memory object complete in the previous command-
queue before the memory objects are used by commands executing in this command-queue.

The results of modifying a shared resource in one command-queue while it is being used by
another command-queue are undefined.

Last Revision Date: 11/14/12 Page 360

A.2 Multiple Host Threads

All OpenCL API calls are thread-safe76 except clSetKernelArg. clSetKernelArg is safe to call
from any host thread, and is safe to call re-entrantly so long as concurrent calls operate on
different cl_kernel objects. However, the behavior of the cl_kernel object is undefined if
clSetKernelArg is called from multiple host threads on the same cl_kernel object at the same
time77. Please note that there are additional limitations as to which OpenCL APIs may be called
from OpenCL callback functions -- please see section 5.9.

The behavior of OpenCL APIs called from an interrupt or signal handler is implementation-
defined

The OpenCL implementation should be able to create multiple command-queues for a given
OpenCL context and multiple OpenCL contexts in an application running on the host processor.

76 Please refer to the OpenCL glossary for the OpenCL definition of thread-safe. This definition may be different
from usage of the term in other contexts.

77 There is an inherent race condition in the design of OpenCL that occurs between setting a kernel argument and
using the kernel with clEnqueueNDRangeKernel or clEnqueueTask. Another host thread might change the kernel
arguments between when a host thread sets the kernel arguments and then enqueues the kernel, causing the wrong
kernel arguments to be enqueued. Rather than attempt to share cl_kernel objects among multiple host threads,
applications are strongly encouraged to make additional cl_kernel objects for kernel functions for each host thread.

Last Revision Date: 11/14/12 Page 361

Appendix B — Portability

OpenCL is designed to be portable to other architectures and hardware designs. OpenCL uses at
its core a C99 based programming language. Floating-point arithmetic is based on the IEEE-
754 and IEEE-754-2008 standards. The memory objects, pointer qualifiers and weakly ordered
memory are designed to provide maximum compatibility with discrete memory architectures
implemented by OpenCL devices. Command-queues and barriers allow for synchronization
between the host and OpenCL devices. The design, capabilities and limitations of OpenCL are
very much a reflection of the capabilities of underlying hardware.

Unfortunately, there are a number of areas where idiosyncrasies of one hardware platform may
allow it to do some things that do not work on another. By virtue of the rich operating system
resident on the CPU, on some implementations the kernels executing on a CPU may be able to
call out to system services whereas the same calls on the GPU will likely fail for now. (Please
see section 6.9). Since there is some advantage to having these services available for debugging
purposes, implementations can use the OpenCL extension mechanism to implement these
services.

Likewise, the heterogeneity of computing architectures might mean that a particular loop
construct might execute at an acceptable speed on the CPU but very poorly on a GPU, for
example. CPUs are designed in general to work well on latency sensitive algorithms on single
threaded tasks, whereas common GPUs may encounter extremely long latencies, potentially
orders of magnitude worse. A developer interested in writing portable code may find that it is
necessary to test his design on a diversity of hardware designs to make sure that key algorithms
are structured in a way that works well on a diversity of hardware. We suggest favoring more
work-items over fewer. It is anticipated that over the coming months and years experience will
produce a set of best practices that will help foster a uniformly favorable experience on a
diversity of computing devices.

Of somewhat more concern is the topic of endianness. Since a majority of devices supported by
the initial implementation of OpenCL are little-endian, developers need to make sure that their
kernels are tested on both big-endian and little-endian devices to ensure source compatibility
with OpenCL devices now and in the future. The endian attribute qualifier is supported by the
OpenCL C programming language to allow developers to specify whether the data uses the
endianness of the host or the OpenCL device. This allows the OpenCL compiler to do
appropriate endian-conversion on load and store operations from or to this data.

We also describe how endianness can leak into an implementation causing kernels to produce
unintended results:

When a big-endian vector machine (e.g. AltiVec, CELL SPE) loads a vector, the order of the
data is retained. That is both the order of the bytes within each element and the order of the
elements in the vector are the same as in memory. When a little-endian vector machine (e.g.
SSE) loads a vector, the order of the data in register (where all the work is done) is reversed.
Both the order of the bytes within each element and the order of the elements with respect to one

Last Revision Date: 11/14/12 Page 362

another in the vector are reversed.

Memory:

 uint4 a =

In register (big-endian):

 uint4 a =

In register (little-endian):

uint4 a =

This allows little-endian machines to use a single vector load to load little-endian data, regardless
of how large each piece of data is in the vector. That is the transformation is equally valid
whether that vector was a uchar16 or a ulong2. Of course, as is well known, little-endian
machines actually78 store their data in reverse byte order to compensate for the little-endian
storage format of the array elements:

Memory (big-endian):

 uint4 a =

Memory (little-endian):

 uint4 a =

Once that data is loaded into a vector, we end up with this:

In register (big-endian):

 uint4 a = |

In register (little-endian):

 uint4 a =

78 Note that we are talking about the programming model here. In reality, little endian systems might choose to
simply address their bytes from "the right" or reverse the "order" of the bits in the byte. Either of these choices
would mean that no big swap would need to occur in hardware.

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

0x0F0E0D0C 0x0B0A0908 0x07060504 0x03020100

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

0x03020100 0x07060504 0x0B0A0908 0x0F0E0D0C

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

0x0C0D0E0F 0x08090A0B 0x04050607 0x00010203

Last Revision Date: 11/14/12 Page 363

That is, in the process of correcting the endianness of the bytes within each element, the machine
ends up reversing the order that the elements appear in the vector with respect to each other
within the vector. 0x00010203 appears at the left of the big-endian vector and at the right of
the little-endian vector.

When the host and device have different endianness, the developer must ensure that kernel
argument values are processed correctly. The implementation may or may not automatically
convert endianness of kernel arguments. Developers should consult vendor documentation for
guidance on how to handle kernel arguments in these situations.

OpenCL provides a consistent programming model across architectures by numbering elements
according to their order in memory. Concepts such as even/odd and high/low follow
accordingly. Once the data is loaded into registers, we find that element 0 is at the left of the
big-endian vector and element 0 is at the right of the little-endian vector:

 float x[4];
 float4 v = vload4(0, x);

Big-endian:
v contains { x[0], x[1], x[2], x[3] }

Little-endian:

v contains { x[3], x[2], x[1], x[0] }

The compiler is aware that this swap occurs and references elements accordingly. So long as we
refer to them by a numeric index such as .s0123456789abcdef or by descriptors such as
.xyzw, .hi, .lo, .even and .odd, everything works transparently. Any ordering reversal is
undone when the data is stored back to memory. The developer should be able to work with a big
endian programming model and ignore the element ordering problem in the vector ... for most
problems. This mechanism relies on the fact that we can rely on a consistent element numbering.
Once we change numbering system, for example by conversion-free casting (using as_typen)
a vector to another vector of the same size but a different number of elements, then we get
different results on different implementations depending on whether the system is big- endian, or
little-endian or indeed has no vector unit at all. (Thus, the behavior of bitcasts to vectors of
different numbers of elements is implementation-defined, see section 6.2.4)

 An example follows:

 float x[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
 float4 v = vload4(0, x);
 uint4 y = (uint4) v; // legal, portable
 ushort8 z = (ushort8) v; // legal, not portable

// element size changed

Big-endian:

Last Revision Date: 11/14/12 Page 364

v contains { 0.0f, 1.0f, 2.0f, 3.0f }
y contains { 0x00000000, 0x3f800000,

0x40000000, 0x40400000 }
 z contains { 0x0000, 0x0000, 0x3f80, 0x0000,

0x4000, 0x0000, 0x4040, 0x0000 }
 z.z is 0x3f80

Little-endian:
v contains { 3.0f, 2.0f, 1.0f, 0.0f }
y contains { 0x40400000, 0x40000000,

0x3f800000, 0x00000000 }
z contains { 0x4040, 0x0000, 0x4000,

0x0000, 0x3f80, 0x0000, 0x0000, 0x0000
}

z.z is 0

Here, the value in z.z is not the same between big- and little-endian vector machines

OpenCL could have made it illegal to do a conversion free cast that changes the number of
elements in the name of portability. However, while OpenCL provides a common set of
operators drawing from the set that are typically found on vector machines, it can not provide
access to everything every ISA may offer in a consistent uniform portable manner. Many vector
ISAs provide special purpose instructions that greatly accelerate specific operations such as
DCT, SAD, or 3D geometry. It is not intended for OpenCL to be so heavy handed that time-
critical performance sensitive algorithms can not be written by knowledgeable developers to
perform at near peak performance. Developers willing to throw away portability should be able
to use the platform-specific instructions in their code. For this reason, OpenCL is designed to
allow traditional vector C language programming extensions, such as the AltiVec C
Programming Interface or the Intel C programming interfaces (such as those found in
emmintrin.h) to be used directly in OpenCL with OpenCL data types as an extension to OpenCL.
 As these interfaces rely on the ability to do conversion-free casts that change the number of
elements in the vector to function properly, OpenCL allows them too.

As a general rule, any operation that operates on vector types in segments that are not the same
size as the vector element size may break on other hardware with different endianness or
different vector architecture.

Examples might include:

 Combining two uchar8's containing high and low bytes of a ushort, to make a
ushort8 using .even and .odd operators (please use upsample() for this, see
section 6.12.3)

 Any bitcast that changes the number of elements in the vector. (Operations on the new

type are non-portable.)

Last Revision Date: 11/14/12 Page 365

 Swizzle operations that change the order of data using chunk sizes that are not the same
as the element size

Examples of operations that are portable:

 Combining two uint8's to make a uchar16 using .even and .odd operators. For
example to interleave left and right audio streams.

 Any bitcast that does not change the number of elements (e.g. (float4) unit4 --

we define the storage format for floating-point types)

 Swizzle operations that swizzle elements of the same size as the elements of the vector.

OpenCL has made some additions to C to make application behavior more dependable than C.
Most notably in a few cases OpenCL defines the behavior of some operations that are undefined
in C99:

 OpenCL provides convert_ operators for conversion between all types. C99 does not
define what happens when a floating-point type is converted to integer type and the
floating-point value lies outside the representable range of the integer type after rounding.
When the _sat variant of the conversion is used, the float shall be converted to the
nearest representable integer value. Similarly, OpenCL also makes recommendations
about what should happen with NaN. Hardware manufacturers that provide the saturated
conversion in hardware may use the saturated conversion hardware for both the saturated
and non-saturated versions of the OpenCL convert_ operator. OpenCL does not
define what happens for the non-saturated conversions when floating-point operands are
outside the range representable integers after rounding.

 The format of half, float, and double types is defined to be the binary16, binary32

and binary64 formats in the draft IEEE-754 standard. (The latter two are identical to the
existing IEEE-754 standard.) You may depend on the positioning and meaning of the
bits in these types.

 OpenCL defines behavior for oversized shift values. Shift operations that shift greater

than or equal to the number of bits in the first operand reduce the shift value modulo the
number of bits in the element. For example, if we shift an int4 left by 33 bits,
OpenCL treats this as shift left by 33%32 = 1 bit.

 A number of edge cases for math library functions are more rigorously defined than in

C99. Please see section 7.5.

Last Revision Date: 11/14/12 Page 366

Appendix C — Application Data Types

This section documents the provided host application types and constant definitions. The
documented material describes the commonly defined data structures, types and constant values
available to all platforms and architectures. The addition of these details demonstrates our
commitment to maintaining a portable programming environment and potentially deters changes
to the supplied headers.

C.1 Shared Application Scalar Data Types

The following application scalar types are provided for application convenience.

cl_char
cl_uchar
cl_short
cl_ushort
cl_int
cl_uint
cl_long
cl_ulong
cl_half
cl_float
cl_double

C.2 Supported Application Vector Data Types

Application vector types are unions used to create vectors of the above application scalar types.
The following application vector types are provided for application convenience.

cl_charn
cl_ucharn
cl_shortn
cl_ushortn
cl_intn
cl_uintn
cl_longn
cl_ulongn
cl_halfn
cl_floatn
cl_doublen

n can be 2, 3, 4, 8 or 16.

Last Revision Date: 11/14/12 Page 367

The application scalar and vector data types are defined in the cl_platform.h header file.

C.3 Alignment of Application Data Types

The user is responsible for ensuring that data passed into and out of OpenCL buffers are natively
aligned relative to the start of the buffer per requirements in section 6.1.5. This implies that
OpenCL buffers created with CL_MEM_USE_HOST_PTR need to provide an appropriately
aligned host memory pointer that is aligned to the data types used to access these buffers in a
kernel(s). As well, the user is responsible to ensure that data passed into and out of OpenCL
images are properly aligned to the granularity of the data representing a single pixel (e.g.
image_num_channels * sizeof(image_channel_data_type)) except for CL_RGB
and CL_RGBx images where the data must be aligned to the granularity of a single channel in a
pixel (i.e. sizeof(image_channel_data_type)).

OpenCL makes no requirement about the alignment of OpenCL application defined data types
outside of buffers and images, except that the underlying vector primitives (e.g.
__cl_float4) where defined shall be directly accessible as such using appropriate named
fields in the cl_type union (see section C.5). Nevertheless, it is recommended that the
cl_platform.h header should attempt to naturally align OpenCL defined application data types
(e.g. cl_float4) according to their type.

C.4 Vector Literals
Application vector literals may be used in assignments of individual vector components. Literal
usage follows the convention of the underlying application compiler.

cl_float2 foo = { .s[1] = 2.0f };
cl_int8 bar = {{ 2, 4, 6, 8, 10, 12, 14, 16 }};

C.5 Vector Components
The components of application vector types can be addressed using the
<vector_name>.s[<index>] notation.

For example:

foo.s[0] = 1.0f; // Sets the 1st vector component of foo
pos.s[6] = 2; // Sets the 7th vector component of bar

Last Revision Date: 11/14/12 Page 368

In some cases vector components may also be accessed using the following notations. These
notations are not guaranteed to be supported on all implementations, so their use should be
accompanied by a check of the corresponding preprocessor symbol.

C.5.1 Named vector components notation
Vector data type components may be accessed using the .sN, .sn or .xyzw field naming
convention, similar to how they are used within the OpenCL language. Use of the .xyzw field
naming convention only allows accessing of the first 4 component fields. Support of these
notations is identified by the CL_HAS_NAMED_VECTOR_FIELDS preprocessor symbol. For
example:

#ifdef CL_HAS_NAMED_VECTOR_FIELDS
cl_float4 foo;
cl_int16 bar;
foo.x = 1.0f; // Set first component
foo.s0 = 1.0f; // Same as above
bar.z = 3; // Set third component
bar.se = 11; // Same as bar.s[0xe]
bar.sD = 12; // Same as bar.s[0xd]

#endif

Unlike the OpenCL language type usage of named vector fields, only one component field may
be accessed at a time. 	
 This restriction prevents the ability to swizzle or replicate components as
is possible with the OpenCL language types. 	
 Attempting to access beyond the number of
components	
 for a type also results in a failure.

foo.xy // illegal - illegal field name combination
bar.s1234 // illegal - illegal field name combination
foo.s7 // illegal - no component s7

C.5.2 High/Low vector component notation
Vector data type components may be accessed using the .hi and .lo notation similar to that
supported within the language types. Support of this notation is identified by the
CL_HAS_HI_LO_VECTOR_FIELDS preprocessor symbol. For example:

#ifdef CL_HAS_HI_LO_VECTOR_FIELDS
cl_float4 foo;
cl_float2 new_hi = 2.0f, new_lo = 4.0f;
foo.hi = new_hi;
foo.lo = new_lo;

#endif

Last Revision Date: 11/14/12 Page 369

C.5.3 Native vector type notation
Certain native vector types are defined for providing a mapping of vector types to architecturally
builtin vector types. Unlike the above described application vector types, these native types are
supported on a limited basis depending on the supporting architecture and compiler.

These types are not unions, but rather convenience mappings to the underlying architectures'
builtin vector types. The native types share the name of their application counterparts but are
preceded by a double underscore "__".

For example, __cl_float4 is the native builtin vector type equivalent of the cl_float4
application vector type. The __cl_float4 type may provide direct access to the architectural
builtin __m128 or vector float type, whereas the cl_float4 is treated as a union.

In addition, the above described application data types may have native vector data type
members for access convenience. The native components are accessed using the .vN sub-vector
notation, where N is the number of elements in the sub-vector. In cases where the native type is
a subset of a larger type (more components), the notation becomes an index based array of the
sub-vector type.

Support of the native vector types is identified by a __CL_TYPEN__ preprocessor symbol
matching the native type name. For example:

#ifdef __CL_FLOAT4__ // Check for native cl_float4 type
cl_float8 foo;
__cl_float4 bar; // Use of native type
bar = foo.v4[1]; // Access the second native float4
vector

#endif

C.6 Implicit Conversions

Implicit conversions between application vector types are not supported.

C.7 Explicit Casts

Explicit casting of application vector types (cl_typen) is not supported. Explicit casting of
native vector types (__cl_typen) is defined by the external compiler.

Last Revision Date: 11/14/12 Page 370

C.8 Other operators and functions

The behavior of standard operators and function on both application vector types (cl_typen)
and native vector types (__cl_typen) is defined by the external compiler.

C.9 Application constant definitions

In addition to the above application type definitions, the following literal defintions are also
available.

CL_CHAR_BIT Bit width of a character
CL_SCHAR_MAX Maximum value of a type cl_char
CL_SCHAR_MIN Minimum value of a type cl_char
CL_CHAR_MAX Maximum value of a type cl_char
CL_CHAR_MIN Minimum value of a type cl_char
CL_UCHAR_MAX Maximum value of a type cl_uchar
CL_SHORT_MAX Maximum value of a type cl_short
CL_SHORT_MIN Minimum value of a type cl_short
CL_USHORT_MAX Maximum value of a type cl_ushort
CL_INT_MAX Maximum value of a type cl_int
CL_INT_MIN Minimum value of a type cl_int
CL_UINT_MAX Maximum value of a type cl_uint
CL_LONG_MAX Maximum value of a type cl_long
CL_LONG_MIN Minimum value of a type cl_long
CL_ULONG_MAX Maximum value of a type cl_ulong

CL_FLT_DIAG Number of decimal digits of precision for the type

cl_float
CL_FLT_MANT_DIG Number of digits in the mantissa of type cl_float
CL_FLT_MAX_10_EXP Maximum positive integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_float

CL_FLT_MAX_EXP Maximum exponent value of type cl_float
CL_FLT_MIN_10_EXP Minimum negative integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_float

CL_FLT_MIN_EXP Minimum exponent value of type cl_float
CL_FLT_RADIX Base value of type cl_float
CL_FLT_MAX Maximum value of type cl_float
CL_FLT_MIN Minimum value of type cl_float
CL_FLT_EPSILON Minimum positive floating-point number of type

Last Revision Date: 11/14/12 Page 371

cl_float such that 1.0 + CL_FLT_EPSILON !=
1 is true.

CL_DBL_DIG Number of decimal digits of precision for the type

cl_double
CL_DBL_MANT_DIG Number of digits in the mantissa of type cl_double
CL_DBL_MAX_10_EXP Maximum positive integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_double

CL_DBL_MAX_EXP Maximum exponent value of type cl_double
CL_DBL_MIN_10_EXP Minimum negative integer such that 10 raised to this

power minus one can be represented as a normalized
floating-point number of type cl_double

CL_DBL_MIN_EXP Minimum exponent value of type cl_double
CL_DBL_RADIX Base value of type cl_double
CL_DBL_MAX Maximum value of type cl_double
CL_DBL_MIN Minimum value of type cl_double
CL_DBL_EPSILON Minimum positive floating-point number of type

cl_double such that 1.0 + CL_DBL_EPSILON
!= 1 is true.

CL_NAN Macro expanding to a value representing NaN
CL_HUGE_VALF Largest representative value of type cl_float
CL_HUGE_VAL Largest representative value of type cl_double
CL_MAXFLOAT Maximum value of type cl_float
CL_INFINITY Macro expanding to a value represnting infinity

These literal definitions are defined in the cl_platform.h header.

Last Revision Date: 11/14/12 Page 372

Appendix D — OpenCL C++ Wrapper API

The OpenCL C++ wrapper API provides a C++ interface to the platform and runtime API. The
C++ wrapper is built on top of the OpenCL 1.2 C API (platform and runtime) and is not a
replacement. It is required that any implementation of the C++ wrapper API will make calls to
the underlying C API and it is assumed that the C API is a compliant implementation of the
OpenCL 1.2 specification.

Refer to the OpenCL C++ Wrapper API specification for details. The OpenCL C++ Wrapper
API specification can be found at http://www.khronos.org/registry/cl/.

Last Revision Date: 11/14/12 Page 373

Appendix E — CL_MEM_COPY_OVERLAP

The following code describes how to determine if there is overlap between the source and
destination rectangles specified to clEnqueueCopyBufferRect provided the source and
destination buffers refer to the same buffer object.

Copyright (c) 2011 The Khronos Group Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and /or associated documentation files (the "Materials "), to deal in the Materials
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Materials, and to permit persons to
whom the Materials are furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Materials.

THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE USE OR OTHER DEALINGS IN
THE MATERIALS.

bool
check_copy_overlap(size_t src_offset[3],
 size_t dst_offset[3],
 size_t region[3],
 size_t row_pitch, size_t slice_pitch)
{
 const size_t src_min[] = {src_offset[0], src_offset[1], src_offset[2]};
 const size_t src_max[] = {src_offset[0] + region[0],
 src_offset[1] + region[1],
 src_offset[2] + region[2]};

 const size_t dst_min[] = {dst_offset[0], dst_offset[1], dst_offset[2]};
 const size_t dst_max[] = {dst_offset[0] + region[0],
 dst_offset[1] + region[1],
 dst_offset[2] + region[2]};

 // Check for overlap
 bool overlap = true;
 unsigned i;
 for (i=0; i != 3; ++i)

Last Revision Date: 11/14/12 Page 374

 {
 overlap = overlap && (src_min[i] < dst_max[i])
 && (src_max[i] > dst_min[i]);
 }

 size_t dst_start = dst_offset[2] * slice_pitch +
 dst_offset[1] * row_pitch + dst_offset[0];
 size_t dst_end = dst_start + (region[2] * slice_pitch +
 region[1] * row_pitch + region[0]);

 size_t src_start = src_offset[2] * slice_pitch +
 src_offset[1] * row_pitch + src_offset[0];
 size_t src_end = src_start + (region[2] * slice_pitch +
 region[1] * row_pitch + region[0]);

 if (!overlap)
 {
 size_t delta_src_x = (src_offset[0] + region[0] > row_pitch) ?
 src_offset[0] + region[0] - row_pitch : 0;
 size_t delta_dst_x = (dst_offset[0] + region[0] > row_pitch) ?
 dst_offset[0] + region[0] - row_pitch : 0;

 if ((delta_src_x > 0 && delta_src_x > dst_offset[0]) ||
 (delta_dst_x > 0 && delta_dst_x > src_offset[0]))
 {
 if ((src_start <= dst_start && dst_start < src_end) ||
 (dst_start <= src_start && src_start < dst_end))
 overlap = true;
 }

 if (region[2] > 1)
 {
 size_t src_height = slice_pitch / row_pitch;
 size_t dst_height = slice_pitch / row_pitch;

 size_t delta_src_y = (src_offset[1] + region[1] > src_height) ?
 src_offset[1] + region[1] - src_height : 0;
 size_t delta_dst_y = (dst_offset[1] + region[1] > dst_height) ?
 dst_offset[1] + region[1] - dst_height : 0;

 if ((delta_src_y > 0 && delta_src_y > dst_offset[1]) ||
 (delta_dst_y > 0 && delta_dst_y > src_offset[1]))
 {
 if ((src_start <= dst_start && dst_start < src_end) ||
 (dst_start <= src_start && src_start < dst_end))
 overlap = true;
 }
 }

Last Revision Date: 11/14/12 Page 375

 }

 return overlap;
}

Last Revision Date: 11/14/12 Page 376

Appendix F – Changes

F.1 Summary of changes from OpenCL 1.0

The following features are added to the OpenCL 1.1 platform layer and runtime (sections 4 and
5):

 Following queries to table 4.3
o CL_DEVICE_NATIVE_VECTOR_WIDTH_{CHAR | SHORT | INT | LONG | FLOAT |

DOUBLE | HALF}
o CL_DEVICE_HOST_UNIFIED_MEMORY
o CL_DEVICE_OPENCL_C_VERSION

 CL_CONTEXT_NUM_DEVICES to the list of queries specified to clGetContextInfo.

 Optional image formats: CL_Rx, CL_RGx and CL_RGBx.

 Support for sub-buffer objects – ability to create a buffer object that refers to a specific

region in another buffer object using clCreateSubBuffer.

 clEnqueueReadBufferRect, clEnqueueWriteBufferRect and
clEnqueueCopyBufferRect APIs to read from, write to and copy a rectangular region of
a buffer object respectively.

 clSetMemObjectDestructorCallback API to allow a user to register a callback function

that will be called when the memory object is deleted and its resources freed.

 Options that control the OpenCL C version used when building a program executable.
These are described in section 5.6.4.5.

 CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE to the list of queries

specified to clGetKernelWorkGroupInfo.

 Support for user events. User events allow applications to enqueue commands that wait
on a user event to finish before the command is executed by the device. Following new
APIs are added - clCreateUserEvent and clSetUserEventStatus.

 clSetEventCallback API to register a callback function for a specific command

execution status.

The following modifications are made to the OpenCL 1.1 platform layer and runtime (sections 4
and 5):

 Following queries in table 4.3

Last Revision Date: 11/14/12 Page 377

o CL_DEVICE_MAX_PARAMETER_SIZE from 256 to 1024 bytes
o CL_DEVICE_LOCAL_MEM_SIZE from 16 KB to 32 KB.

 The global_work_offset argument in clEnqueueNDRangeKernel can be a non-NULL

value.

 All API calls except clSetKernelArg are thread-safe.

The following features are added to the OpenCL C programming language (section 6) in
OpenCL 1.1:

 3-component vector data types.

 New built-in functions
o get_global_offset work-item function defined in section 6.12.1.
o minmag, maxmag math functions defined in section 6.12.2.
o clamp integer function defined in section 6.12.3.
o (vector, scalar) variant of integer functions min and max in section 6.12.3.
o async_work_group_strided_copy defined in section 6.12.10.
o vec_step, shuffle and shuffle2 defined in section 6.12.12.

 cl_khr_byte_addressable_store extension is a core feature.

 cl_khr_global_int32_base_atomics, cl_khr_global_int32_extended_atomics,

cl_khr_local_int32_base_atomics and cl_khr_local_int32_extended_atomics
extensions are core features. The built-in atomic function names are changed to use the
atomic_ prefix instead of atom_.

 Macros CL_VERSION_1_0 and CL_VERSION_1_1.

The following features in OpenCL 1.0 are deprecated in OpenCL 1.1:

 The clSetCommandQueueProperty API is no longer supported in OpenCL 1.1.
 The __ROUNDING_MODE__ macro is no longer supported in OpenCL C 1.1.
 The –cl-strict-aliasing option that can be specified in options argument to

clBuildProgram is no longer supported in OpenCL 1.1.

The following new extensions are added to section 9 in OpenCL 1.1:

 cl_khr_gl_event – Creating a CL event object from a GL sync object.
 cl_khr_d3d10_sharing – Sharing memory objects with Direct3D 10.

The following modifications are made to the OpenCL ES Profile described in section 10 in
OpenCL 1.1:

 64-bit integer support is optional.

Last Revision Date: 11/14/12 Page 378

F.2 Summary of changes from OpenCL 1.1

The following features are added to the OpenCL 1.2 platform layer and runtime (sections 4 and
5):

 Custom devices and built-in kernels are supported.

 Device partitioning that allows a device to be partitioned based on a number of
partitioning schemes supported by the device.

 Extend cl_mem_flags to describe how the host accesses the data in a cl_mem object.

 clEnqueueFillBuffer and clEnqueueFillImage to support filling a buffer with a pattern

or an image with a color.

 Add CL_MAP_WRITE_INVALIDATE_REGION to cl_map_flags. Appropriate
clarification to the behavior of CL_MAP_WRITE has been added to the spec.

 New image types: 1D image, 1D image from a buffer object, 1D image array and 2D

image arrays.

 clCreateImage to create an image object.

 clEnqueueMigrateMemObjects API that allows a developer to have explicit control
over the location of memory objects or to migrate a memory object from one device to
another.

 Support separate compilation and linking of programs.

 Additional queries to get the number of kernels and kernel names in a program have been

added to clGetProgramInfo.

 Additiional queries to get the compile and link status and options have been added to
clGetProgramBuildInfo.

 clGetKernelArgInfo API that returns information about the arguments of a kernel.

 clEnqueueMarkerWithWaitList and clEnqueueBarrierWithWaitList APIs.

The following features are added to the OpenCL C programming language (section 6) in
OpenCL 1.2:

 Double-precision is now an optional core feature instead of an extension.

 New built in image types: image1d_t, image1d_array_t and image2d_array_t.

Last Revision Date: 11/14/12 Page 379

 New built-in functions

o Functions to read from and write to a 1D image, 1D and 2D image arrays
described in sections 6.12.14.2, 6.12.14.3 and 6.12.14.4.

o Sampler-less image read functions described in section 6.12.14.3.
o popcount integer function described in section 6.12.3.
o printf function described in section 6.12.13.

 Storage class specifiers extern and static as described in section 6.8.

 Macros CL_VERSION_1_2 and __OPENCL_C_VERSION__.

The following APIs in OpenCL 1.1 are deprecated in OpenCL 1.2:

 clEnqueueMarker, clEnqueueBarrier and clEnqueueWaitForEvents
 clCreateImage2D and clCreateImage3D
 clUnloadCompiler and clGetExtensionFunctionAddress
 clCreateFromGLTexture2D and clCreateFromGLTexture3D

The following queries are deprecated in OpenCL 1.2:

 CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE in table 4.3 queried using
clGetDeviceInfo.

Last Revision Date: 11/14/12 Page 380

Index - APIs

clBuildProgram, 138
clCompileProgram, 140
clCreateBuffer, 67
clCreateCommandQueue, 62
clCreateContext, 55
clCreateContextFromType, 57
clCreateImage, 91
clCreateKernel, 158
clCreateKernelsInProgram, 159
clCreateProgramWithBinary, 134
clCreateProgramWithBuiltInKernels, 136
clCreateProgramWithSource, 133
clCreateSampler, 129
clCreateSubBuffer, 70
clCreateSubDevices, 50
clCreateUserEvent, 180
clEnqueueBarrierWithWaitList, 189
clEnqueueCopyBuffer, 80
clEnqueueCopyBufferRect, 82
clEnqueueCopyBufferToImage, 111
clEnqueueCopyImage, 103
clEnqueueCopyImageToBuffer, 108
clEnqueueFillBuffer, 85
clEnqueueFillImage, 106
clEnqueueMapBuffer, 87
clEnqueueMapImage, 113
clEnqueueMarkerWithWaitList, 188
clEnqueueMigrateMemObjects, 124
clEnqueueNativeKernel, 176
clEnqueueNDRangeKernel, 171
clEnqueueReadBuffer, 73
clEnqueueReadBufferRect, 75
clEnqueueReadImage, 99
clEnqueueTask, 174
clEnqueueUnmapMemObject, 121
clEnqueueWriteBuffer, 73
clEnqueueWriteBufferRect, 76
clEnqueueWriteImage, 100
clFinish, 195
clFlush, 195

clGetCommandQueueInfo, 64
clGetContextInfo, 59
clGetDeviceIDs, 35
clGetDeviceInfo, 37
clGetEventInfo, 182
clGetEventProfilingInfo, 192
clGetImageInfo, 117
clGetKernelArgInfo, 167
clGetKernelInfo, 163
clGetKernelWorkGroupInfo, 165
clGetMemObjectInfo, 126
clGetPlatformIDs, 33
clGetPlatformInfo, 33
clGetProgramBuildInfo, 154
clGetProgramInfo, 151
clGetSamplerInfo, 131
clGetSupportedImageFormats, 97, 98
clLinkProgram, 143
clReleaseCommandQueue, 64
clReleaseContext, 58
clReleaseDevice, 53
clReleaseEvent, 187
clReleaseKernel, 160
clReleaseMemObject, 119
clReleaseProgram, 137
clReleaseSampler, 130
clRetainCommandQueue, 63
clRetainContext, 58
clRetainDevice, 53
clRetainEvent, 186
clRetainKernel, 160
clRetainMemObject, 119
clRetainProgram, 137
clRetainSampler, 130
clSetEventCallback, 185
clSetKernelArg, 161
clSetMemObjectDestructorCallback, 120
clSetUserEventStatus, 180
clUnloadPlatformCompiler, 150
clWaitForEvents, 181

	Table of Contents
	Acknowledgements
	1. Introduction
	2. Glossary
	2.1 OpenCL Class Diagram

	3. The OpenCL Architecture
	3.1 Platform Model
	3.1.1 Platform Mixed Version Support

	3.2 Execution Model
	3.2.1 Execution Model: Context and Command Queues
	3.2.2 Execution Model: Categories of Kernels

	3.3 Memory Model
	3.3.1 Memory Consistency

	3.4 Programming Model
	3.4.1 Data Parallel Programming Model
	3.4.2 Task Parallel Programming Model
	3.4.3 Synchronization

	3.5 Memory Objects
	3.6 The OpenCL Framework

	4. The OpenCL Platform Layer
	4.1 Querying Platform Info
	4.2 Querying Devices
	4.3 Partitioning a Device
	4.4 Contexts

	5. The OpenCL Runtime
	5.1 Command Queues
	5.2 Buffer Objects
	5.2.1 Creating Buffer Objects
	5.2.2 Reading, Writing and Copying Buffer Objects
	5.2.3 Filling Buffer Objects
	5.2.4 Mapping Buffer Objects

	5.3 Image Objects
	5.3.1 Creating Image Objects
	5.3.1.1 Image Format Descriptor
	5.3.1.2 Image Descriptor

	5.3.2 Querying List of Supported Image Formats
	5.3.2.1 Minimum List of Supported Image Formats

	5.3.3 Reading, Writing and Copying Image Objects
	5.3.4 Filling Image Objects
	5.3.5 Copying between Image and Buffer Objects
	5.3.6 Mapping Image Objects
	5.3.7 Image Object Queries

	5.4 Querying, Unmapping, Migrating, Retaining andReleasing Memory Objects
	5.4.1 Retaining and Releasing Memory Objects
	5.4.2 Unmapping Mapped Memory Objects
	5.4.3 Accessing mapped regions of a memory object
	5.4.4 Migrating Memory Objects
	5.4.5 Memory Object Queries

	5.5 Sampler Objects
	5.5.1 Creating Sampler Objects
	5.5.2 Sampler Object Queries

	5.6 Program Objects
	5.6.1 Creating Program Objects
	5.6.2 Building Program Executables
	5.6.3 Separate Compilation and Linking of Programs
	5.6.4 Compiler Options
	5.6.4.1 Preprocessor options
	5.6.4.2 Math Intrinsics Options
	5.6.4.3 Optimization Options
	5.6.4.4 Options to Request or Suppress Warnings
	5.6.4.5 Options Controlling the OpenCL C version
	5.6.4.6 Options for Querying Kernel Argument Information

	5.6.5 Linker Options
	5.6.5.1 Library Linking Options
	5.6.5.2 Program Linking Options

	5.6.6 Unloading the OpenCL Compiler
	5.6.7 Program Object Queries

	5.7 Kernel Objects
	5.7.1 Creating Kernel Objects
	5.7.2 Setting Kernel Arguments
	5.7.3 Kernel Object Queries

	5.8 Executing Kernels
	5.9 Event Objects
	5.10 Markers, Barriers and Waiting for Events
	5.11 Out-of-order Execution of Kernels and MemoryObject Commands
	5.12 Profiling Operations on Memory Objects andKernels
	5.13 Flush and Finish

	6. The OpenCL C Programming Language
	6.1 Supported Data Types
	6.1.1 Built-in Scalar Data Types
	6.1.1.1 The half data type

	6.1.2 Built-in Vector Data Types
	6.1.3 Other Built-in Data Types
	6.1.4 Reserved Data Types
	6.1.5 Alignment of Types
	6.1.6 Vector Literals
	6.1.7 Vector Components
	6.1.8 Aliasing Rules
	6.1.9 Keywords

	6.2 Conversions and Type Casting
	6.2.1 Implicit Conversions
	6.2.2 Explicit Casts
	6.2.3 Explicit Conversions
	6.2.3.1 Data Types
	6.2.3.2 Rounding Modes
	6.2.3.3 Out-of-Range Behavior and Saturated Conversions
	6.2.3.4 Explicit Conversion Examples

	6.2.4 Reinterpreting Data As Another Type
	6.2.4.1 Reinterpreting Types Using Unions
	6.2.4.2 Reinterpreting Types Using as_type() and as_typen()

	6.2.5 Pointer Casting
	6.2.6 Usual Arithmetic Conversions

	6.3 Operators
	6.4 Vector Operations
	6.5 Address Space Qualifiers
	6.5.1 __global (or global)
	6.5.2 __local (or local)
	6.5.3 __constant (or constant)
	6.5.4 __private (or private)

	6.6 Access Qualifiers
	6.7 Function Qualifiers
	6.7.1 __kernel (or kernel)
	6.7.2 Optional Attribute Qualifiers

	6.8 Storage-Class Specifiers
	6.9 Restrictions
	6.10 Preprocessor Directives and Macros
	6.11 Attribute Qualifiers
	6.11.1 Specifying Attributes of Types
	6.11.2 Specifying Attributes of Functions
	6.11.3 Specifying Attributes of Variables
	6.11.4 Specifying Attributes of Blocks and Control-Flow-Statements
	6.11.5 Extending Attribute Qualifiers

	6.12 Built-in Functions
	6.12.1 Work-Item Functions
	6.12.2 Math Functions
	6.12.2.1 Floating-point macros and pragmas

	6.12.3 Integer Functions
	6.12.4 Common Functions
	6.12.5 Geometric Functions
	6.12.6 Relational Functions
	6.12.7 Vector Data Load and Store Functions
	6.12.8 Synchronization Functions
	6.12.9 Explicit Memory Fence Functions
	6.12.10 Async Copies from Global to Local Memory, Localto Global Memory, and Prefetch
	6.12.11 Atomic Functions
	6.12.12 Miscellaneous Vector Functions
	6.12.13 printf
	6.12.13.1 printf output synchronization
	6.12.13.2 printf format string
	6.12.13.3 Differences between OpenCL C and C99 printf

	6.12.14 Image Read and Write Functions
	6.12.14.1 Samplers
	6.12.14.1.1 Determining the border color

	6.12.14.2 Built-in Image Read Functions
	6.12.14.3 Built-in Image Sampler-less Read Functions
	6.12.14.4 Built-in Image Write Functions
	6.12.14.5 Built-in Image Query Functions
	6.12.14.6 Mapping image channels to color values returned by read_imageand color values passed to write_image to image channels

	7. OpenCL Numerical Compliance
	7.1 Rounding Modes
	7.2 INF, NaN and Denormalized Numbers
	7.3 Floating-Point Exceptions
	7.4 Relative Error as ULPs
	7.5 Edge Case Behavior
	7.5.1 Additional Requirements Beyond C99 TC2
	7.5.2 Changes to C99 TC2 Behavior
	7.5.3 Edge Case Behavior in Flush To Zero Mode

	8. Image Addressing and Filtering
	8.1 Image Coordinates
	8.2 Addressing and Filter Modes
	8.3 Conversion Rules
	8.3.1 Conversion rules for normalized integer channel datatypes
	8.3.1.1 Converting normalized integer channel data types to floating-pointvalues
	8.3.1.2 Converting floating-point values to normalized integer channel datatypes

	8.3.2 Conversion rules for half precision floating-pointchannel data type
	8.3.3 Conversion rules for floating-point channel data type
	8.3.4 Conversion rules for signed and unsigned 8-bit, 16-bitand 32-bit integer channel data types

	8.4 Selecting an Image from an Image Array

	9. Optional Extensions
	10. OpenCL Embedded Profile
	11. References
	Appendix A
	A.1 Shared OpenCL Objects
	A.2 Multiple Host Threads

	Appendix B — Portability
	Appendix C — Application Data Types
	C.1 Shared Application Scalar Data Types
	C.2 Supported Application Vector Data Types
	C.3 Alignment of Application Data Types
	C.4 Vector Literals
	C.5 Vector Components
	C.5.1 Named vector components notation
	C.5.2 High/Low vector component notation
	C.5.3 Native vector type notation

	C.6 Implicit Conversions
	C.7 Explicit Casts
	C.8 Other operators and functions
	C.9 Application constant definitions

	Appendix D — OpenCL C++ Wrapper API
	Appendix E — CL_MEM_COPY_OVERLAP
	Appendix F – Changes
	F.1 Summary of changes from OpenCL 1.0
	F.2 Summary of changes from OpenCL 1.1

	Index - APIs

