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SUMMARY
Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict patient out-
comes, and inform treatment planning. Here, we review recent applications of ML across the clinical
oncology workflow. We review how these techniques are applied to medical imaging and to molecular
data obtained from liquid and solid tumor biopsies for cancer diagnosis, prognosis, and treatment design.
We discuss key considerations in developing ML for the distinct challenges posed by imaging and molecular
data. Finally, we examine ML models approved for cancer-related patient usage by regulatory agencies and
discuss approaches to improve the clinical usefulness of ML.
INTRODUCTION

In the past decade, machine learning (ML) has seen an explosion

of applications in medicine, particularly within oncology.1 As a

set of complex, heterogeneous, and prevalent diseases, cancers

provide both a challenging set of diagnostic problems and

copious data in multiple modalities.2 This makes clinical

oncology a promising field for ML, which utilizes data to learn

patterns and the structure of a dataset (see machine learning

primer section for a brief introduction to ML). In particular, rich

imaging and molecular data have spurred the application of

ML to correlate these data sources with early cancer detection,

monitoring of cancer progression, and identification of optimized

therapeutic treatment.

Medical imaging has been a powerful tool that has revolution-

ized cancer diagnostics. In particular, medical imaging enables

non-invasive, cheap, and scalable detection, localization, and

monitoring of cancer. Radiology images, as well as other image

modalities like skin images or colonoscopy videos, are used for

screening and diagnosis.3 Pathology images of tissue samples

are used to confirm a cancer diagnosis and determine prog-

nostic factors such as cancer subtype.4 Both radiology and pa-

thology images can guide treatment by informing the selection of

chemotherapy or immunotherapy and aiding radiotherapy plan-

ning.5 Asmedical imaging is increasingly fundamental to the clin-

ical oncology workflow, the quantity of imaging data is often

growing faster than clinicians can handle.3 This leads to a desire

for automated methods of processing medical images to reduce

clinician workload, accelerate the analysis of time-sensitive
images, and mitigate clinician errors. Advances in ML for com-

puter vision have been adapted for medical imaging and are

already showing great promise for rapidly and accurately

analyzing a variety of imaging modalities in clinical oncology.6,7

Although imaging informs many aspects of cancer care, mo-

lecular characterization can provide a more fine-grained view

of a patient’s cancer status.8 This is particularly important as

cancer therapeutics become increasingly targeted and mecha-

nistic.9 Liquid biopsies, which measure molecular biomarkers

present in non-invasive physiology samples such as blood or

urine, have emerged as a promising approach to profiling tumor

states for cancer diagnostics. Liquid and solid tumor biopsies

also make it possible to serially profile tumor status and identify

characteristics of tumor evolution and heterogeneity that are

associated with resistance to therapies, recurrence, and poor

survival outcomes.10 Due to the wealth of information provided

by liquid biopsies and solid tumor biopsies, ML has been instru-

mental in predicting clinical outcomes and cancer status from

rich molecular features.

In this review, we explore recent advances in ML applied to

clinical oncology. We focus on relatively matureML technologies

already deployed or close to deployment in clinical settings.

There is a large body of exciting development of ML for more

basic cancer research and drug discovery that we do not cover

here. Because imaging and molecular data are two major data

modalities in clinical oncology with distinct ML challenges, we

structure the review to discuss imaging ML and molecular ML

separately. For each modality, we discuss both the major appli-

cations of ML and the types of ML models and techniques that
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are frequently used. As many of these ML models are moving

from lab to clinic, we also review the regulatory process for

approving ML methods for cancer diagnostics. We highlight ex-

amples of recently approved ML-based devices in this category

and discuss the clinical studies necessary to obtain approval.

We then discuss how to improve ML model design and evalua-

tion in order to build trust in cancer-related ML and further clin-

ical adoption. Finally, we outline emerging technologies, both

in medicine and ML, that are promising directions for future

research in clinical oncology.

MACHINE LEARNING PRIMER

ML aims to solve tasks by learning patterns from data rather

than using hand-coded rules.4 An ML model is trained to

perform a task by showing it several examples of input data

(e.g., mammograms) and corresponding output labels (e.g.,

cancer or no cancer) and updating the internal parameters of

the model accordingly to make its predictions more accurate.

Model evaluation on external test data, which comes from an

entirely different source than the training and internal test

data (e.g., a different hospital or patient population), is particu-

larly valuable to determine the model’s generalizability across

diverse settings. While most ML methods for cancer are a

form of supervised learning, where each data point has an

associated label, unsupervised learning methods such as clus-

tering and dimensionality reduction can produce relevant in-

sights into unlabeled data.7

Traditional ML vs. deep learning
Traditional ML algorithms take a wide variety of forms, with most

designed to work with tabular data, where each data point has a

set of explicit features (e.g., patient age or gene mutation status)

that are used to predict the label.3 One common algorithm is

called a random forest, which consists of a set of decision trees,

each of which is constructed based on the training data to make

a series of binary decisions about the input features that culmi-

nates in a prediction of the label of the data point. Another algo-

rithm is the support vector machine (SVM), which learns a line (or

hyperplane in multiple dimensions) in the coordinate system

defined by the input features to separate the data points into

two classes. Regression models learn a linear combination of

input features that predict either continuous labels (e.g., linear

regression) or binary labels (e.g., logistic regression).

With the increasing availability and power of graphics pro-

cessing units (GPUs), a subfield of machine learning called

deep learning (DL) has overtaken traditional ML for many predic-

tion tasks.3 The core component of DL models is a neural

network, which consists of one or more layers of units called

neurons that compute weighted sums of inputs followed by

applying a nonlinear function. These layers of neurons thus

compute a representation of the input called an embedding,

which is then used by the final layer of neurons tomake an output

prediction. The DL models are more flexible compared to

traditional ML models, and because DL relies less on feature

engineering, they are capable of processing a wider variety of

unstructured data types including images, text, and speech.

However, DL models typically require significantly more training
2 Cell 186, April 13, 2023
data, so traditional ML models can still be useful, particularly for

data-limited or tabular tasks.2

In order to process non-tabular data, the architecture of a

neural network (e.g., number of neurons or layers or connections

between neurons) is modified to fit the desired data type.2 Con-

volutional neural networks (CNNs) are primarily designed for pro-

cessing images. Graph neural networks (GNNs) handle graph

data, such as cell-cell interaction graphs. Recurrent neural net-

works (RNNs) and transformers analyze sequential data, such

as genetic sequences or series of images. Each of these classes

of models has many specific model architectures, such as

ResNet or U-Net for CNNs and LSTM or GRU for RNNs. The

models are optimized with stochastic gradient descent. Figure 1

illustrates common traditional ML and DL models.

Both traditional ML and DL models require that the data is

cleaned (e.g., modifying data with missing features or extreme

values) in order to learn effectively.4 Additionally, the input fea-

tures must be amenable to the type of model. For example, neu-

ral networks use vectors of real numbers as input, so categorical

features such as cancer type are typically converted to one-hot

vectors with all zeros except for a single one in a position that in-

dicates the appropriate category. Many traditional ML methods

are available in the scikit-learn package, while deep learning

models can be built using packages such as PyTorch and

TensorFlow. Because ML models often require tuning hyper-

parameters to obtain optimal performance, it is important that

a validation dataset be used during this step that is distinct

from the held-out test dataset, which is only evaluated after

the final hyperparameters have been chosen.

Training techniques
One common technique is transfer learning, where a model is

first trained on a large dataset that is somewhat related to the

task of interest (pre-training) before being trained on a smaller

dataset consisting of the actual task of interest (fine-tuning).3

For example, image-based cancer detection models are often

pre-trained on large object detection datasets, enabling the

model to recognize general shapes, and are then fine-tuned on

small cancer detection image datasets. Transfer learning is

more useful when the pre-training data are similar to the data

of interest. Another common method is data augmentation,

where input data are modified (e.g., images are rotated or

blurred) to artificially expand the training set andmake themodel

more robust to noise that might appear in real-world data.7 Reg-

ularization is a technique that controls the size of the parameters

of a model to prevent overfitting and encourage sparse feature

usage.2 Weak supervision involves using data with limited or

noisy label information.7 A common type of weak supervision

is multiple instance learning, in which labeled data points (e.g.,

images with cancer/no cancer labels) are broken down into

smaller pieces (e.g., image tiles) that are easier for an ML model

to process. The model makes predictions on each piece of the

data separately, and those predictions are then aggregated to

form a prediction for the whole data point. Finally, interpretability

is a set of methods that aim to explain why a model is making a

certain prediction.6 For example, an image-based model might

highlight regions of an image that led themodel to diagnose a pa-

tient with cancer.



Figure 1. Common machine learning models
(A) A random forest model builds decision trees that make predictions based on a series of binary decisions about the input features.
(B) A support vector machine (SVM) learns a line (or hyperplane in many dimensions) in feature space that separates two classes of data points with the largest
possible margin between the two classes.
(C) A regression model uses a linear combination of input features to predict either continuous labels (linear regression) or binary labels (logistic regression).
(D) A neural network consists of multiple layers of neurons that iteratively compute linear combinations of inputs followed by a nonlinear function to predict
outcomes such as the probability of cancer.
(E) An RNN processes sequential data, such as genetic sequences or a series of images, by applying the same neural network layers to each object in the
sequence and maintaining a memory of the objects it has seen.
(F) A CNN applies patches of neurons called filters that scan an image for patterns. Early layers identify low-level features like edges, while later layers identify
high-level features such as tumor morphology.
(G) A transformer analyzes sequential data by repeatedly applying an operation called attention to compare each element in the sequence to all the other elements
in order to update its internal representation of the sequence.
(H) A GNN is designed for graph-structured data such as a graph of neighboring cells. It first encodes basic features of each node and edge in the graph, and then
neural network layers pass information across the graph to update the node and edge representations, which are then used to predict the label of the graph. Each
of these general classes of models has many specific architectures with different numbers and sizes of layers of neurons.
Image sources: histology.11
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MACHINE LEARNING FOR IMAGE-BASED CANCER
DIAGNOSIS, PROGNOSIS, AND TREATMENT

In this section, we highlight applications of image-based ML

throughout the clinical workflow for cancer. Early ML ap-

proaches used hand-crafted image features such as tumor

shape or textural heterogeneity that were computationally ex-

tracted from images.6 These features were used as inputs to a

traditional ML model, such as a support vector machine (SVM)

or random forest, to make a clinical prediction. Starting in the

early 2010s, a class of ML models called deep learning (DL)

models began to take hold as the dominant ML method.12 DL

models automatically learn features from an image to make clin-

ical predictions, thereby simultaneously reducing the need for

painstakingly crafting image features while significantly outper-

forming feature-based ML models.3,4 These models can be
applied to virtually any medical imaging modality, including

X-ray13 and MRI for radiology,14 H&E stains for pathology,15 im-

ages of skin lesions for dermatology,16 and videos of colonos-

copies for gastroenterology.17 Here, we discuss examples of

ML—primarily DL—applied to three clinical stages: risk stratifi-

cation, diagnosis, and prognosis and treatment planning.

Figure 2 illustrates the general image-based ML model pipeline

and each of the three clinical stages. Although we discuss

each stage separately, it is worth noting that some ML methods

make predictions that cross these boundaries, such as simulta-

neous diagnosis and prognosis via pathology images.18

Risk stratification
Understanding a patient’s risk of developing cancer is important

for early cancer detection and effective treatment. Often, cancer

risk is evaluated based on a patient’s demographics, family
Cell 186, April 13, 2023 3
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history, and genetics, but imaging can also reveal patient

characteristics that might increase cancer risk. Existing work

on image-based cancer risk prediction falls into two categories:

predicting characteristics associated with cancer risk and

directly predicting cancer risk itself.

Risk proxies

A typical example of a characteristic associated with cancer risk

is breast density in breast cancer. Breast density is correlated

with increased risk of cancer development andmissed detection

on mammography and therefore indicates who may benefit from

additional screening.21 To improve breast density assessment

with DL, Lehman et al. trained a ResNet-18 CNNmodel onmam-

mograms to predict breast density categories routinely evalu-

ated in clinical practice.21 The model showed a high level of

agreement with a panel of five radiologists on a held-out test

set of images. Furthermore, the DL model was implemented in

clinical practice, and radiologists accepted the binary density

predictions of the model 94% of the time. The model was addi-

tionally validated at an external site and showed the potential to

increase the consistency of breast density evaluations by radiol-

ogists at different sites.22

Risk prediction

More often than quantifying risk proxies, DL is used to directly

predict cancer risk. For example, DL models are often trained

to use images from a screening mammogram to predict whether

a patient will develop cancer at some point.23 Dembrower et al.

highlight the benefit of this direct approach to risk prediction, as

they showed that a breast cancer risk score produced by an

Inception-ResNet-v2 CNN model was more accurate than using

clinical breast density assessments to predict risk.24 Yala et al.

developed a DL model on mammograms that could better pre-

dict the likelihood that a woman would develop breast cancer

within five years than the well-established Tyrer-Cuzick risk

model, which is based on clinical features such as patient

age.25 Their method consisted of a ResNet-18 model to process

each of the four standard mammogram views, followed by a

transformer network that aggregated the view embeddings into

a single mammogram embedding. This embedding was used

to predict known risk factors, a baseline cancer risk score, and

a hazard score for additional risk in future years. They also

used a conditional-adversarial training scheme to make the

model invariant to the mammogram device to ensure consistent

risk assessments across devices. The authors later validated

their model on test sets from seven hospitals across five coun-

tries, demonstrating the generalizability of the model across
Figure 2. Machine learning for image-based cancer diagnosis, progno
(A) An illustration of the general ML model pipeline for image-based cancer pred
patient population, an image is captured from radiology, pathology, or another i
image tiles—either covering the full image or only ROIs—that are small enough for
embedding of the tile or a tile-level or pixel-level prediction. The tile outputs are ag
RNN. A final prediction component, such as a neural network, uses the combine
Labels may come from different sources (e.g., radiology or biopsy) and can have
(B) The clinical stages of image-based ML predictions for cancer and simplified
Risk Stratification: For certain cancers such as breast cancer, healthy patients re
cancer and prioritize future screening.
Diagnosis: Radiology images are used to identify potentially cancerous lesions d
radiology, then a biopsy is taken, and pathology images are used to confirm the
Prognosis and Treatment Selection: Radiology or pathology images are furthe
Image sources: mammography,19 CT,20 histology.11
diverse patient populations and screening centers.26 Ha et al.

designed a CNN model that predicts risk not only at the image

level but also at the pixel level, meaning that each risk prediction

score comes with a heatmap on the image indicating the regions

where cancer is most likely to develop.27 Although most studies

have focused on risk stratification for breast cancer, ML has also

been used for predicting lung cancer risk from chest X-rays with

CNNs13 and for predicting prostate cancer risk from MRIs, with

support vector machines applied to hand-crafted radiomics

features.14

These methods aim to personalize cancer screening by

providing a risk score to a physician, who is then responsible

for determining an appropriate screening frequency for the pa-

tient. However, since standard, non-ML risk scores are relatively

coarse-grained and imprecise, current guidelines place patients

in large groups based on high or low risk and suggest the same

screening schedule for all patients in a group, rather than adapt-

ing the screening frequency uniquely for each patient.28 Yala

et al. demonstrated that reinforcement learning, an area of ma-

chine learning that involves deciding which actions to take to

maximize a reward, can be used in conjunction with DL risk pre-

diction models to automatically design an optimal screening

schedule for each patient individually.28 These individual

screening schedules significantly improved simulated early

detection rates per screening mammogram compared to stan-

dard clinical guidelines.

Diagnosis
Diagnosing cancer typically involves two steps. First, either in the

course of routine screening or in response to symptoms, patients

undergo non-invasive imaging such as radiological scans. Sec-

ond, if these images reveal suspicious regions of tissue that

might indicate cancer, a biopsy is then taken and sent to a pa-

thology lab, which can confirm the diagnosis with the help of his-

tological imaging. ML can improve the diagnostic accuracy of

both of these steps by identifying patterns—both known and un-

known to clinicians—that indicate the presence or absence

of cancer. ML also provides a consistent and detailed image

evaluation that can catch cancers missed by time-constrained

physicians, which is particularly crucial in radiology for early

detection.

Non-invasive imaging

Detecting signs of cancer via ML applied to radiological or other

non-invasive imaging has garnered substantial attention and

excitement due to the abundance of data and the success of
sis, and treatment
iction tasks, along with key considerations at each step. For each patient in a
maging modality. Often, the image is high resolution and is broken down into
anMLmodel to process. AnMLmodel processes each image tile, producing an
gregated into a single output using either a formula or an ML model such as an
d tile output to predict the label, and metrics evaluate the model predictions.
different types (e.g., binary for classification or real-valued for regression).

examples of ML methods for each stage.
gularly undergo radiological screening to assess the patient’s risk of developing

uring routine screening or in response to symptoms. If cancer is suspected by
diagnosis.
r used to evaluate prognosis and select treatments.
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ML methods, with several claiming to achieve physician-level

performance for cancer detection. These methods hold promise

to improve and standardize early detection of cancer, save phy-

sicians time, and expand access to high-quality cancer care to

patients in low-resource settings. Esteva et al. trained an Incep-

tion v3 CNN to classify skin cancer from images of skin lesions,

matching the performance of 21 dermatologists on biopsy-

proven clinical images.16 With the prevalence of smartphones,

skin lesion classification with DL could potentially be available

directly to patients.29 DL also has the potential to aid doctors

with diagnostic procedures such as colonoscopies by analyzing

live videos and highlighting suspicious regions of tissue in real-

time to guide the operation.17 In radiology, Ardila et al. developed

a 3D CNN for lung cancer screening with one component identi-

fying regions of interest (ROIs), another component processing

the entire image, and a final classification layer combining the

outputs of both components.30 If a prior CT scan is available,

the model extracts features from ROIs in both the current and

prior CT images. Their model was at least on par with six radiol-

ogists and reduced both false positive and false negative rates in

some situations. While many such methods were validated on

relatively small datasets from a single site, McKinney et al. built

a DL model for diagnosing breast cancer from mammograms

and evaluated their model on large datasets from the US and

the UK.31 They found that their model had superior performance

compared to six radiologists. They also demonstrated that in

many cases, they could replace a second reader, which is stan-

dard procedure in the UK, with their model’s prediction and

save 88% of the time of the second reader without sacrificing

performance.

Despite these successes, there has been debate about the

transparency, interpretability, reproducibility, and robustness

of some of these results.32 Most of these studies are retrospec-

tive, single-site, and compare ML performance post hoc to hu-

man performance rather than evaluating ML models in the way

they would be used in the clinic, as a system to assist human de-

cision making. Some recent studies have worked to address

these shortcomings to more convincingly demonstrate the

benefits of ML in cancer diagnosis. Qian et al. performed a pro-

spective, rather than retrospective, evaluation of a DL model us-

ing ultrasound to assess breast cancer.33 Kim et al. designed a

reader study in which radiologists evaluated mammograms

either with or without the aid of anMLmodel trained onmammo-

grams from five institutions in three countries.34 Radiologists

from multiple institutions had superior performance when work-

ing in conjunction with ML rather than alone. Hekler et al. had

dermatologists and an ML model separately evaluate skin im-

ages to detect cancer and then combined those predictions us-

ing a decision tree-based ML algorithm called XGBoost to

achieve performance superior to either method independently.35

Image-based deep learning has also been used in other ways

to aid preliminary cancer diagnosis. In Yala et al., a ResNet-18

model was built to triage mammograms by setting a high-sensi-

tivity prediction threshold so that nearly all predicted negative

caseswere truly negative.36 In a simulation study, these predicted

negative cases were skipped by radiologists, allowing radiolo-

gists to only read 80.7% of mammograms while maintaining

sensitivity and specificity across all cases. Instead of diagnosing
6 Cell 186, April 13, 2023
cases, Xu et al. built a CNN model to segment breast ultrasound

images into functional tissues to aid clinicians who interpret and

diagnose the images.37 Cao et al. designed a model that simulta-

neously diagnoses and grades prostate cancer at the pixel level

from multi-parametric MRI, leveraging the power of DL models

to move beyond cancer detection alone.38 A future direction is

integrating patient history andpertinent clinical presentation in im-

age-based DL models. Multimodal DL models have become

increasingly popular in healthcare applications, given the impor-

tance of clinical history in diagnosis. In one instance, Akselrod-

Ballin et al. trained a DL model to diagnose breast cancer from

mammograms that additionally incorporates information from

medical records, finding that it led to improved diagnostic accu-

racy over models that did not incorporate health records.39

Confirmation by pathology

Pathology samples, typically stained with hematoxylin and eosin

(H&E), are assessed by pathologists to confirm a preliminary

cancer diagnosis. Due to the large size of digital whole slide im-

ages of histopathology, DL models frequently use multiple

instance learning (MIL). In MIL, the DL model operates on small

image tiles and then aggregates individual tile-level embeddings

or predictions into a diagnostic prediction for the whole slide.40

Campanella et al. used MIL to train a DL model for prostate,

breast, and other cancers. The model could allow pathologists

to exclude 65–75% of slides while still identifying cancers with

100% sensitivity.41 This model has the potential to significantly

reduce the workload of pathologists, allowing them to spend

more time on difficult cases.

As with preliminary diagnosis via non-invasive imaging,

rigorous evaluations of DL-based pathology tools using multi-

site, prospective trials with DL-assisted pathologists are needed

to evaluate the clinical utility of these models. Several recent

works have performed studies with at least some of these

criteria, showing improved pathologist performance when assis-

ted by DLmodels that highlight ROIs of the image and/or provide

a diagnostic prediction.42,43

DL models sometimes predict more than a binary cancer

versus no cancer label in order to provide clinicians with addi-

tional diagnostic information. For example, in cases of cancer

of unknown primary origin, determining an appropriate diagnosis

and treatment plan requires inferring the origin of cancer. Lu et al.

trained a ResNet-50-based model on H&E images to identify a

tumor as primary or metastatic and predict its site of origin

across 18 different primary origins, with top-3 prediction accu-

racy on an external set exceeding 90%.15 The model incorpo-

rated attention after the CNN layers, which identified regions in

the slide of high diagnostic relevance and provided a form of hu-

man interpretability. Coudray et al. built an Inception v3 CNN

model for lung cancer to simultaneously diagnose cancer, deter-

mine the tumor subtype of positive cases, and predict the pres-

ence of six genetic mutations from H&E-stained images.18

Prognosis and treatment selection
After a cancer diagnosis, physicians and patients are interested

in determining the patient’s prognosis and selecting the optimal

treatment for that patient. Since both prognosis and treatment

selection depend on the characteristics of the cancer, many

ML methods indirectly aid prognosis and treatment selection
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by predicting tumor features such as cancer subtype or mutation

status. Other methods directly predict prognosis or guide treat-

ment selection by evaluating or planning potential treatments.

Below, we discuss both types of methods.

Tumor features

Prognosis and treatment selection are both informed by a num-

ber of tumor features that can be predicted by image-based ML

models. For example, ML models have been developed to pre-

dict the subtype or grade of a tumor, such as the Gleason grade

in prostate cancer,44 which gives physicians information about

patient survival and which treatments might be most effective.

Esteva et al. fuse information from both histology slides and clin-

ical data in a DL model that predicts the likelihood of 5- and

10-year metastasis, which can indicate more aggressive disease

that requires additional treatment.45 They pre-trained the image

portion of their DL model using a self-supervised technique

called momentum contrast, in which the model was trained to

identify whether two image tiles were augmented versions of

the same tile or were different tiles. Besides tumor subtype,

another goal is to predict the genetic characteristics of a tumor,

such asmicrosatellite instability,46 tumormutational burden,47 or

whole-genome duplication.48 Some studies use H&E images to

predict gene expression and assess survival-related tumor het-

erogeneity.49 Saltz et al. develop a deep learning-based compu-

tational stain that identifies tumor-infiltrating lymphocytes whose

spatial patterns are correlated with survival.50 Wang et al. use a

3D CNN to predict EGFR mutation status in lung adenocarci-

noma from ROIs selected manually from CT scans, thus

providing a non-invasive method of genotyping cancer and

informing potential treatments.51 When biopsy samples are

available, it is still more reliable to measure genotypes using mo-

lecular methods that we discuss in the next section.

Prognosis

A number of DL models have been developed to predict patient

survival from histology slides. Courtiol et al. provide an example

of this type of model and workflow for prognosis in mesotheli-

oma.52 First, they trained a U-Net CNN on several hundred

manually annotated histology images to perform tissue segmen-

tation. Next, they divided each patient’s whole slide histology im-

age into small image tiles and kept all the tiles that were pre-

dicted to contain at least 20% tissue according to the U-Net

model. Using transfer learning, they took a ResNet-50 CNN

pre-trained on an image recognition task called ImageNet and

used it to predict a score for each tile. The 10 highest and 10

lowest scores were passed to a neural network that predicts

the patient’s survival time. The ResNet-50 model and neural

network were trained together on 2,300 slides with a loss func-

tion based on the Cox proportional hazardsmodel. They demon-

strate that their model significantly outperforms simpler survival

prediction models that only use histological type or grade

without the image. Bychkov et al. instead predict survival for

colorectal cancer using all image tiles by applying an RNN to

aggregate the embeddings produced by a CNN model for

each tile.53 In contrast to methods using histology images, Xu

et al. take advantage of the fact that radiology is non-invasive

and can easily be repeated over time to develop a combined

CNN + RNN model that updates its survival predictions over

the course of treatment.54
Response to treatment

Predicting response to treatment, either prior to or during the

early stages of treatment, can aid physicians in selecting the

optimal treatment for a patient. Joo et al. developed a multi-

modal DL model to predict whether patients would achieve a

pathologic complete response after neoadjuvant chemotherapy

(NAC) for breast cancer.55 Their model made predictions by

fusing information from two different pretreatment MRIs, each

processed with a 3D ResNet model, and clinical information,

such as age and HER2 status, processed by a neural network.

Gu et al. also aimed to predict response to NAC in breast cancer,

but they applied DL models to pairs of ultrasonography images,

with one image taken before NAC and the other taken after

some, but not all, of the NAC treatments.56 Through a prospec-

tive study, they showed that their model could predict whether a

patient would respond to the full course of therapy, indicating

that it could be used to alter the course of treatment early for

those patients who are predicted not to respond. Tian et al. built

a model that extracts features fromCT images using a DenseNet

CNN and hand-crafted radiomics features, with a neural network

classifier processing the concatenation of both sets of features

to assess PD-L1 expression in non-small cell lung cancer.57

This enables a non-invasive prediction of response to anti-PD-

1 antibody immunotherapy. Lu et al. found that deep learning

could evaluate tumor morphological change in metastatic colo-

rectal cancer from CT scans, which may allow early adjustments

during treatment.58 Notably, this study used an RNN to combine

image features extracted by CNNs from CT scans at multiple

time points during treatment.

Radiotherapy planning

Planning radiotherapy is a time-consuming process that could

benefit from the speed of ML models. McIntosh et al. performed

a blinded, head-to-head study of human-generated and ML-

generated radiotherapy treatment plans for prostate cancer.5

ML-generated treatment plans were inferred from the treatment

plans of previous patients who were most similar to the current

patient according to a learned similarity metric based on

features extracted from CT images. In their prospective study of

50 patients, ML-generated plans were selected over human-

generated plans 61% of the time while reducing the radiotherapy

planning time by 60%, from amedian of 118 h to 47 h. Hosny et al.

built a U-Netmodel to segment primary non-small cell lung cancer

tumors and involved lymph nodes in CT images, which is a time-

consuming step in radiotherapy planning, with validation across

eight internal and external clinical sites in multiple countries.59 In

their study, AI assistance led to a 65% reduction in segmentation

time and a 32% reduction in variability between clinicians.

MACHINE LEARNING FOR MOLECULAR CANCER
DIAGNOSIS, PROGNOSIS, AND TREATMENT

Recent advances in sample processing, genomic sequencing,

and molecular technologies have generated rich datasets from

solid tumor biopsies and molecular liquid biopsies, which aim

to detect circulating cell-free tumor DNA (cfDNA). ML models

have played an instrumental role in mapping these datasets to

clinical outputs. We first give an overview of liquid biopsy

and solid tumor datasets and discuss how their unique
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Figure 3. Machine learning for molecular cancer diagnosis, prognosis, and treatment
(A) Common molecular datasets for molecular cancer diagnostics include circulating cell-free DNA (cfDNA), methylation status, and fragmentomics. Many
molecular datasets for cancer prognosis have been generated from whole-genome sequencing, single-cell transcriptomics, and bulk RNA sequencing of solid
tumor biopsies. Utilizing molecular datasets for cancer treatment prediction and selection is a rapidly developing field incorporating foundational molecular
technologies and emerging methods such as spatial omics. Example studies are given.
(B) Designs of common ML models for molecular data.
(C) Considerations of molecular data that inform the choice of ML model.
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characteristics influence the ML models utilized. We focus our

attention on how ML models have been applied for tertiary anal-

ysis of genomic datasets. We then give an overview of how ML

models have been applied to facilitate liquid biopsy-based and

solid tumor-based diagnosis, prognosis, and treatment selection

and tumor monitoring. These advancements, summarized in

Figure 3, have spurred a rapidly developing field that has

garnered tremendous clinical and commercial interest.

Characteristics and ML models for molecular datasets
Liquid and solid tumor biopsy data sequencing datasets share

several characteristics and challenges that guide the design of

ML methods. First, dataset size is often limited. Each tumor sub-

type may only be represented by less than 50 samples.60 Given

the small number of samples per dataset, ML models tend to be
8 Cell 186, April 13, 2023
smaller and leverage careful feature engineering and domain

expertise.61 Ongoing initiatives, such as the Circulating Cell-

free Genome Atlas (CCGA), which has recruited 15,000 patients

from over 140 sites, will provide valuable new resources

that are multi-institutional and balanced in patient and clinical

demographics.62

The small sample challenge of liquid and solid tumor biopsy

datasets is amplified by the high-dimensional nature of the

data. Thus, applying ML to liquid and solid biopsy datasets re-

quires careful consideration of properly selecting features or

aggregating existing features for model training. Additionally,

high dimensionality warrants vigilance for overfitting to training

data.63 Here, regularization, which regularizes or pressures

model coefficients toward zero in order to encourage less com-

plex and flexible models that are less susceptible to overfitting,
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have been helpful in mitigating problems that arise with high-

dimensional datasets. Common regularization methods that

have been used with molecular datasets include ridge, LASSO,

or elastic net.

Molecular datasets can also suffer from a low signal-to-noise

ratio stemming from difficulties in determining the veracity of de-

tected variants.64 Of note, circulating tumor DNA (ctDNA) typi-

cally comprises only 5%–10% (in late-stage disease) to less

than 0.01%–1.0% (in early-stage disease) of total circulating

cell-free DNA.64 The balance between wide coverage but low

sequencing depth versus high sequencing depth of a more

limited target is an important factor that affects the signal-to-

noise ratio.65 This tradeoff is further amplified when creating mo-

lecular datasets for ML applications. Targeted sequencing

panels can reduce noise; however, emerging work has demon-

strated that aggregation variants across the genome can

improve ML performance. Careful design of training datasets

for ML applications can help to mitigate some of the noisy data

limitations. Case-control designs—e.g., cases comprising pa-

tients with localized non-small cell lung cancer matched with

controls of risk-matched adults undergoing annual radiologic

screening for lung cancer—are a common strategy to reduce

confounders and improve signal.61

While DL has become the model of choice for numerous

genomic applications, the unique challenges of liquid and solid

tumor biopsy data have rendered DL models less directly appli-

cable. Moreover, inductive biases of popular DL architectures

(e.g., spatial invariance of CNNs) are less suitable for sequence

variants or gene expression. Rather, smaller models such as

regularized logistic regression,61 SVM,66 random forest classi-

fiers,67 and elastic nets68 are commonly used, and they utilize

domain expertise to design features.66

Applications of ML models to molecular tumor data
In this section, we review howML is facilitating the use of molec-

ular data for cancer diagnosis, prognosis, and treatment selec-

tion and tumor monitoring (Figure 3).

Cancer diagnosis

Early cancer detection is critical for timely interventions that can

improve patient outcomes. Liquid biopsy methods utilize de-

tected variants from a targeted sequencing panel to determine

the presence of cancer. While detected mutational burden can

be predictive, using mutational burden alone can be limited in

sensitivity, specificity, and power.61 Integrating additional vari-

ants and genomic features can increase predictive power. ML

models have been instrumental in classifying detected variants

as pathological, aggregating variants, and identifying variants

that are most predictive.

Models such as logistic regression69 and elastic net61 have

been used to integrate detected variants. For example, Lung-

CLiP (Cancer Likelihood in Plasma) employs an ensemble ML

classifier using nearest neighbor classifiers, naive Bayes, logistic

regression, and decision trees to determine the likelihood that a

plasma sample contains lung cancer ctDNA.61 While detecting

variant burden from cfDNA is promising, ascertaining the tissue

of origin of ctDNA is more challenging.

DNA methylation sequences have also been pursued as mo-

lecular predictors for early cancer detection. Changes to CpG
DNA methylation are one of the earliest molecular aberrations

in cancer initiation and offer enhanced capability to infer tissue

origin of ctDNA due to the presence of tissue-specific CpG

islands. A systematic evaluation of 10 ML classifiers with various

data inputs (whole-genome sequencing of cfDNA, targeted

cfDNA panels, and DNA methylation) using CCGA found that

classifiers that utilized whole-genome methylation sequences

had the highest cancer detection sensitivity and best prediction

of cancer signal origin.62

A central challenge in utilizing methylation sequences is deter-

mining which methylation features to select, given that there are

30 million CpG sites that can be methylated or unmethylated.

This can be tackled through ML methods that facilitate dimen-

sionality reduction or feature selection. Regularized regression,

such as elastic net, has been popular in feature selection for

methylation datasets.70 Maros et al. systematically compared

four ML classifiers (random forest, elastic net, SVM, and

boosted trees) in combination with post-processing algorithms

and found that elastic net delivers the best performance in

methylation-based cancer detection and classification.71 Grail

has utilized probability models, such as Bernoulli mixture

models, to determine the ranking of positive and negative

methylation features likely to distinguish cancer types from one

another or non-cancer.72

While previous liquid biopsy technologies have primarily uti-

lized cfDNA sequences or methylation status, the fragmentation

patterns of cfDNA, also called fragmentomics, can provide addi-

tional features to enhance ML cancer detection models. Several

studies have found that incorporating fragmentomics into their

classifier improved classifier performance.61,67 Similarly, Jam-

shidi et al. found that fragment length ML classifiers provided

similar sensitivity to a classifier based on genomic alterations.62

Improved performance could be attributed to additional epige-

netic or mechanistic information conveyed by fragmentomic

profiles that can increase predictive capability. For example,

Esfahani et al. utilized an elastic net model trained on fragmen-

tomics to infer gene expression, classify non-small cell lung can-

cer, and assess immunotherapy response.68

Cancer prognosis

While liquid biopsies hold the potential to revolutionize cancer di-

agnostics, solid tumor molecular analysis is currently more

mature and can provide high-resolutionmolecular and clinical in-

formation that can be leveraged to better characterize cancer

prognosis.

Advances in exome and whole-genome sequencing and bulk

and single-cell transcriptomic technology offer exciting opportu-

nities to characterize tumor origin, stage, and grade, which influ-

ence cancer prognosis. Determining tumor origin, particularly for

metastatic tumors, is an important aspect of cancer prognosis

that molecular ML models can facilitate. Random forest classi-

fiers have been a popular model of choice for predicting tumor

origin. For example, Nguyen et al. utilized an ensemble of binary

random forest classifiers trained on 6,756 whole-genome-

sequenced primary and metastatic tumors that discriminated

between 35 cancer types with an overall recall of 90%.73 Simi-

larly, Tang et al. developed a random forest classifier trained

on methylation and miRNA expression data from 17 classes of

solid tumors to predict tumor origin.74 For metastatic tumors,
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researchers developed random forest models that perform

feature selection and tissue-of-origin classification using gene

expression and mutation data.75 Random forest classifiers are

popular due to their ease of interpretability, which provides

mechanistic justification of predictions and can facilitate novel

biomarker discovery. However, random forest classifiers often

require hand-selected features that have relied on patterns of so-

matic mutations and chromatin state for determining tumor

origin. Using a fully connected, feedforward neural network,

Jiao et al. determined features correlated with tumor origin and

found that passenger mutation regional distribution and muta-

tion type strongly predict tumor origin.76

Determining cell-type composition in tumors is critical in

assessing cancer prognosis, as it gives insight into the differen-

tiation status, tumor origin, and stage. Several methods have

been developed to deconvolve bulk RNA-seq data, a common

and cost-effective method to profile solid tumors. Methods

such as CIBERSORT use SVMs to deconvolve bulk RNA-seq

data to estimate cell-type compositions.77 CIBERSORTx and

CODEFACS have expanded CIBERSORT to deconvolve bulk

RNA using nu-support vector regression (n-SVR) analysis and

achieve cell-type-specific gene expression without single-cell

data.78,79 While most deconvolution efforts have thus far

focused on bulk cellular tissue sources such as tumor speci-

mens, ML deconvolution applications to cell-free nucleic acids

are emerging. Indeed, inference of cell types of origin within

cell-free RNA (cfRNA) transcriptomes has been achieved using

adaptations of CIBERSORTx and n-SVR,80 as well as using

Bayesian cell proportion reconstruction inferred using statistical

marginalization.81

In addition to DNA mutations and RNA expression, DNA

methylation patterns can also differentiate between different

cancer types and subtypes. Capper et al. take advantage of

this by designing an ML model that can assign central nervous

system tumor (CNS) samples to methylation classes that corre-

spond to tumor types based on genome-wide methylation

data.82 Their model consists of a random forest to compute

raw scores for the methylation classes followed by a multino-

mial logistic regression model to calibrate those scores as

probabilities of each class. In two prospective analyses, they

showed that the methylation predictions perform comparable

to or better than histopathological analysis in subtyping some

tumors. As an alternative to genomic and transcriptomic

methods, Klein et al. used mass spectrometry to analyze

epithelial ovarian cancer, and they developed SVM and 1D

CNN models that analyze the mass spectrum and predict the

histotype of the tumor.83

Cancer treatment and tumor monitoring

Selecting cancer treatment, predicting response to treatment,

andmonitoring tumors after treatment are areas of great promise

for ML and genomics. Current treatment selection is determined

by clinical guidelines and trials that typically use a handful of

clinical features. In contrast, molecular profiles of cancers

generate amuch larger number of features that can be leveraged

to inform cancer treatments. For example, Sammut et al. take a

multi-omics approach to predict response to chemotherapy by

incorporating clinical, genomic, transcriptomic, pathology, and

treatment information into an ensemble model that averages
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the predictions of logistic regression, SVM, and random forest

models.84 Bayesian models such as the continuous individual-

ized risk index (CIRI), which are adept at handling small datasets

and quantifying uncertainty, have been used tomodel ctDNA dy-

namics after treatment in diverse cancers.85 Such approaches

can model ctDNA responses associated with outcomes after

therapy with immune checkpoint inhibitors for non-small cell

lung cancer and predict which patients will achieve durable clin-

ical benefit.86 New emerging genomic technologies, such as sin-

gle-cell transcriptomics and spatial transcriptomics, have the

potential to revolutionize histopathology characterization of solid

tumors. In particular, single-cell transcriptomics can profile the

cell composition, which ML models can leverage to predict can-

cer treatment response and potential resistance.87 Graph neural

networks trained on spatial proteomics can model the tumor

microenvironment and predict patient response to cancer

treatments.49,88

REGULATORY APPROVAL OF CANCER ML
ALGORITHMS

The ML algorithms reviewed in the previous sections reflect

notable advances in the research landscape. However, before

ML algorithms can be deployed on patients, they generally

require regulatory approval, which entails more rigorous clinical

trials and validation testing than what is presented in published

academic work. As such, only a small proportion of ML algo-

rithms end up being deployed on patients. Of those that do,

they typically perform well in several predefined tasks like detec-

tion and triage settings, and they demonstrate reliability and

generalizability across different patient populations.

In the US, most ML algorithms are regulated as medical de-

vices by the Food and Drug Administration (FDA). In the past

decade, over 300 AI/ML-enabled medical devices have been

approved by the FDA, with over 40% approved since 2020.89

As an exception to FDA approval, laboratory-developed tests

(LDTs) may alternatively receive Clinical Laboratory Improve-

ment Amendments (CLIA) certification by the Centers for Medi-

care & Medicaid Services (CMS). Certification of such CLIA

LDTs generally applies a lower regulatory standard for approval

than the FDA.90 While FDA-approved medical devices are

approved for use by medical practitioners, CLIA-certified LDTs

are approved for use only by the laboratory for which the certifi-

cation is granted. LDTs have become increasingly complex and

often useML. The FDA has called for stricter regulation and over-

sight particularly over higher-risk LDTs,90 though regulatory

changes remain to be implemented. Figure 4 summarizes

several examples of regulatory-approved ML medical devices

for cancer, including clinical study and ML model details, and

Table 1 shows additional examples of approved devices.

The European Union’s FDA equivalent, the European Medi-

cines Agency (EMA), operates similarly: cancer-diagnostic

AI/ML devices are given a CE mark, which grants approval for

sale across the EU and other European countries. However,

unlike the US FDA, EMA device approval is decentralized, where

individual member countries conduct evaluations, and publicly

available information on approvals is sparse. In a comparative

analysis of ML devices approved by both the US FDA and



Figure 4. Regulatory approval of cancer ML algorithms
Examples of ML medical devices for cancer that have received regulatory approval, including Transpara,91 Paige Prostate,38 Optellum,92 GI Genius,93 and In-
terVenn GLORI.94,95 Clinical study details are based on information available in published works and registered clinical trials. Model details are based on
publications by device developers.
Image sources: mammography,19 CT,20 histology,11 endoscopy.96
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EMA, most devices first received approval in Europe, suggesting

a potentially lower regulatory bar compared to the US.105

Imaging-based algorithms
Imaging-based algorithms comprise over 70% of all FDA-

approved AI/ML devices.106 Of these, radiology applications

are themost abundant. Pre-diagnosis algorithms likeWRDensity

and Densitas use CNN architectures like ResNet102 to provide

breast density category predictions for mammograms. AI-Rad

Companion and Quantib Prostate use CNN-based networks100
like U-Net to perform automated segmentation, density calcula-

tion, and volume estimation of the prostate gland. Computer-

aided triage devices like Saige-Q107 and CmTriage use CNN

classification algorithms to mark a subset of mammogram cases

as suspicious to aid radiologists in worklist prioritization. Com-

puter-aided detection/diagnosis devices provide more informa-

tion by identifying and scoring regions of interest in each image.

Examples of breast cancer devices include Lunit Insight, which

draws heatmaps (using convolutional layers) with probability

percentages over suspicious regions in a mammogram,34 and
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Table 1. Additional examples of regulatory-approved cancer diagnostic devices

Approval

type (#)

Date

approved Device name Description Type of AI/ML Clinical study details

FDA (P170019) 2017 FoundationOne CDx Microsatellite instability

and tumor mutational

burden solid tumor tests

Probit model for level

of detection98
Prospective observational

studies (1,400 participants)

CLIA

certification

2017 Signatera LDT for ctDNA-based

cancer recurrence test

Cox proportional hazards

model97
Prospective observational

studies (2,000 participants),

still recruiting

FDA (K173839) 2017 The Cancer Genetics

Tissue of Origin Test

Tissue of origin

genetic test

Normalization, classification,

and correlation algorithms99
Analytical testing only

FDA (K183271) 2019 AI RAD Companion

(Pulmonary)

Lung nodule

segmentation

FCOS CNN object detection

network100
>4,500 cases, standalone study

only, reader-annotated ground

truth

FDA (K183285) 2019 CmTriage Breast cancer triage CNN101 1,255 exams, standalone study

only, biopsy-proven ground truth

FDA (K200595) 2020 CellaVision DC-1 Blood cell counter CNN Analytical and clinical testing

(598 samples) comparing to

predicate device

FDA (K201232) 2020 Limbus Contour Radiation treatment

planning

U-Net CNN103 Benchtop testing only

FDA (K193229) 2020 Transpara Breast cancer detection VGG-16 CNN and gradient

boosting trees91
240 exams, AI-assisted (18 readers)

and standalone studies, ground

truth unclear

FDA (K202013) 2020 WRDensity Breast cancer density Resnet-34 CNN102 871 exams, standalone study only,

consensus ground truth

FDA (K211951) 2021 GI Genius GI lesion detection CNN object detection

network93
Standalone study only (150 videos

with 338 lesions)

CLIA

certification

2021 Grail Galleri Multi-cancer early

detection test

Various ML models (logistic/

lasso regression, Markov

chains, random forest)104

Prospective observational and

interventional studies (>130K

participants)

CLIA

certification

2021 InterVenn GLORI LDT for ovarian cancer

diagnosis

Regression models

and RNNs94,95
Prospective observational study

(1,200 participants), ground truth

by imaging

FDA

(DEN200080)

2021 Paige Prostate Prostate pathology

cancer detection

ResNet-34 CNN + RNN

(multiple-instance/weakly

supervised learning)41

Standalone analytical testing

on 847 whole slide images (WSIs)

and AI-assisted study on 527 WSIs

with 16 pathologists, consensus

ground truth

FDA (K202300) 2021 Optellum Virtual

Nodule Clinic

Lung nodule diagnosis DenseNet CNN92 300 subjects, AI-assisted

(12 readers) and standalone

studies, ground truth unclear
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MammoScreen, which uses a RetinaNet CNN architecture to

draw a bounding polygon over potential lesions along with the

predicted lesion type and risk score out of ten.108 Another

example is Optellum Virtual Nodule Clinic, a lung cancer algo-

rithm for CT images that uses a DenseNet architecture to

output malignancy prediction scores for user-selected regions

of interest.92

Imaging ML has more recently expanded outside of radiology

as well. Paige Prostate is an FDA-approved prostate pathology

algorithm, based on the work of Campanella et al.,41 that uses

CNNs and RNNs to diagnose prostate cancer from biopsy

slides.109 Other prostate CLIA-certified pathology ML tests

include DeepDx Prostate, which uses semantic segmentation

CNNs, and Galen Prostate, which uses multiscale CNNs and
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gradient boosting classifiers for automated Gleason scoring.110

GI Genius, an FDA-approved device for polyp detection in

endoscopy videos, uses a CNN on individual video frames to

produce bounding boxes over suspicious lesions.93

Skin cancer is a promising yet challenging domain. Nevisense,

currently the only skin cancer AI device on themarket, is a device

that works by measuring electrical impedance across a poten-

tially abnormal skin lesion. On the horizon, 3Derm has received

FDA breakthrough designation for autonomous detection of

skin cancers, which is a fast-track process that signals possible

future approval. In the EU, several skin AI devices have already

received CE mark approval (TeleSkin and SkinVision), but their

efficacy has been questioned by independent validation

studies.111
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Several devices have been approved for post-diagnosis deci-

sion making; for instance, Limbus Counter and Ethos are both

devices that use segmentation CNNs like U-Net to draw con-

tours of organ structures for radiation treatment planning.112

Molecular-based algorithms
Most molecular-based algorithms are focused on diagnostic ap-

plications in blood samples. FDA-approved cell counting de-

vices like CellaVision and Sight OLO use CNNs to characterize

and count white blood cells, red blood cells, and platelets in

blood samples and are intended for use by lab technicians.113

CellSearch uses computer vision algorithms to characterize the

morphology of circulating tumor cells in metastatic breast, colo-

rectal, or prostate cancer patients. The Cancer Genetics Tissue

of Origin Test is an RNA-based diagnostic algorithm for aiding

clinicians in determining the tissue of origin for tumors. Exact

Science’s Cologuard is a colorectal cancer genomics test that

relies on mathematical algorithms to produce risk scores.

Liquid biopsy tests are the most common type of ML-enabled

diagnostics performed by CLIA-certified laboratories. LungLife

AI’s LungLB is a liquid biopsy test that uses a signal-binning al-

gorithm to confirm suspicious lung nodules in CT scans. Galleri is

a liquid biopsy test that uses various ML regression and classifi-

cation models72 for early detection of multiple cancers and has

received FDA breakthrough designation but not approval.

InterVenn has CLIA certification for two products: GLORI is a gly-

coproteomic liquid biopsy test that utilizes neural networks and

logistic regression models for ovarian cancer diagnosis, and

DAWN IO is a test that uses tree-based methods and ensemble

classifiers for assessing melanoma therapy.94 Other genomics

tests that are not on the market but are in ongoing large clinical

trials include Freenome’sMultinomics, a cell-free biomarker pat-

terns blood test using SVM,60 and Exact Science’s multi-cancer

early detection blood test.

Clinical studies evaluating cancer ML algorithms
The types of clinical studies vary depending on the regulatory

pathway a device is approved by. For FDA approval, devices

must demonstrate evidence of clinical safety and effectiveness

for use on patients. Clinical evidence is typically produced via

AI-assisted studies and/or standalone studies. AI-assisted

studies compare clinicians using AI in diagnostic decision mak-

ing with those not using AI. In these studies, ground truthing is

typically determined by the consensus of several specialists’ in-

terpretations. Readers are selected across varying degrees of

specialty (generalist versus board certified). Standalone studies

provide another form of clinical evidence: the performance of the

AI alone is assessed with reference to a reader consensus

ground truth, and the metric is compared to the average clinical

reader’s performance or a standard. In both types of studies,

evaluation studies are typically enriched with cancer cases rela-

tive to the population incidence rate.

As an example, Transpara, a breast cancer detection algo-

rithm that received FDA approval in 2018, reported clinical evi-

dence from an AI-assisted study and a standalone comparison.

Transpara draws regions of interest around suspicious lesions in

a mammogram and outputs a score indicating the likelihood of

cancer in the image. In the reader study, fourteen board-certified
radiologists read mammograms once with the aid of AI and once

without, with a one-month washout period in between. The eval-

uation dataset consisted of 240 total mammogram studies, with

100 cancer exams, 40 false positive recalls from screening, and

100 normal exams. The primary endpoint was the superiority of

performance with AI versus without. Secondary analyses

included a superior performance with AI on lesion subtypes

and average reading time saved by radiologists. The standalone

study compared the AI’s performance with the average perfor-

mance of the fourteen radiologists. In the AI-assisted study,

the radiologists’ performance improved from 0.866 AUC without

AI assistance to 0.886 with AI assistance. In the standalone

study, the AI achieved an AUC of 0.887 versus the average clin-

ical reader’s performance of 0.866 AUC.

Formolecular-basedML device approvals, analytical testing is

often conducted in addition to clinical testing. For instance,

CellaVision DC-1’s FDA evaluation provided evidence demon-

strating analytical precision via repeatability (measurements un-

der the same conditions are consistent) and reproducibility

(measurements under different conditions are consistent). The

clinical testing compared measurements on patient samples

with the approved predicate device. Other analytical validation

characteristics include accuracy and specificity.

CLIA certifications are less transparent in their evaluation stan-

dards compared to the FDA (i.e., no publicly available sum-

maries) but are generally limited to ensuring the analytical validity

of lab capabilities. In addition to CLIA certification, most

commercially available LDTs have undergone clinical trial valida-

tions that are registered with ClinicalTrials.gov. These studies

tend to be prospective and larger in scope than FDA-approved

device counterparts, which have a median participant size of

300.89 For instance, Grail’s Galleri has ongoing clinical trials

with over 130,000 participants across multiple settings and

countries. Intervenn’s GLORI test enrolled 1,200 patients in its

clinical trial. Primary endpoints are similar to FDA evaluations

and include AUC, sensitivity, specificity, positive predictive

value, and negative predictive value.

DISCUSSION

ML is increasingly important in cancer detection, prognosis, and

treatment planning. However, the reliability and trust of ML algo-

rithms have lagged behind the pace of technical development. In

this section, we discuss some key challenges that ML faces on

the path to the clinic, including disparate regulatory standards,

stringent criteria for meaningful model evaluation, and barriers

to adoption by doctors and hospitals. We then discuss how

ML methods differ when applied to various cancer data

modalities, and we conclude by highlighting some exciting

recent developments in both biomedical and ML technologies

that illustrate the potential of ML to transform clinical oncology.

Regulatory standards
Disparate regulatory standards in the US and internationally can

lead to under-regulation andmistrust ofML algorithms.114Within

the US, the FDA has historically deferred the regulation of

LDTs to CMS. Whereas CMS typically focuses only on analytical

validity (i.e., precision, sensitivity, and accuracy of measuring
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molecular quantities), the FDA places additional emphasis on

clinical validity (whether the test accurately identifies the relevant

disease in patients). As LDTs today increasingly provide diag-

nostic predictions and involve ML-based algorithms, demon-

strating that cancer diagnostic tests truly achieve the desired

clinical outcomes is necessary for ensuring their trustworthiness

and reliability to doctors and patients.

Discrepancies in regulation internationally contribute an addi-

tional risk to the trustworthiness of medical ML algorithms. A

study of medical devices approved in both the US and EU re-

vealed that devices that gained CE mark approval first in the

EU were three times more likely to be recalled due to safety con-

cerns than devices that received US FDA approval first.115 A key

difference is that in the US, the FDA requires clinical evaluation

prior to approval; in the EU, clinical evaluation is only required af-

ter approval as a post-market follow-up study.116 In effect, the

CE mark system incentivizes faster adoption of ML into the clinic

but at the risk of prematurely approving devices that may pose

potential harm to patients.

Limitations of ML model evaluations
The lack of high-quality, diverse evaluations hinders the ability to

assess true algorithm performance in patient populations. One

factor is the lack of gold-standard test datasets—on-site valida-

tions are difficult and patient data are hard to obtain, in part due

to privacy concerns and restrictive data use agreements.117 A

well-documented phenomenon of ML models is that they can

learn spurious correlations present in device types and demo-

graphics,89 resulting in biased performance when evaluated on

different patient populations. Additionally, evaluation test sets

are often enriched with positive cases, which can yield imbal-

anced comparisons.

Metrics

Medical AI studies often use proxy metrics for clinical endpoints,

which may generate misleading conclusions. For instance, AUC

summarizes model performance across all possible operating

points, which is not informative of how an algorithm will perform

when deployed at a particular threshold. Algorithms that show

an AUC improvement or exceed a certain AUC value (e.g.,

>0.95 in some FDA-approved devices) may perform differently

in real-world populations.118 Fixed-threshold metrics like sensi-

tivity and specificity should reflect the relevant clinical task at

hand; for instance, a diagnostic algorithm may be optimized for

minimizing missed cancers but should also consider the addi-

tional burden to patients caused by false positives (i.e., invasive

testing and stress).

Clinical trials and monitoring

Prospective trials are also important to measure appropriate

clinical outcomes, rather than a simple comparison to stand-

alone references. For example, if an ML device is to be used

as a clinical diagnostic aid, then it should be evaluated by

comparing clinician performance with and without the device

rather than evaluating the device’s predictions in isolation.119

Randomizing patient cohorts can minimize biases in selecting

test populations. Also, prospective trials can capture human-AI

interactions that occur after deployment.120 Continuous perfor-

mance monitoring of ML algorithms after approval and post-

market surveillance mechanisms are necessary to ensure that
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the purported clinical benefits of ML hold up under various distri-

bution shifts.121 As a case study, earlier-generation computer-

aided detection software for mammography was approved by

the FDA in 1998 and widely adopted in part because of Medicare

and Medicaid reimbursements. However, a large observational

study by Lehman et al. on mammograms from 2003 to 2009

found that CAD software had failed to improve the diagnostic ac-

curacy of mammography.122 This was due in part to changes in

radiologists’ behavior, with increased familiarity with theML over

time.123 Moreover, the original evaluation data included older

traditional film mammograms, which have since been phased

out. As such, reproducibility and transparency are essential for

building trust in the outcomes of validation studies.32

Interpreting ML models

Interpretability is a common challenge for ML. One important

reason is that most models do not explicitly identify causal

features but instead rely on correlating input features with out-

comes. As such, models may accurately identify phenotypes

but rely on spurious confounders present in the data and

present misleading conclusions.124 Nonetheless, interpretability

methods can still be useful for explaining howanMLmodelmakes

its predictions, which is important for building trust with clinicians

and providing additional diagnostic insight beyond the prediction

alone.125 Interpretability methods can either be applied post hoc

to extract explanations from trained models, or they can be incor-

porated into themodel design so that themodel learns to simulta-

neously produce explanations and predictions. Examples of post

hoc interpretability techniques include using the ML model to

generate heatmaps over the input33 and clustering the inputs

into interpretable groups based on the ML model’s embedding

of the input.126 As an example of a model with explainability built

into its design, Zhang et al. created an ML model that learns to

generateexplanations innatural language for itspredictionsduring

training.127Post hocmethods are convenient because theycanbe

applied to most models without requiring specialized training, but

models with interpretability built in may provide more reliable ex-

planations for what the model is doing.125 Models that output a

probabilityor rangeofscores (e.g., from1 to10) shouldbecarefully

designed and calibrated to user expectations.128

Challenges to adoption
While most academic research has been focused on improve-

ments in the diagnostic accuracy of ML algorithms, many of

the driving factors for real-world clinical ML adoption fall outside

of solely technical progress. Interoperability and integration with

existing electronic health records and image storage systems is

a significant barrier to adoption by hospital systems.129 Clini-

cians may not trust or understand ML algorithm decisions and

outputs. Developers must effectively communicate the eco-

nomic value of their ML algorithms to hospital decision makers

and overcome organizational inertia. Finally, patients and clini-

cians should also understand the benefits and risks of using

ML in decision making.130

Different data modalities require different ML
techniques
Imaging and molecular data are the two most common data mo-

dalities in cancer diagnostics. However, in practice, they require
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very different ML approaches due to fundamental differences in

the problems each data type presents. Imaging-based tasks

typically involve a needle-in-the-haystack problem, where small

features associated with cancer are present in a large image

space. CNNs are highly effective and have become ubiquitous

because they are able to efficiently learn from large amounts of

available data, and they can extract spatially distinct hierarchies

of features present in an image.

Molecular data, on the other hand, tend to be highly structured

and have features that correspond to distinct biological mea-

surements (i.e., DNA sequences). A primary hurdle in analysis

is the high dimensionality of biological features and the inherent

sparsity present in the data. Here, ML regularization techniques

like LASSO regression are used, as well as dimensionality reduc-

tion techniques like PCA for selecting salient biomarkers. Finally,

statistical ML models like logistic regression and decision trees

are used to pick optimal thresholds and minimal levels of detec-

tion that correspond to a clinically meaningful presence of

disease.

Future developments
New biomedical and ML technologies are rapidly emerging that

will change the wayML is applied to cancer diagnostics andmay

significantly improve the predictive power and clinical usefulness

of these models.

Biomedical data

Biomedical advances are enabling physicians to obtain increas-

ingly detailed medical data about patients. In pathology, new

multiplexed proteomics technologies like CODEX131 allow stain-

ing for 40–100 proteins simultaneously, providing a much more

detailed view of the cellular and proteomic composition of tis-

sues than traditional staining techniques like H&E staining and

immunofluorescence. Similarly, spatial transcriptomics132 pro-

vides a view of the spatial distribution of RNA transcripts across

a pathology sample, thereby incorporating another form of

omics data into images. Sequencing data from the tumor micro-

biomemight serve as a diagnostic tool for oncology as scientists

learn more about the role of bacteria in cancer.133 Data from the

immune system, such as T cell receptor sequences, can also

provide diagnostic clues for cancer based on the body’s

response to tumors.134 ML methods that use these new

sources of data may be able to makemore accurate and specific

predictions.

Integrating imaging and omics

Imaging and molecular data often provide complementary infor-

mation about a patient’s cancer, so integrating these two data

sources can improve ML predictions for diagnostics, prognosis,

and treatment. One method of combining the two is through

biomedical technologies such as CODEX and spatial transcrip-

tomics, which overlay spatially resolved proteomics and tran-

scriptomics data on images, allowing models to process omics

data in image form.49,88,135 Another promising direction is the

development of multimodal models, which fuse multiple ML

models to combine information across several data types

(images, genomics, clinical records, etc.) to make better predic-

tions.2 Multimodal models can have a more holistic view of each

patient and can combine multiple weak signals into a strong

signal that can better inform the patient’s diagnosis or optimal
treatment. For example, Vanguri et al. predict response to PD-

(L)1 blockade in patients with non-small cell lung cancer using

a multimodal model that combines medical imaging, histopath-

ologic, and genomic features and outperforms unimodal

models.136 Although there are many challenges to developing

multimodal models, such as linking data across modalities and

handling patients with incomplete data, thesemodels may prove

to be very powerful because they can reason across multiple

sources of information, just as physicians do.

ML methodology

New ML models have emerged that improve upon the standard

deep learning architectures, such as CNNs, that are commonly

used in cancer diagnostics. Several such models have demon-

strated clear improvements in predictive accuracy. One of the

best examples is the transformer,137 which was originally de-

signed for natural language processing. Transformers have since

been modified and applied to pathology images.138 Another

trend is to re-envision image-based data as a graph and apply

GNNs. For example, Wu et al. convert images of tissue samples

into graphs of cells, where each cell is a node in the graph and

neighboring cells have edges connecting them.88 GNNs applied

to these graphs canmake diagnostic and prognostic predictions

that may be more robust against visual artifacts and more sensi-

tive to the interconnections between cells than image-based

predictions. Instead of using new ML models, another option is

to improve the performance of existingMLmodels by performing

data augmentation with generative ML models, which learn to

synthesize new data that look similar to the real training

data.139 Generative models are also useful for translating be-

tween data formats such as generating text reports frommedical

images.140

The technological advancements discussed in this Review

illustrate the exciting potential of ML to leverage the latest

biomedical data to transform the field of clinical oncology. As

ML methods are further improved and carefully validated with

appropriate monitoring and regulatory oversight, they may

soon see wide-scale clinical adoption to improve cancer care

for patients.
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117. Pesapane, F., Volonté, C., Codari, M., and Sardanelli, F. (2018). Artificial

intelligence as a medical device in radiology: ethical and regulatory is-

sues in Europe and the United States. Insights Imaging 9, 745–753.

118. Oakden-Rayner, L., Gale, W., Bonham, T.A., Lungren, M.P., Carneiro, G.,

Bradley, A.P., and Palmer, L.J. (2022). Validation and algorithmic audit of

a deep learning system for the detection of proximal femoral fractures in

patients in the emergency department: a diagnostic accuracy study. Lan-

cet. Digit. Health 4, e351–e358.

119. Daneshjou, R., He, B., Ouyang, D., and Zou, J.Y. (2021). How to evaluate

deep learning for cancer diagnostics - factors and recommendations.

Biochim. Biophys. Acta. Rev. Cancer 1875, 188515.

120. Vodrahalli, K., Daneshjou, R., Gerstenberg, T., and Zou, J. (2022). Do hu-

mans trust advice more if it comes from ai? an analysis of human-ai inter-

actions. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics,

and Society. New York, NY, USA (Association for ComputingMachinery),

pp. 763–777. (AIES ’22).

121. Ferryman, K. (2020). Addressing health disparities in the Food and Drug

Administration’s artificial intelligence and machine learning regulatory

framework. J. Am. Med. Inform. Assoc. 27, 2016–2019.

122. Lehman, C.D., Wellman, R.D., Buist, D.S.M., Kerlikowske, K., Tosteson,

A.N.A., and Miglioretti, D.L.; Breast Cancer Surveillance Consortium

(2015). Diagnostic accuracy of digital screening mammography with

and without computer-aided detection. JAMA Intern. Med. 175,

1828–1837.

123. Fenton, J.J. (2015). Is it time to stop paying for computer-aided

mammography? JAMA Intern. Med. 175, 1837–1838.

124. Duffy, G., Clarke, S.L., Christensen, M., He, B., Yuan, N., Cheng, S., and

Ouyang, D. (2022). Confounders mediate AI prediction of demographics

in medical imaging. NPJ Digit. Med. 5, 188.

125. Rudin, C. (2019). Stop explaining black box machine learning models for

high stakes decisions and use interpretable models instead. Nat. Mach.

Intell. 1, 206–215.

126. Wulczyn, E., Steiner, D.F., Moran, M., Plass, M., Reihs, R., Tan, F., Fla-

ment-Auvigne, I., Brown, T., Regitnig, P., Chen, P.H.C., et al. (2021).

Interpretable survival prediction for colorectal cancer using deep

learning. NPJ Digit. Med. 4, 71.

127. Zhang, Z., Chen, P., McGough, M., Xing, F., Wang, C., Bui, M., Xie, Y.,

Sapkota, M., Cui, L., Dhillon, J., et al. (2019). Pathologist-level interpret-

able whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell.

1, 236–245.

128. Castelvecchi, D. (2016). Can we open the black box of AI? Nature 538,

20–23.

129. Varghese, J. (2020). Artificial intelligence in medicine: chances and chal-

lenges for wide clinical adoption. Visc. Med. 36, 443–449.

130. Kelly, C.J., Karthikesalingam, A., Suleyman,M., Corrado, G., and King, D.

(2019). Key challenges for delivering clinical impact with artificial intelli-

gence. BMC Med. 17, 195.

131. Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., Hale, M., Vaz-

quez, G., Black, S., and Nolan, G.P. (2018). Deep profiling of mouse

splenic architecture with CODEX multiplexed imaging. Cell 174, 968–

981.e15.
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