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Abstract
Multimodal abstractive summarization for videos
(MAS) requires generating a concise textual sum-
mary to describe the highlights of a video accord-
ing to multimodal resources, in our case, the video
content and its transcript. Inspired by the success
of the large-scale generative pre-trained language
model (GPLM) in generating high-quality textual
content (e.g., summary), recent MAS methods have
proposed to adapt the GPLM to this task by equip-
ping it with the visual information, which is often
obtained through a general-purpose visual feature
extractor. However, the generally extracted visual
features may overlook some summary-worthy visual
information, which impedes model performance. In
this work, we propose a novel approach to learning
the summary-worthy visual representation that fa-
cilitates abstractive summarization. Our method ex-
ploits the summary-worthy information from both
the cross-modal transcript data and the knowledge
that distills from the pseudo summary. Extensive
experiments on three public multimodal datasets
show that our method outperforms all competing
baselines. Furthermore, with the advantages of
summary-worthy visual information, our model can
have a significant improvement on small datasets or
even datasets with limited training data.

1 Introduction
With the increasing popularity of video in user-generated con-
tent in recent years [Kim et al., 2021; Cherian et al., 2022],
a large number of open-domain videos have been posted on
the Web (e.g., YouTube). Usually, many of the videos are
not accompanied by a briefly introduction to reflect the cor-
responding salient information, which prevents users from
quickly finding their interested videos unless taking time to
peruse each video. Obviously, in this scenario, it would be
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Video Frames: Transcript：so, now we 're going to talk about 
the backhand .  basical ly,  the  same a  gr ip . 
sometimes i feel like i want to adjust it [...] you 're 
hanging your arm, trying to hang your arm almost 
perpendicular to the ground. almost like a tennis 
stroke. [...] and just follow through, you can come 
through a little high, but basically, you want to get 
your arms back into the ready position. we 'll talk 
about that next.

Reference Summary：  learn how to do the 
backhand stroke in ping pong in this free video 
lesson on ping pong .

Figure 1: An example of multimodal abstractive summarization.
The unimportant textual content is omitted and replaced by [...]. It
can be seen that some critical information in the reference is either
highlighted in the transcript (e.g., backhand stroke) or only available
from the video (e.g., ping pong).

valuable to develop an automatic abstractive summarization
model [Libovickỳ et al., 2018] that detects the highlights of
each video and then generates a short textual description.

As illustrated in Figure 1, the task of multimodal abstrac-
tive summarization (MAS) aims to generate a concise textual
summary according to multimodal resources, i.e., the video
content and its transcript [Sanabria et al., 2018]. This task is
challenging since both visual and textual modalities are com-
plementary to each other, and thus, how to efficiently combine
the multimodal information is the key to this task. To lever-
age information from both modalities, [Palaskar et al., 2019]
employed separate encoders on visual and textual data, which
was followed by a joint decoder with an attention mechanism
to capture the intrinsic connection between the two modalities.
Later, MFFG [Liu et al., 2020] and SFFG [Liu et al., 2022]
brought the multimodal interaction into the encoder to obtain
the fine-grained correlation between multimodal inputs to ex-
ploit the complementary information of each modality and
achieved promising results.

Recently, inspired by the success of the large-scale genera-
tive pre-trained language model (GPLM) [Lewis et al., 2019;
Raffel et al., 2020] on generating high-quality textual con-
tent (e.g., summary), researchers start to apply it to the MAS
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Figure 2: An overview of our proposed 𝑆𝑊𝑉𝑅 (Summary-Worthy Visual Representation) method. The Bi-directional Visual-Language
Attention mechanism (BVLA) and Self Distillation Mechanism (SDM) are introduced to encourage the visual encoder to exploit the summary-
wothy information.

task. To do this, VG-GPLM [Yu et al., 2021a] first extracts the
video representation with the pre-trained visual feature extrac-
tor. Then, to allow the cross-modal interaction, the obtained
visual feature of video is injected into each encoder layer of
the GPLM with an attention-based text-vision fusion module.
This attention module is designed to select the relevant vi-
sual information (key & value) based on the textual features
(query). VG-GPLM has demonstrated the potentials of inject-
ing visual representation into language models to improve the
MAS performance.

However, existing methods mainly use a general-purpose
visual feature extractor, which may potentially overlook some
summary-worthy visual information, including the essentials
that are merely available in the video (e.g., the ‘ping pong’
in Figure 1 only appears in video frames), and thus impede
the quality of the generated summary. It is also possible
for the existing methods to generate the novel concepts like
‘ping pong’ if sufficient labelled data is provided to well-
train the general-purpose extractor to identify task-specific ob-
jects. Unfortunately, it may lead to the contradiction between
the data hungriness issue of the extractor and the scarcity of
annotated summarization data.

To address the above issue, we aim to design a visual en-
coder that is aware of summary-worthy information. We
present a novel method, named 𝑆𝑊𝑉𝑅, to learn Summary-
WorthyVisualRepresentation for the MAS task. We use aBi-
directionalVisual-LanguageAttention mechanism (BVLA) to
encourage the visual encoder to exploit the summary-wothy
information from the textual data, i.e., transcripts. Afterward,
we further introduce a Self Distillation Mechanism (SDM)
that takes the generated pseudo summary as the teacher to
guide the learning of the visual encoder. This self-distillation
encourages the visual encoder to have the ability of capturing
and aligning to summary-worthy knowledge that appears in
the generated summary after the decoder. Given the surprising
and strong text generation ability of GPLM, such distillation
helps the visual encoder pay more attention on corresponding

key concepts in video frames. Since a sub-optimal placement
may impede the model’s performance, we enumerate almost
all possible ways to combine and evaluate BVLA and SDM
modules in the visual encoder. Experimental results on three
public datasets show that our method outperforms all compet-
ing baselines, especially on the dataset with a relatively small
size. Further studies demonstrate the effectiveness of each
component, and suggest that the learned summary-worthy
feature can help the model identify valuable information, thus
benefiting the MAS task.

2 Related Work
Text-based Abstractive Summarization: Given a long ar-
ticle, abstractive text summarization aims to generate a brief
summary that describes the article’s most salient content.
Early studies were based on statistical or linguistic rules, in-
cluding extractive and compression [Knight and Marcu, 2002;
Clarke and Lapata, 2010], templates [Zhou and Hovy, 2004],
and statistics [Banko et al., 2000]. Later, the availability of
large-scale summarization corpora has promoted the develop-
ment of various neural networks, among which the representa-
tive Seq2Seq model [Sutskever et al., 2014] and the attention
mechanism have greatly advanced the quality of summaries
[Paulus et al., 2018; Wang et al., 2019; Zhang et al., 2020;
Yu et al., 2021b]. Recently, in light of the powerful gen-
erative abilities, the large-scale pre-trained language models
have led the mainstream in this field [Lewis et al., 2019;
Raffel et al., 2020; Zhang et al., 2020; Qi et al., 2020].
Video-based Abstractive Summarization: Multimodal
summarization has been developed for decades [Erol et al.,
2003; Tjondronegoro et al., 2011; Evangelopoulos et al.,
2013; Shah et al., 2016; Zhang et al., 2022]. The key method
behind it, i.e., multimodal learning, has recently attracted a
number of researchers’ interest, while in fact little attention
has been paid to the video content based summarization. Pre-
vious methods mainly focus on a simple situation where the
video data contains synchronized signals, e.g., synchronized
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voice and captions. To tackle the video-based summariza-
tion in a more general and asynchronous scenario, [Li et al.,
2017] collected a multimodal dataset containing 500 videos of
English news articles with human-generated reference sum-
maries. Later, to better promote the development of the MAS
for videos, [Sanabria et al., 2018] introduced a large-scale
human-annotated video dataset named How2, which contains
videos of 2000 hours, and each video is annotated with a short
summary. Thanks to the How2 dataset, of which the advent
has accelerated the development of MAS methods using neu-
ral networks, e.g., the hierarchical attention in [Palaskar et al.,
2019], the forget gate mechanism in [Liu et al., 2020], and the
multi-stage fusion network in [Liu et al., 2022]. To further
leverage the GPLM’s generation ability, VG-GPLM [Yu et
al., 2021a] studies multiple fusion methods that inject the vi-
sual information into GPLMs to improve the MAS for videos.
However, VG-GPLM obtains the visual feature via a general-
purpose visual encoder, which likely ignores task-specific vi-
sual clues that are valuable to summarization. In contrast, our
method bridges this gap by learning and then injecting the
summary-worthy visual feature into the GPLMs.

3 Methodology
3.1 Problem Definition
Given a video 𝑉 and its associated textual transcript 𝑇 , our
multimodal summarization system is required to summarize
the video by a generated concise summary 𝑆 with maximum
probability 𝑝(𝑆 |𝑉,𝑇 ; 𝜃), where 𝜃 stands for the model pa-
rameters. It is worth knowing that both the transcript 𝑇 and
generated summary 𝑆 are in the form of a sequence of words.

For the text-based abstractive summarization task, a prevail-
ing way is to adopt the powerful GPLM, whose ability of gen-
erating high-quality texts has been widely demonstrated [Qi
et al., 2020; Zhang et al., 2020]. When in the case of multi-
modal input like a video, a natural idea is to inject the visual
features into the encoder of GPLM and then utilize its superior
generation to obtain a better textual summary, which is how
VG-GPLM [Yu et al., 2021a] works. In the following, we
present the proposed 𝑆𝑊𝑉𝑅 model in detail, and the overall
framework is shown in Figure 2.

3.2 Video Pre-processing
Given a video, we follow previous work [Yu et al., 2021a]
to first extract the visual features with 2048 dimension for
every 16 non-overlapping frames through a 3D ResNeXt-101
model [Hara et al., 2018], which is pre-trained on the Kinetics
dataset [Kay et al., 2017]. Then a linear layer is adopted to
project the visual features into 𝑑 dimension vector space and
obtain Z𝑣 ∈ R𝑛𝑣×𝑑 , where 𝑛𝑣 is the number of visual tokens.

3.3 Method Overview
As discussed above, we employ the GPLM as our backbone.
Specifically, we construct our method with the sequence-to-
sequence BART model [Lewis et al., 2020], which consists
of a textual encoder and a left-to-right decoder designed to
generate the textual summary. Given the transcript as input,
the textual encoder first tokenizes it and then embeds it into
the textual features Z𝑡 ∈ R𝑛𝑡×𝑑 , which will be fed into the

transformer [Vaswani et al., 2017] encoder layers to exploit
the contextual representation as:

Z𝑙′
𝑡 = 𝐿𝑁 (𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛(Z𝑙−1

𝑡 ) +Z𝑙−1
𝑡 ), (1)

Z𝑙
𝑡 = 𝐿𝑁 (𝐹𝐹𝑁 (Z𝑙′

𝑡 ) +Z𝑙′
𝑡 ), (2)

where 𝐿𝑁 denotes the layer normalization [Ba et al., 2016],
𝑙 ∈ [1, 𝐿] denotes the 𝑙-th textual encoder layer, Z0

𝑡 is ini-
tialized with Z𝑡 , and 𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛 and 𝐹𝐹𝑁 denotes two sub-
layers, i.e., the multi-headed self-attention mechanism and a
feed-forward network, respectively1.

To inject the visual information into each layer of the textual
encoder, we add a third sub-layer into each textual encoder
layer. Specifically, assume the visual feature that is to be
injected into the 𝑙-th textual encoder layer is Z𝑙

𝑣 , then this
sub-layer operates as:

Z̃𝑙
𝑡 = 𝐿𝑁 (𝑉𝐿𝐴(Z𝑙

𝑣 ,Z
𝑙
𝑡 ) ·W 𝑙

𝑡 +Z𝑙
𝑡 ), (3)

whereW 𝑙
𝑡 ∈ R𝑑×𝑑 is the model weight, and𝑉𝐿𝐴(Z𝑙

𝑣 ,Z
𝑙
𝑡 ) is a

unidirectional visual-language attention function that extracts
the relevant information from visual feature Z𝑙

𝑣 according to
the textual feature Z𝑙

𝑡 , which will be described later. It can
be seen from (3) that Z𝑙

𝑣 takes a great impact on our model.
Therefore, our paper focuses on how to obtain a high-quality
collection of visual feature, i.e., C𝑣 = {Z1

𝑣 , · · · ,Z𝐿
𝑣 }, where

each Z𝑙
𝑣 can be injected into the 𝑙-th textual encoder layer.

Afterward, the output Z̃𝐿
𝑡 from the last layer of textual

encoder will be provided to the decoder to generate a sequence
(w1, . . . ,w𝑛𝑤 ) of vectors one element at a time. Since the
decoder is auto-regressive, at each step, the generated vector
w𝑖 is mapped to a new vector of vocabulary size, followed by a
softmax function to output the summary word distribution ŷ𝑖 .
The negative log-likelihood between the generated summary
and the ground-truth summary is used to calculate the loss as:

L𝐴𝑏𝑠 = −
𝑛𝑤∑︁
𝑗=1

y𝑖 log 𝑝(ŷ𝑖). (4)

3.4 Learning Summary-Worthy Visual
Representation

A simple way to generate the collection C𝑣 is that we fill
C𝑣 with the obtained Z𝑣 after video pre-processing, namely,
C𝑣 = {Z𝑙

𝑣 = Z𝑣 ,∀𝑙 = 1, · · · , 𝐿}. In this way, the cross-modal
interaction can be simply summarized as Figure 3(a).

Auxiliary Visual Encoder
However, the direct utilization of Z𝑣 may suffer from the
below shortcomings: (𝑖) The temporal information of a video
is ignored, which limits the expressiveness of visual feature;
(𝑖𝑖) Since recent study [Raghu et al., 2021] finds that different
encoder layers exploit different-level semantic, injecting the
same visual feature into different textual encoder layers may
potentially restrict the model to learn more meaningful cross-
modal interactions.

1Additionally, there are residual operations inside each layer,
which we omit here for brevity. For the interested readers, we kindly
refer to [Vaswani et al., 2017] for more description.
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(a) Direct utilization of Z𝑣 . (b) Auxiliary Visual Encoder.

(c) Learning SWR from Transcript.(d) Learning SWR from Summary.

Figure 3: The simple illustration of different types of visual infor-
mation injected into the textual encoder layers. SWR stands for
summary-worthy representation. The textual and visual information
are represented in green and blue color, respectively. The yellow
color stands for the feature map of generated summary.

To address the above issues, also inspired by the recent
success of the two-tower architecture [Radford et al., 2021;
Jia et al., 2021], we introduce an auxiliary visual encoder that
takes the video feature as input and learns visual information
at different levels of semantics. Specifically, the trainable
positional encodings are first added to the Z𝑣 to preserve
the temporal information. Afterward, this Z𝑣 can be used
directly as input to vanilla transformer-based visual encoder
of 𝐿 layers. Formally, given the input Z𝑣 , the output of each
visual layer is computed as:

Z𝑙′
𝑣 = 𝐿𝑁 (𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛(Z𝑙−1

𝑣 ) +Z𝑙−1
𝑣 ), (5)

Z𝑙
𝑣 = 𝐿𝑁 (𝐹𝐹𝑁 (Z𝑙′

𝑣 ) +Z𝑙′
𝑣 ), (6)

where Z0
𝑣 is initialized with Z𝑣 . We collect the output of each

visual encoder layer and obtain a new visual collection C𝑣 =

{Z1
𝑣 , · · · ,Z𝐿

𝑣 }, as shown in Figure 3(b). In this way, we inject
the visual information into the textual feature from the same
‘height’ (e.g., both from the 𝑙-th layer), which could benefit
the cross-modal correlation at different levels of semantics.

Summary-Worthy Information from Transcript
It can be observed that this introduced auxiliary visual encoder
is still a general-purpose visual feature extractor. Since not
all the information from the visual modality is valuable for
summarization [Liu et al., 2020], the noise and redundancy in
the generally learned visual feature makes it less effective for
the model to summarize the highlights. We are thus motivated
to propose to learn the summary-worthy visual representation.

Since the summary-worthy information from each modality
may be complementary to the other, carrying this observation,
we propose to exploit the summary-worthy information from
the transcript, which may be complementary to and bene-
fit learning the visual feature. Therefore, we use the multi-
head cross-attention to inject the summary-worthy informa-
tion from the transcript into the visual representation. Techni-
cally, we extend the unidirectional 𝑉𝐿𝐴(·, ·) function (which
is employed in (3)) into bi-directional visual-language atten-
tion function 𝐵𝑉𝐿𝐴(·, ·). Given textual feature Z𝑙

𝑡 ∈ R𝑛𝑡×𝑑
and visual representation Z𝑙

𝑣 ∈ R𝑛𝑣×𝑑 , the 𝐵𝑉𝐿𝐴(·, ·) will

function as:

[Z𝑙
𝑡→𝑣 ,Z

𝑙
𝑣→𝑡 ] = 𝐵𝑉𝐿𝐴(Z𝑙

𝑡 ,Z
𝑙
𝑣), (7)

where Z𝑙
𝑡→𝑣 ∈ R𝑛𝑣×𝑑 and Z𝑙

𝑣→𝑡 ∈ R𝑛𝑡×𝑑 denote the infor-
mation of transcript that is relevant to video or vice versa,
respectively. Let us take Z𝑙

𝑡→𝑣 as an example to elaborate.
Particularly, the Z𝑙

𝑡→𝑣 is calculated via a cross-modal multi-
head attention (𝐶𝑟𝑜𝑠𝑠𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛) as:

Q𝑣 = Z𝑙
𝑣W

𝑙
𝑞 , K𝑡 = Z𝑙

𝑡W
𝑙
𝑘 , V𝑡 = Z𝑙

𝑡W
𝑙
𝑣 , (8)

Z𝑙
𝑡→𝑣 = 𝐶𝑟𝑜𝑠𝑠𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛(K𝑡 ,Q𝑣 ,V𝑡 ), (9)

where W 𝑙
𝑞 , W 𝑙

𝑘
and W𝑣 ∈ R𝑑×𝑑 are model weights. After

obtaining the Z𝑙
𝑡→𝑣 , we inject it into the visual feature as

Z̃𝑙
𝑣 = 𝐿𝑁 (Z𝑙

𝑡→𝑣 ·W ′𝑙
𝑣 +Z𝑙

𝑣), (10)

where W ′𝑙
𝑣 ∈ R𝑑×𝑑 is the model weight. Similarly, the

output of each visual encoder layer can be collected to form
C𝑣 = {Z̃1

𝑣 , · · · , Z̃𝐿
𝑣 }, as like Figure 3(c).

Summary-Worthy Information from Summary
Since some vital summary concepts are only available in the
video content rather than transcripts (e.g., the ‘ping pong’
in Figure 1), we also expect the visual encoder could have the
ability to identify the novel summary-worthy visual feature
that might not appear in transcripts. We are thus motivated to
bridge the visual feature learning and the generated summary
in a more direct manner, thus further enhancing our visual
encoder.

One potential way of benefiting our visual encoder is to dis-
til the task-specific knowledge from other large-scale summa-
rization models. However, most of the available ones are text-
only methods, of which the knowledge is not suitable for our
visual encoder. To this end, instead of the traditional knowl-
edge distillation, we take advantage of self distillation [Zhang
et al., 2019], which has been proven to be an effective way to
distil knowledge within the network itself. The basic idea is
that we take the output of the decoder as the pseudo summary
(i.e., hints) to teach the learning process of the visual encoder.

Technically, we apply the average pooling on the output vec-
tor sequence (w1, . . . ,w𝑛𝑤 ) from the last layer of the decoder
to obtain w ∈ R𝑑 , which can be regarded as the global rep-
resentative of the generated pseudo summary. Then we distil
this summary-worthy knowledge into our visual encoder layer
via a self distillation mechanism (SDM) as

L𝑆𝑑 = 𝜆 · ∥w − 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑎𝑣𝑔(Z̃𝑙
𝑣))∥, (11)

where 𝜆 is the hyper-parameters, 𝑎𝑣𝑔(·) is the average pooling
layer. As seen from (11), this knowledge distillation works
by decreasing the distance between the feature maps of the
pseudo summary from the decoder and of the visual feature
from the visual encoder. Since the feature maps are from two
modalities with different dimensions, an extra linear projector
is added to project the visual one to the same dimension as
the other. Finally, the training loss L of our method is a sum
of the objectives as:

L = L𝐴𝑏𝑠 + L𝑆𝑑 . (12)
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Dataset Train Dev Test
How2 68336 2520 2127
How2-300 13167 150 127
MM-AVS 836 104 105

Table 1: The statistics of the three datasets.

During the training, as the visual feature in our SDM
can gradually fit the feature map of the decoder output in a
global representative way, the inexplicit knowledge and novel
concepts that have not appeared in transcripts are injected
into learning the visual feature, and thus we achieve a new
summary-worthy collection C𝑣 = {Ẑ1

𝑣 , · · · , Ẑ𝐿
𝑣 }, see Fig-

ure 3(d).

3.5 Implementation Details
The BART-base model is adopted as the backbone of our
model, in which 𝐿 = 6 for both the encoder and decoder.
For the introduced auxiliary visual encoder, we use a 6-layer
encoder with 8 attention heads and a 768 feed-forward dimen-
sion. Following previous work [Yu et al., 2021a], we set the
max length of the generated summary to be 64 tokens; the
decoding process can be stopped early if an End-of-Sequence
(EOS) token is emitted. The Adam [Kingma and Ba, 2014]
with 𝛽1 = 0.9, 𝛽2 = 0.999, and a weight decay of 1𝑒−5 is
employed as the optimizer.

4 Experiments
4.1 Experimental Setups
Datasets and Evaluation Metrics: We evaluate the pro-
posed 𝑆𝑊𝑉𝑅 on three public datasets, including How2,
How2-300 [Sanabria et al., 2018], and MM-AVS [Fu et al.,
2021] dataset. The statistic of datasets is shown in Table 1. We
follow [Yu et al., 2021a] to adopt the ROUGE-{1,2,L} [Lin
and Hovy, 2003], BLEU-{1,2,3,4} [Papineni et al., 2002],
METEOR [Denkowski and Lavie, 2011], CIDEr [Vedantam
et al., 2015], and Content F1 [Palaskar et al., 2019] as the
evaluation criteria.
Bacelines: We compare 𝑆𝑊𝑉𝑅 with the following two
groups of baselines. 1) Methods using transcript only: In
this group of baselines, we pick the existing text-only sum-
marization methods, including S2S [Luong et al., 2015],
PG [See et al., 2017], TF [Vaswani et al., 2017], T5 [Raf-
fel et al., 2020], and BART [Lewis et al., 2020]. 2) Meth-
ods using both transcript and video: We consider strong
MAS baselines including HA(RNN/Transformer) [Palaskar
et al., 2019], MFFG(RNN/Transformer) [Liu et al., 2020],
VG-GPLM(T5/BART) [Yu et al., 2021a], and SFFG [Liu et
al., 2022].

4.2 Experimental Results
The results of How2 datasets are shown in Table 2. As
observed, our proposed model significantly outperforms all
previous methods, and we take an average improvement of
5.72% over all the criterion compared with the strongest base-
line VG-BART. It confirms the effectiveness of our proposed

summary-worthy mechanism. We can also see that the perfor-
mance of abstractive summarization with the help of both tran-
scripts and video content significantly outperform transcript-
only summarization models, demonstrating that visual fea-
tures contain valuable information that is complementary to
the transcript.

As for the How2-300 dataset, it can be observed from Ta-
ble 3 that our model still performs the best. An interesting
found is that, compared with the VG-BART model, the aver-
age improvement 4.9% (over R1, R2, and RL) on How2-300
is larger than that of 2.2% in the How2 dataset, namely, our
model can work even better on small datasets like How2-300.
We conjecture that it is because the general-purpose visual
feature extractors require more training data to distinguish the
task-specific clues that are valuable for the MAS task, so they
don’t work very well on small datasets. In contrast, thanks
to the superiority of our proposed BVLA and SDM, the key
and novel information is easier to capture and align, therefore
achieving much better performance on the smaller dataset.

To further elaborate on the advantage of our model in the
case of small datasets, we conduct experiments on MM-AVS,
which has the minimum amount of data among benchmark
datasets. We select T5, BART, VG-T5, and VG-BART for
comparison. As shown in Table 4, if we directly fine-tune
the baselines on this dataset, severe over-fitting phenomena
occurs in both the VG-T5 and VG-BART models. It can be
further observed that the above two models can only coverage
when first training on the larger How2 dataset, and then con-
tinuously fine-tuning on the smaller MM-AVS dataset. This
can be attributed to the fact that it is hard for the baseline
models to disentangle enough summary-worthy information
from the general visual features if limited training data is
provided. Instead, with the proposed summary-worthy mech-
anism, our model works surprisingly well on MM-AVS, no
matter whether the model is first trained on the larger How2
dataset or not.

4.3 Ablation Study
Impacts of Different Components
We evaluate the effectiveness of different components by grad-
ually removing three modules, i.e., the SDM, BVLA, and aux-
iliary visual encoder. 1) SWVR w/o D: the self distillation is
first removed; in such case, our model can only leverage the
summary-related information from transcripts and becomes
Fig.3(c). 2) SWVR w/o D+B: The BVLA is further replaced
with the uni-directional VLA, then our model can be summa-
rized as Fig.3(b). Note that in this case, our model is not aware
of any summary-worthy information. 3) SWVR w/o D+B+A:
Lastly, the introduced auxiliary visual encoder is dropped, and
our model is degraded to the simplest form Fig.3(a).

We compare the three variants with the complete 𝑆𝑊𝑉𝑅

on the How2 dataset, and results are shown in Table 2. The
general trend is that eliminating any of the modules (e.g.,
from SWVR w/o D to w/o D+B+A) will negatively impact the
model’s performance, confirming each component’s benefits.
Moreover, it is noticeable that the introduction of SMD can
bring an improvement of 1.25% on average, suggesting the
importance of equipping our visual encoder with the ability to
capture summary-worthy values from the pseudo summary.
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Method R-1 R-2 R-L B-1 B-2 B-3 B-4 M C CF
Transcript

S2S† 58.6 40.6 53.8 55.2 45.6 39.9 35.8 27.6 2.35 -
PG† 57.2 39.5 52.8 55.3 45.6 39.8 35.7 26.8 2.13 -
TF† 59.0 41.0 54.3 56.6 46.7 40.8 36.6 27.7 2.30 -
T5∗ 62.8 45.0 57.5 60.5 50.4 44.2 39.6 30.6 2.76 61.7
BART∗ 64.0 46.4 58.9 62.4 52.6 46.4 42.0 31.7 2.97 63.9

Transcript + Video

HA (RNN)† 60.3 42.5 55.7 57.2 47.7 41.8 37.5 28.8 2.48 -
HA (TF)† 60.2 43.1 55.9 58.6 48.3 43.3 38.1 28.9 2.51 -
MFFG (RNN)† 62.3 46.1 58.2 59.1 50.4 45.1 41.1 30.1 2.69 -
MFFG (TF)† 61.6 45.1 57.4 60.0 50.9 45.3 41.3 29.9 2.67 -
SFFG‡ 63.2 46.4 58.9 61.5 52.3 46.5 42.4 31.6 2.74 -
VG-T5∗ 63.3 45.3 58.0 60.7 50.8 44.7 40.2 31.0 2.86 62.8
VG-BART∗ 68.0 51.4 63.3 65.2 56.3 50.4 46.0 34.0 3.28 69.7

Our Framework and the Variants

𝑆𝑊𝑉𝑅 69.1 53.1 64.4 68.9 60.0 54.3 50.0 36.8 3.58 72.8
- w/o D 68.7 52.6 63.9 68.5 59.5 53.7 49.3 36.5 3.42 72.3
- w/o D+B 68.2 51.5 63.4 66.5 57.3 51.5 47.2 35.9 3.30 71.9
- w/o D+B+A 67.0 50.5 61.8 64.7 55.6 49.8 45.4 33.3 3.24 71.5

Table 2: Evaluation results of baselines and our proposed models on the How2 dataset, where R, B, M, C, and CF stand for ROUGE, BLEU,
MENTOR, CIDEr, and Content F1, respectively. Results with †, ‡, and ∗ marks are taken from [Liu et al., 2020], [Liu et al., 2022], and [Yu
et al., 2021a], respectively. Abbreviations D, B, and A stand for self distillation, bi-directional visual-language attention, and auxiliary visual
encoder modules, respectively.

Method R-1 R-2 R-L
Transcript

S2S‡ 46.01 25.16 39.98
T5 55.36 36.01 49.73
BART 56.56 37.22 50.44

Transcript + Video

MFFG (RNN)‡ 48.53 28.69 44.08
MFFG (TF)‡ 49.27 28.26 43.41
SFFG‡ 50.60 30.38 44.67
VG-T5 57.72 36.80 50.37
VG-BART 58.24 37.99 51.46

Ours 59.92 40.75 53.81

Table 3: Evaluation results of baselines and our proposed models on
the How2-300 dataset. Results with ‡ mark are taken from [Liu et
al., 2022].

Impacts of the Hyper-parameter of 𝜆
In SDM, we introduce the hyper-parameter 𝜆, which controls
the trade-off between the cross-entropy loss and the self distil-
lation loss. To analysis the sensitivity of 𝜆, we manually select
the values of 𝜆 from {0.01, 0.05, 0.1, 0.2, 0.5}. ROUGE-1
and BLEU-1 w.r.t 𝜆 on How2 datasets are illustrated in Fig-

Method R-1 R-2 R-L
Without Training on the How2 dataset

T5 22.36 9.00 17.96
BART 22.97 9.02 17.65
VG-T5 12.96 1.12 10.82
VG-BART 13.95 1.20 11.59
Ours 23.67 10.23 18.97

First Training on the How2 dataset

T5 23.46 9.95 18.
BART 23.36 9.56 17.97
VG-T5 25.11 10.50 19.80
VG-BART 25.04 11.00 20.06
Ours 26.08 12.46 21.31

Table 4: Evaluation results of baselines and our proposed models on
the MM-AVS dataset.

ure 4. It can be observed that the performance of 𝑆𝑊𝑉𝑅 first
increases and gets the peak when 𝜆 is not greater than 0.1.
Afterward, the improvement is neutralized and even lost if 𝜆
becomes larger. This may be attributed to the fact that a simple
linear layer in (11) may not mitigate the difference between
different modalities, and thus, we speculate that a more well-
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Figure 4: Impacts of 𝜆 on How2 dataset.

Video：

Ours w/o D：practice angle drill
to practice a backhand with an
extreme angle drill . learn how to
do a technical drill in this free
video lesson .

Ours：work on tennis volleys with
an extreme angle drill . learn how to
do technical tennis drills that will
improve your control in this free
video lesson .

Transcript：okay , now we do the
same thing we just did with the
ground strokes . we do the extreme
angle volley [...] out of each shot as
you can because then your practice is
valuable . [No mention about tennis]

Figure 5: An example of case study. We show the generated sum-
maries of model using summary-related and summary-worthy visual
feature, respectively.

designed transformation may further discover the poentials of
self distillation, which however, is beyond the scope of this
paper.

4.4 Case Study
We conduct a case study to empirically exhibit the effective-
ness of using summary-worthy visual information. To do
so, we conduct experiments using two cases: one only ex-
ploits summary-worthy information from the transcript (see
Fig.3(c)), while the other exploits summary-worthy informa-
tion from both the transcript and the generated pseudo sum-
mary (Fig.3(d)). Data samples can be seen in Figure 5, the
former case of only leveraging the summary-worthy values
from the transcript fails to predict the ‘tennis’, which con-
cept is only available in video frames. With the assistance
of distilled knowledge from the pseudo summary, our model
captures the novel concept, or we call it visual object (i.e.,
tennis), from the video frames and successfully generates a
high-quality summary result.

4.5 Where to Adopt the BVLA and SDM
In this section, we aim to further investigate the optimal lo-
cation where to insert the BVLA and SDM modules. As
depicted in Table 5, in general, leveraging BVLA to inject
the cross-modal features into the unimodal representation can
significantly boost the model’s performance. A similar phe-
nomenon of the utilization of SDM can also be observed in
Table 6. Furthermore, we observe that inserting the BVLA or
SDM modules to the top layers can achieve the best perfor-
mance. We speculate that the lower layers of the encoder may
tend to capture the local and low-level semantics, which are
usually modality-specific. This makes it challenging for the

Adoption of BVLA R-1 R-2 R-L
1 2 3 4 5 6
✗ ✗ ✗ ✗ ✗ ✗ 64.0 46.4 58.9
✓ ✓ ✓ ✓ ✓ ✓ 65.7 49.3 60.7
✗ ✓ ✓ ✓ ✓ ✓ 66.2 49.7 61.2
✗ ✗ ✓ ✓ ✓ ✓ 67.3 51.1 62.3
✗ ✗ ✗ ✓ ✓ ✓ 68.7 52.6 63.9
✗ ✗ ✗ ✗ ✓ ✓ 68.4 52.0 63.5
✗ ✗ ✗ ✗ ✗ ✓ 67.9 51.5 62.8

Table 5: How2 dataset performance of adopting BVLA at different
locations in the encoder of SWVR w/o D (i.e., the self distillation
mechanism is removed). ✓ indicates the adoption at a certain layer
and ✗ indicates non-adoption.

Utilization of SDM R-1 R-2 R-L
1 2 3 4 5 6
✗ ✗ ✗ ✗ ✗ ✗ 65.7 49.3 60.7
✓ ✓ ✓ ✓ ✓ ✓ 66.1 49.7 60.9
✗ ✓ ✓ ✓ ✓ ✓ 66.5 50.0 61.4
✗ ✗ ✓ ✓ ✓ ✓ 67.0 50.4 61.7
✗ ✗ ✗ ✓ ✓ ✓ 67.3 50.9 62.1
✗ ✗ ✗ ✗ ✓ ✓ 67.8 51.4 62.5
✗ ✗ ✗ ✗ ✗ ✓ 67.5 50.8 61.9

Table 6: How2 dataset performance of utilizing SDM at different
layers of the visual encoder. In this case, we force the model to adopt
BVLA at all the locations. ✓ indicates the utilization of SDM a
certain layer while ✗ indicates non-utilization.

model to capture better cross-modal semantic interaction. In
contrast, the top layers of the encoder may primarily exploit
the global and high-level semantics, where the high-level ab-
stract information is more accessible for the model to perform
cross-modal interaction. This observation is also consistent
with [Xu et al., 2021]. Given this conclusion, our best model
reported in Table 2 adopts the BVLA and SDM in {4,5,6}-th
and {5,6}-th encoder layers, respectively.

5 Conclusion
In this paper, we propose to learn summary-worthy visual fea-
tures to boost the MAS task. We introduce a bi-directional
visual-language attention (BVLA) mechanism and a self dis-
tillation mechanism (SDM) to encourage the visual encoder
to exploit the summary-worthy information from the textual
data or the knowledge that distills from the pseudo summary.
In addition, we enumerate almost all possible ways to com-
bine and evaluate BVLA and SDM modules in the visual
encoder. Experiments results show that our proposed method
significantly outperforms all strong baselines on three pub-
lic datasets. Further analysis demonstrates each component’s
effectiveness and suggests that the higher layers of the visual
encoder are the optimal places to employ the BVLA and SMD.
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