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Abstract
It is common in machine learning applications that
unlabeled data are abundant while acquiring labels
is extremely difficult. In order to reduce the cost of
training model while maintaining the model qual-
ity, active learning provides a feasible solution. In-
stead of acquiring labels for random samples, ac-
tive learning methods carefully select the data to be
labeled so as to alleviate the impact from the re-
dundancy or noise in the selected data and improve
the trained model performance. In early stage ex-
perimental design, previous active learning meth-
ods adopted data reconstruction framework, such
that the selected data maintained high representa-
tive power. However, these models did not consider
the data class structure, thus the selected samples
could be predominated by the samples from major
classes. Such mechanism fails to include samples
from the minor classes thus tends to be less “rep-
resentative”. To solve this challenging problem,
we propose a novel active learning model for the
early stage of experimental design. We use exclu-
sive sparsity norm to enforce the selected samples
to be (roughly) evenly distributed among different
groups. We provide a new efficient optimization
algorithm and theoretically prove the optimal con-
vergence rateO(1/T 2). With a simple substitution,
we reduce the computational load of each iteration
from O(n3) to O(n2), which makes our algorithm
more scalable than previous frameworks.

1 Introduction
In many machine learning applications, acquiring labels in-
volves high consumption of time and money. For example,
in biomedical application, it requires the intensive work of
experts to accurately label a biological specimen. In speech
recognition, acquiring annotation of words in speech is a
human-intensive process which calls for a long period of
work by trained linguists [Zhu et al., 2005]. In order to re-
duce the cost of label collection while maintaining the learn-
ing model quality, active learning methods were proposed to
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select a small portion of data for labeling from a large pool of
candidates such that the model constructed with the labeled
data has the optimal potential performance.

In general, there are three different settings of scenarios in
active learning: 1) membership query synthesis; 2) stream-
based selective sampling; and 3) pool-based sampling. Mem-
bership query synthesis automatically generates samples for
labeling, where the quality of the arbitrarily generated in-
stance is not guaranteed. For example, in a handwriting
recognition task [Baum and Lang, 1992], many query images
generated by the model do not even contain an identifiable
character, which makes it hard to label manually. Stream-
based selective sampling treats data in a sequential manner,
where the model checks the data one by one from the data
source and decides whether to label the current sample or
not. However, such model could not leverage the connec-
tion between candidate data, thus the query decision tends
to be biased and sensible when the input distribution is not
known. As for pool-based sampling, it treats unlabeled data
as a whole and draws a small bunch of data to label, such that
certain metric can be maximized. Detailed survey of active
learning can be found in [Settles, 2010; Guyon et al., 2011;
Monteleoni, 2006].

In active learning, many previous methods select only one
instance to label in each iteration. However, such mecha-
nism fails to take the correlation among multiple instances
into consideration thus loses information. On the contrary,
selecting in the batch mode [Guo and Schuurmans, 2008] is
more favorable since the information overlap between data
samples can be utilized in the learning process.

According to the selective standard, active learning meth-
ods can be roughly divided into two categories: one type
of methods focus on picking out the most “informative”
data, i.e., select the data with the maximum entropy [Da-
gan and Engelson, 1995] or least confidence [Culotta and
McCallum, 2005]. On the other hand, some methods tend
to find the most “representative” data with the highest rep-
resentative power of the data structure [Yu et al., 2006;
Nie et al., 2013], such as clustering structure, manifold, etc.
The methods in latter category is more desired for the early
stage of experimental design when the number of labeled data
is limited. In this paper we focus on this type of models for
the early stage of active learning.

In order to find the representative data in active learning,
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previous methods tried to find a small set of data such that all
unlabeled data could be represented as a linear combination
of the selected ones [Yu et al., 2006; Nie et al., 2013]. How-
ever, such model did not employ the class structure among
samples, which could make the selected samples to be pre-
dominated by the major classes. Such mechanism does not
make good use of information from the minor classes thus
loses corresponding representative power. To deal with this
problem, in this paper we propose a new active learning
model which uses exclusive sparsity norm as regularization
and enforce a structural sparsity such that the selected sam-
ples are (roughly) evenly distributed among different groups.
This setting guarantees that the selected samples contain in-
formation from all groups of data, thus are more “representa-
tive”. We provide a new efficient optimization algorithm and
theoretically prove the optimal convergence rate O(1/T 2).
To the best of our knowledge, this is the first optimization al-
gorithm with such convergence rate for general minimization
problems with exclusive sparsity norm.

We conducted experiments on 8 benchmark datasets and
evaluated the performance of our method. We verified that
our method constructed a fairly good model by labeling just
a few samples. Such results validated the potential of our
model to relieve the heavy burden of labeling samples.

2 Balanced Active Learning Selection
In early stage of experimental design, given a set of n unla-
beled data X = [x1, x2, ..., xn] ∈ Rd×n, the goal of active
learning is to select m (m < n) data points from the set to la-
bel, such that the model constructed with the m labeled data
has the maximized potential performance. Such task can be
formulated as the following optimization problem as is done
in transduction experimental design (TED) [Yu et al., 2006]:

min
V ∈Rm×n,B⊂X,|B|=m

1

2

n∑
i=1

‖xi −Bvi‖2 + λ ‖vi‖2 , (1)

where V = [v1, ..., vn], the constraints B ⊂ X and
|B| = m indicate that matrix B contains a subset of m data
from the total set of n data in X . However, Problem (1) is
NP-hard. In [Yu et al., 2006], the original problem is approx-
imated with sequential optimization problem, which leads to
an inefficient optimization method. To deal with this, in [Nie
et al., 2013] and [Cong et al., 2011], the researchers proposed
the following problem:

min
W∈Rn×n

1

2

n∑
i=1

‖xi −Xwi‖2 + λ ‖W‖2,1 , (2)

where ‖W‖2,1 :=
∑n
i=1 ‖Wi‖ (Wi is the ith row of W ).

Naturally, the value of ‖Wi‖ indicates the importance of
xi (the i-th sample in X), thus the subset of data can be se-
lected based on W . The motivation of Model (2) is to ap-
proximate ‖W‖2,0 by the `2,1-norm, such that the structured
sparsity is enforced on the W matrix. This model selects a
subset of samples which could denote all other samples with
linear combination, hence guarantees the representative and
informative power of the selected samples.

However, all the above methods did not consider the po-
tential class structure. It is possible that all selected samples
are taken up by the predominant group, such that the informa-
tion from the minor groups are ignored. To tackle this chal-
lenging problem, we propose a new balanced active learning
model with exclusive sparsity norm, which enforces the se-
lected samples for labeling to be (roughly) evenly distributed
among different groups.

For a vector v ∈ Rn, its exclusive sparsity norm (`e-norm)
is defined as: ‖v‖e :=

√∑
g∈G ‖vg‖21,where G is a hyper set

consisting of k disjoint index sets (each index set g is a subset
of {1, 2, · · · , n}), and vg is the sub-vector of v indexed by g.
The exclusive sparsity norm regularization serves to enforce
a structural sparsity on the solution such that its nonzeros are
(roughly) evenly distributed in different groups.

Our new active learning objective function is to solve:

min
W∈Rn×n

1

2

n∑
i=1

‖xi −Xwi‖22 + λ ‖W‖22,e , (3)

where ‖W‖2,e :=
√∑

g∈G ‖Wg‖22,1 and Wg denotes a sub
matrix of W with rows in W indexed by g. In active learn-
ing, we don’t have label information. Thus, we can conduct
clustering (such as K-means) on the data to get k groups,
where k is the number of classes.

In our new model, the ||W ||2,e regularization term forces
the structured sparsity `2,1-norm within each group, hence
the representative samples in each group are selected. Mean-
while, the exclusive sparsity norm imposes `2-norm between
groups, i.e. the squared norms of each group are summed
together. As a result, all groups are considered as evenly im-
portant and the representative samples are selected from all
groups without suppressing individual group. Thus, our new
active learning model selects the representative samples for
labeling with incorporating the intrinsic group structure in-
formation.

3 Optimization
Our previous iterative reweighted algorithms [Nie et al.,
2010; Gao et al., 2015] can be applied to solve the new ob-
jective, but there is no convergence rate guarantee. Thus, we
will derive a new efficient optimization algorithm, with the
guarantee of the optimal convergence rate O(1/T 2).

3.1 Preliminary Rules
For optimization problems with the structure: “smooth loss
F (x) + non-smooth function H(x)”

min
x

F (x) +H(x), (4)

the Nesterov type of accelerated algorithms [Nesterov, 2007],
for example, FISTA [Beck and Teboulle, 2009] in Algo-
rithm 1, is often considered as one of the most efficient gradi-
ent based algorithms, since it achieves the optimal conver-
gence rate O(1/T 2) where T is the number of iterations.
H(x) could be the regularizer such as ‖x‖1 and ‖x‖ or the
indicator function representing the constraint, for example,
Ix≥0(x). One can see the key step in FISTA is Step 3 (the
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proximal step) in Algorithm 1, which essentially solves the
following problem:

ProxγH(x)(c) := arg min
x

1

2
‖x− c‖2 + γH(x) (5)

where c = x̄− γ∇F (x̄). The steplength γ can be set as any
positive constant smaller than (maxx ‖∇2F (x)‖)−1 or de-
cided by using the linear search scheme [Beck and Teboulle,
2009]. The difficulty of solving (4) is decided by the com-
plexity ofH(x). WhenH(x) is simple enough such as ‖x‖1,
‖x‖, or Ix≥0(x), the proximal step (5) is easy. However, if
H(x) is ‖x‖e, it is difficult to solve efficiently. Therefore we
need reformulation work to simplify the proximal steps. The
following preliminary results play the key roles in reformula-
tion and solving proximal steps.

Algorithm 1 The General Framework of FISTA

Require: xold, γ (step length)
Ensure: xnew

1: Initialize told = 1, x̄ = xold;
2: while not converge do
3: xnew = ProxγH(x)(x̄− γ∇F (x̄));
4: tnew = 1

2 + 1
2

√
1 + 4told;

5: x̄ = xnew + (xnew − xold)(told − 1)/tnew;
6: xold = xnew, told = tnew;
7: end while

Lemma 1. Algorithm 2 exactly solves Pζ1(a, b) – the projec-
tion of [a; b] onto the `1 norm cone {[x; y] | ‖x‖1 ≤ y}:

Pζ1(a, b) := arg min
x∈Rd,y

1

2
‖x− a‖2 +

ζ

2
(y − b)2

s.t. ‖x‖1 ≤ y.
(6)

Problem (6) can be considered as a general version of the
projection onto the `1 cone. Although (6) does not have the
closed form, but its solution can be obtained from a search
routine in Algorithm 2. Algorithm 2 essentially gives a
method to search a feasible point satisfying the KKT condi-
tion. The complexity of this algorithm is O(d log d). The key
motivation behind this algorithm is the monotonicity of the
optimal solution x∗, that is, if |ai| ≥ |aj |, then |x∗i | ≥ |x∗j |.

Lemma 1 follows the strategy of projection on to the `1
norm cone, which can be considered as a special case with
ζ = 1. The proof mainly applies fundamental results such as
KKT condition in optimization. We include their proofs for
completeness.

Proof. Let us consider a trivial case first: ‖a‖1 ≤ b. In this
case, the optimal values for x and y are a and b respectively.

Then let us consider the nontrivial case: ‖a‖1 > b. In this
case, it is easy to see that the optimal values x∗ and y∗ satisfy
‖x∗‖1 = y∗ and the element signs of x∗ are the same as a.
Therefore, to simplify the following notation and discussion,
we make an assumption without the loss of generality

a1 ≥ a2 ≥ · · · ≥ ad ≥ 0.

Algorithm 2 [x, y] = Pζ1(a, b)

Require: a ∈ Rd, b ∈ R, ζ ∈ R
Ensure: x ∈ Rd, y ∈ R

1: Sort the sequence {|aj | | j = 1, · · · , d} in the decreasing
order and denote |a|(j) the jth largest element of a in the
absolute value sense and define |a|(d+1) as 0;

2: t = 0;
3: for j = 1 : d do
4: t = t+ |a|(j);
5: δ = (t− b)/(ζ−1 + j);
6: if |a|(j+1) ≤ δ ≤ |a|(j) then
7: x = sgn(a)�max(0, |a| − δ);
8: y = ‖x‖1;
9: Return;

10: end if
11: end for
12: x = a;
13: y = b;

Based on this assumption, the problem (6) is equivalent to
solving the following problem

min
x,y

1

2
‖x− a‖2 +

ζ

2
(y − b)2

s.t. 1>x = y, x ≥ 0.

(7)

It can be further simplified by

min
x

1

2
‖x− a‖2 +

ζ

2
(1>x− b)2 s.t. x ≥ 0. (8)

The optimal solution is defined by the KKT condition

0 ≤ xi ⊥ xi − ai + ζ(1>x− b) ≥ 0 ∀i ∈ {1, 2, · · · , d}.

We also note that if ai ≥ aj , then x∗i ≥ x∗j (otherwise we can
simply swap the values of x∗i and x∗j to obtain a lower objec-
tive value). Therefore, from the monotonicity assumption on
a, we have:

x∗1 ≥ x∗2 ≥ · · · ≥ x∗d.

Let j ∈ {1, 2, · · · , d} be the watershed: x∗i = 0 for i > j and
x∗i ≥ 0 for i ≤ j. The KKT is simplified by:

∀i ≤ j x∗i = ai − ζ(1>x∗ − b) ≥ 0,

∀i > j x∗i = 0 ai − ζ(1>x∗ − b) ≤ 0.

Summarizing all x∗i ’s to obtain:

1>x∗ =

(
j∑
i=1

ai

)
− jζ(1>x∗ − b)

⇒1>x∗ =

(∑j
i=1 ai

)
+ jζb

1 + jζ

⇒ζ(1>x∗ − b) =

(∑j
i=1 ai

)
− b

ζ−1 + j
=: δj .
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Then finding a point satisfying the KKT condition is equiva-
lent to finding a j such that

∀i ≤ j x∗i = ai − δj > 0,

∀i > j x∗i = 0 ai − δj ≤ 0.
(9)

Due to the monotonicity, to find such “j”, we only need to
enumerate all possible values for j such that

aj − δj ≥ 0, aj+1 − δj ≤ 0. (10)

As long as we find such “j∗”, we can compute the optimal
values for x∗ from (9)

x∗ = max(0,a− δj∗)

and y∗ from y∗ = 1>x∗. If we remove the assumption, the
definition of δj should be modified into

δj :=

(∑j
i=1 |a|(i)

)
− b

ζ−1 + j
,

where |a|(i) denotes the ith largest absolute value in a. The
condition to define the optimal j in (10) should be replaced
by

|a|(j) − δj ≥ 0, |a|(j+1) − δj ≤ 0.

The optimal values for x∗ and y∗ are given by respectively

x∗ = sgn(a)�max(0, |a| − δj∗) y∗ = ‖x∗‖1.

Algorithm 2 exactly follows the procedure to find the optimal
solution. It completes the proof.

3.2 Smooth Loss Function + `e Regularization:
FISTA-LOCP Algorithm

We consider the following general formulation

min
w

F (w) +
λ

2
‖w‖2e. (11)

One might ask why do not use φ‖w‖e as the regularizer. The
reason lies on that λ

2 ‖w‖
2
e is easier to solve efficiently and

leads to the same solution as using φ‖w‖e if λ(φ) is appro-
priately chosen. Note that ‖w‖2e is still non-smooth.

To directly apply the FISTA framework, one has to solve
the proximal step (5) with H(·) = λ

2 ‖w‖
2
e. However, it

is very difficult to solve it efficiently in general. Exist-
ing approaches apply iterative algorithms to approximately
solve this proximal step, for example, in [Kong et al., 2014;
Yuan and Yan, 2011], thus requiring heavy computation load
(computing the inverse of a n× n matrix) and unable to the-
oretically ensure the convergence (rate).

We use a simple substitution as below to reformulate the
problem (11), which largely simplifies the original formula-
tion.

ProxγH(·)(c) := arg min
w

1

2
‖w − c‖2 +

γλ

2
‖w‖2e. (12)

The following will show that this problem can be solved effi-
ciently due to Lemma 1. (If we use ‖w‖e as the regularizer,
then (12) is difficult to solve efficiently.) This why we are
interested in (11).

Because groups are disjoint, the proximal step can be split
into a few subproblems

min
wg

1

2
‖wg − cg‖2 +

γλ

2
‖wg‖21 ∀g ∈ G.

To solve this problem, we can reformulate it into the form of
(6)

min
wg,y

1

2
‖wg − cg‖2 +

γλ

2
y2 s.t. ‖wg‖1 ≤ y

whose solution is exactly provided by Pγλ1 (cg, 0).
Now we can simply apply the proximal operator defined

in (12) to the FISTA framework to obtain an algorithm with
the optimal convergence rate. Since the proximal step in this
algorithm is the projection onto the `1 cone, we call this al-
gorithm as L-one cone projection (FISTA-LOCP) algorithm.
One can verify that the computation load per iteration is still
on the gradient, that is, O(n2), if the number of samples is
proportional to n.

3.3 Optimization Algorithm for Problem (3)
Here we introduce the steps for applying FISTA-LOCP to
Problem (3). According to the discussion above, we use
‖W‖22,e as the regularization instead and reformulate Prob-
lem (3) as:

ProxγH(·)(C)

:= arg min
W

1

2
‖W − C‖2F +

γλ

2
‖W‖22,e.

(13)

where C = W̄ − γ∇F (W̄ ) with F (W ) = 1
2 ‖X −XW‖

2
F .

Problem (13) can be split into a few proximal subproblems
below:

min
Wg

1

2
‖Wg − Cg‖2F +

γλ

2
‖Wg‖22,1 ∀g ∈ G. (14)

The subproblem in (14) can be further rewritten as

min

|g|∑
i=1

1

2
‖Wgi − Cgi‖

2
+
γλ

2
(

|g|∑
i=1

‖Wgi‖)2, (15)

where gi denotes the ith element in g, Wgi denotes the gi-th
row of W and Cgi is the gi-th row of C.

Since

‖Wgi − Cgi‖
2

= ‖Wgi‖
2

+ ‖Cgi‖
2 − 2WT

giCgi ,

we can easily prove that Problem (15) can be minimized only
when Wgi has the same direction with Cgi . That being the
case, what matters is to compute the length of Wgi , thus we
deal with the following problem:

min

|g|∑
i=1

1

2
(‖Wgi‖ − ‖Cgi‖)2 +

γλ

2
(

|g|∑
i=1

‖Wgi‖)2, (16)

Define vector s ∈ R|g| and t ∈ R|g| such that si = ‖Wgi‖
and ti = ‖Cgi‖, then Problem (16) can be written as (6)

min
s,y

1

2
‖s− t‖2 +

γλ

2
y2 s.t. ‖s‖1 ≤ y
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whose solution is exactly provided by Pγλ1 (t, 0). s shows
the cardinality of Wgi . After we get s and t, we can recover
Wg such that Wgi = si

ti
Cgi . We summarize the steps for

optimizing Problem (3) in Algorithm 3. Still, one can verify
that the computation load per iteration isO(n2), if the number
of samples is proportional to n.

In practice, the exclusive sparsity norm introduces row
sparsity to the W matrix, which renders the number of non-
zero rows in W much smaller than n and thereby decreases
the real computational time. Moreover, as we consider differ-
ent groups independently in Algorithm 3, we can implement
the update in a parallel way to adapt to the large scale setting.

Algorithm 3 Algorithm for Problem (3)

Require: X ∈ Rd×n, W old ∈ Rn×n, G, γ (step length)
Ensure: W new

1: Initialize told = 1, W̄ = W old;
2: while not converge do
3: C = W̄ − γ∇F (W̄ );
4: for g ∈ G do
5: ti = ‖Cgi‖ , i = 1, · · · , |g|;
6: [s, y] = Pζ1(t, 0);
7: Wnew

gi = si
ti
Cgi , i = 1, · · · , |g|;

8: end for
9: tnew = 1

2 + 1
2

√
1 + 4told;

10: W̄ = W new + (W new −W old)(told − 1)/tnew;
11: W old = W new, told = tnew;
12: end while

4 Experimental Results
In this section, we conduct experiments to evaluate our
method. We select a subset of samples from the training data
to quire labels and then construct classification models ac-
cording to these labeled data. The goal is to pick out the most
representative samples such that the constructed classification
model maintains high discriminative power.

4.1 Experimental Settings
We compare our method with two baseline methods: 1. Ran-
dom sample selection which arbitrarily selects a certain num-
ber of samples from a given set and quire labels; 2. K-means
sample selection which uses K-means clustering to partition
the data into several clusters and select points closest to the
K centroids as the candidate query points. Moreover, we
compare against two state-of-the-art methods, including: 3.
QUIRE (QUerying Informative and Representative Exam-
ples) [Huang et al., 2010], which picks out the informative
and representative instances based on the min-max view of
active learning; 4. RRSS (Robust Representation and Struc-
tured Sparsity) [Nie et al., 2013]. RRSS method is closely
related to ours, which imposes `2,1-norm as a structured spar-
sity regularization to find representative samples.

In the active learning experiments, we randomly pick out
half of the data for training while the other half for testing.
We apply different active learning methods to the training
data and select a subset to query labels. The selection of data

to query is based on the magnitude of the l2-norm of each
row. Then we construct an SVM model based on the queried
data. The test data is used to evaluate performance of the
constructed classification model.

We adopt the libsvm toolbox [Chang and Lin, 2011] to
implement SVM classification and set the hyperparameter
of regularization term as 1. We use two-fold cross valida-
tion and record the average classification accuracy among
the two repetitions. For methods involving hyper-parameters,
i.e., λ for QUIRE in Eq. (5) of [Huang et al., 2010], γ for
RRSS in Eq. (6) of [Nie et al., 2013], and λ in Eq. (3)
of our method, we tune the hyper-parameters in the range
of {10−3, 10−2, · · · , 103}. For K-means clustering, we
set the number of clusters as the ground truth. We use 100
random initialization for K-means and retain the best result
among these 100 repetitions with respect to K-means objec-
tive function value. For our method, we use the K-means
clustering result as the group allocation of training data.

We first conduct experiments on 6 relatively balanced
benchmark data sets, which include: Aggregation [Gio-
nis et al., 2007], Binalpha1, Compound [Zahn, 1971], R15
[Veenman et al., 2002], BreastCancer and Seeds. The last
two datasets are downloaded from UCI repository [Lichman,
2013]. The evaluation on these 6 benchmark datasets is based
on the classification accuracy on the test data. Moreover, we
include 2 imbalanced datasets from KEEL-dataset [Alcalá-
Fdez et al., 2011], glass0123vs456 and newthyroid1, to eval-
uate the methods when the data exhibits severe class imbal-
ance. The evaluation on the 2 imbalanced datasets is based
on the F1 score on the test data.

4.2 Performance Analysis with Different Number
of Query Samples

In the experiment, we assess the performance of the above
active learning methods with various number of queried
samples. We set the number of queried samples to be
{k, 2k, · · · , 5k}, respectively, where k is the number of
classes in each data set. We can notice from the data descrip-
tion in the previous subsection that k is a very small value
comparing to the number of samples. Our goal is to con-
struct a good classification model with only a limited number
of samples labeled, which is of great applicable importance
when acquiring labels causes much effort.

The performance comparison is summarized in Table ??
and ??. It shows that our method performs equally or even
better than all other methods on all data sets. By comparing
our method with the K-means method, we notice an appar-
ent increase of classification accuracy which indicates that di-
rectly using points closest to the centroid may not be the best
choice. Instead, our method manages to pick out the more
“representative” data points in each cluster by applying the
grouped `1,2-norm regularization. If we compare the RRSS
result with our method, we can find the superiority of consid-
ering data cluster structure in active learning. RRSS imposes
`2,1-norm as the sparse regularization in the model, such that
a few “important” data can be found in the learning process.
However, RRSS doesn’t take the group information among

1http://www.cs.nyu.edu/ roweis/data.html
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k Queried
Samples

Data Sets Random K-means QUIRE RRSS FISTA-LOCP
Aggregation (k=7) 0.5444 0.7817 0.8477 0.4391 0.8541
BreastCancer (k=2) 0.4786 0.6501 0.7555 0.3499 0.8829

Binalpha (k=36) 0.2023 0.1517 0.2094 0.1610 0.2707
Compound (k=6) 0.5240 0.6415 0.6843 0.3088 0.6543

R15 (k=15) 0.4317 0.3883 0.4750 0.4000 0.9783
Seeds (k=3) 0.4810 0.4524 0.7571 0.7905 0.9048

2k Queried
Samples

Aggregation (k=7) 0.8033 0.7944 0.8553 0.4391 0.8832
BreastCancer (k=2) 0.7436 0.6501 0.8974 0.3499 0.9223

Binalpha (k=36) 0.3191 0.1610 0.3063 0.2429 0.3860
Compound (k=6) 0.5965 0.7268 0.7095 0.4963 0.7943

R15 (k=15) 0.5033 0.5950 0.5750 0.4667 0.7300
Seeds (k=3) 0.6048 0.6667 0.8476 0.8571 0.8810

3k Queried
Samples

Aggregation (k=7) 0.8198 0.8477 0.8604 0.5520 0.8794
BreastCancer (k=2) 0.9019 0.6501 0.9546 0.3499 0.9531

Binalpha (k=36) 0.4031 0.1652 0.3932 0.3063 0.4694
Compound (k=6) 0.6966 0.7268 0.6516 0.6518 0.8245

R15 (k=15) 0.6100 0.6167 0.6400 0.4667 0.7167
Seeds (k=3) 0.7381 0.6762 0.8714 0.8857 0.9048

4k Queried
Samples

Aggregation (k=7) 0.8731 0.8579 0.8896 0.5508 0.9086
BreastCancer (k=2) 0.9312 0.8785 0.9576 0.3499 0.9619

Binalpha (k=36) 0.4608 0.1667 0.4274 0.3654 0.5235
Compound (k=6) 0.7345 0.7242 0.7295 0.6969 0.8270

R15 (k=15) 0.6500 0.6933 0.6717 0.4667 0.8000
Seeds (k=3) 0.8429 0.7190 0.8905 0.9000 0.8857

5k Queried
Samples

Aggregation (k=7) 0.8871 0.8731 0.8947 0.5508 0.9124
BreastCancer (k=2) 0.9312 0.9092 0.9722 0.3499 0.9619

Binalpha (k=36) 0.5078 0.1667 0.4872 0.4167 0.5491
Compound (k=6) 0.6820 0.7367 0.7169 0.6969 0.7541

R15 (k=15) 0.7467 0.6917 0.6933 0.4667 0.8817
Seeds (k=3) 0.8476 0.7381 0.9000 0.9000 0.9095

Table 1: Classification accuracy comparison with different number of samples queried. In the table, k means the number of clusters in each
data set. The best result in each setting is marked in boldface.

3k Queried
Samples

Data Sets Random K-means QUIRE RRSS FISTA-LOCP
glass0123vs456 (k=2) 0.6290 0.6350 0.5295 0.6222 0.6667

newthyroid1 (k=2) 0.6686 0.5127 0.7471 0.3685 0.7576
4k Queried

Samples
glass0123vs456 (k=2) 0.5892 0.6148 0.7659 0.6339 0.8286

newthyroid1 (k=2) 0.7396 0.3543 0.6548 0.3148 0.7585
5k Queried

Samples
glass0123vs456 (k=2) 0.7817 0.6824 0.7607 0.7386 0.8596

newthyroid1 (k=2) 0.7396 0.4574 0.8725 0.7016 0.8948
Table 2: F1 score comparison on two imbalanced datasets. In the table, k means the number of clusters in each data set.

data points into consideration, which may cause imbalance in
the selection of data (i.e., the majority of selected data come
from a few predominant clusters, while data points in other
clusters are left out.) In contrast, our method tend to select a
few data from each cluster, which enhances the “representa-
tion” power of the selected subset.

Moreover, we can observe an interesting phenomenon that
the superiority of our method tends to be more obvious when
the number of queried samples is smaller. It indicates that
our model is capable of finding a representative subset with
querying only a few samples, which saves the heavy burden
for label collection.

5 Conclusion

In this paper, we proposed a novel active learning model with
exclusive sparsity norm. Unlike previous ones, our model
considers the group structure among samples such that the
information from both major and minor groups can be incor-
porated in active learning. Such mechanism makes the se-
lected samples to be more “representative”. We propose an
efficient optimization algorithm and theoretically prove the
optimal convergence rate O(1/T 2). We evaluate our model
on 8 benchmark datasets and find good classification perfor-
mance with few queried samples.
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