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Abstract

Spiking neural networks (SNNs) are considered
to be biologically plausible and power-efficient on
neuromorphic hardware. However, unlike the brain
mechanisms, most existing SNN algorithms have
fixed network topologies and connection relation-
ships. This paper proposes a method to jointly learn
network connections and link weights simultane-
ously. The connection structures are optimized by
the spike-timing-dependent plasticity (STDP) rule
with timing information, and the link weights are
optimized by a supervised algorithm. The con-
nection structures and the weights are learned al-
ternately until a termination condition is satisfied.
Experiments are carried out using four benchmark
datasets. Our approach outperforms classical learn-
ing methods such as STDP, Tempotron, SpikeProp,
and a state-of-the-art supervised algorithm. In ad-
dition, the learned structures effectively reduce the
number of connections by about 24%, thus facili-
tate the computational efficiency of the network.

1 Introduction

Artificial neural networks (ANNs) have obtained great suc-
cess in the computer vision and pattern recognition fields
in recent years. Although ANNs are inspired by brain,
most studies only imitate layer-like brain structures roughly
[Hinton and Salakhutdinov, 2006]. Spiking neural networks
(SNNs), known as the third generation of artificial neural net-
work, work in the manner of spiking neurons in brain, thus are
more biologically plausible and have potential to approach
the intelligence of brain [Tsukada and Pan, 2005] [Ghosh-
Dastidar and Adeli, 2009] [Maass, 1997]. However, existing
SNN algorithms usually have fixed network topologies and
connection relationships. According to the Hebbian theory
[Hebb, 1949], only a few cells would strongly connect to-
gether when brain transfers information, e.g. the persistently
co-active cells. Therefore, how to build a spiking neural net-
work with both optimal connection and link weights is an im-
portant problem.
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Much effort has been made on structure design and learn-
ing of SNN. Various spiking neuron models, such as the leaky
integrate-and-fire (LIF) model [Gerstner and Kistler, 2002]
and the Hodgkin-Huxley type model [Hodgkin and Huxley,
1952], have been proven to be capable of encoding tempo-
ral information in synapses between neurons. To improve the
learning capacity in SNN, different approaches including un-
supervised rules and supervised algorithms were proposed.

o Unsupervised learning methods. The unsupervised ap-
proaches are mostly biomimetic methods inspired by the
mechanism in biological neurons. The Hebbian the-
ory, which is often summarized as ’Cells that fire to-
gether wire together’ [Shatz, 1992], is considered to
be the foundation of connection learning in biological
neurons. According to the Hebbian theory, the spike-
timing-dependent plasticity (STDP) rule has been pro-
posed which exploits the timing and the emitting order
of the spikes [Bi and Poo, 2001]. The STDP algorithm
strengthens a weight when the presynaptic neuron emits
spikes preceding the postsynaptic one, and weakens it
when the order is reversed. Recently, lots of STDP-
based approaches are proposed with promising results
[Diehl and Cook, 2015] [Masquelier et al., 2009]. De-
spite the effectiveness of the unsupervised methods, the
convergence of these approaches can not be guaranteed
due to the difficulty in setting appropriate parameters.

e Supervised learning methods. Some supervised
rules were proposed in order to accelerate the learn-
ing progress. With the help of instructor signals, su-
pervised algorithms can potentially improve the learn-
ing speed. Classical supervised learning algorithms
are mostly based on gradient descent methods. Spike-
Prop [Bohte er al., 2002] is one of the representative
learning algorithms to process spatiotemporal informa-
tion in SNN. The Tempotron rule [Giitig and Sompolin-
sky, 2006] then extends the ability of SNN to binary
classification tasks. Another type of supervised train-
ing approach uses learning windows. Unlike the gradi-
ent descent methods that minimize the cost functions,
these methods such as the remote supervised learn-
ing method (ReSuMe) [Filip, 2005] and the precise-
spike-driven (PSD) [Yu et al., 2013al] are motivated by
the Widrow-Hoff rule, and use the Hebbian and anti-
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Hebbian learning windows to drive training. The train-
ing window-based algorithms are commonly more effi-
cient than methods with gradient descent rules.

Although various learning methods have been proposed,
joint optimization of SNN connections and link weights has
not been well addressed. In this study, we propose a method
to jointly learn network connections and link weights simul-
taneously in SNNs. To enable structure learning, we propose
a spiking neuron with connection gate (SNN-CG) to control
whether a connection should be established. A connection
weight is effective only if the gate is open. In SNN-CG, the
connection gates are learned based on the Hebbian theory and
the STDP rule. The link weights are updated using a super-
vised algorithm. The structure learning and weight updat-
ing work alternately until a termination condition is satisfied.
Experiments are conducted using four benchmark datasets.
Our approach outperforms classical learning methods such
as STDP, Tempotron, SpikeProp, and a state-of-the-art work
with better accuracies in classification tasks. Besides, the
learned network structure effectively reduces the number of
connections in a data-driven way, which further facilitate the
computational efficiency of the network.

2 Method

In this section, we present the SNN-CG algorithm in details.
We first introduce the formulations of the spiking neural net-
works with connection gates. Then we elaborate the STDP
rule-based connection learning and supervised link weight
updating algorithms respectively. Finally, we present the iter-
ative training scheme to jointly learn both connection struc-
tures and the corresponding weights.

2.1 SNN with Connection Gates

In order to enable structural learning of connections between
neurons, we assemble connection gates to the SNN model.
We start from the classical leaky integrate-and-fire (LIF) neu-
ron model and then describe the model with connection gates.
LIF neuron model. Given an LIF neuron j, suppose there
are [N presynaptic afferents contributing to it. Neuron j is
driven by exponential decaying synaptic currents generated
by its N presynaptic neurons. Then the subthreshold mem-
brane voltage of neuron j is a weighted sum of postsynaptic
potentials (PSPs) contributed by all incoming spikes:

N
Vi(t) =Y Wi; Y K(t—ti) + Viest, ()
1=1

t; <t

where W;; is the synaptic efficacy between postsynaptic neu-
ron j and presynaptic afferent 7, ¢; and V,..5; denote the firing
time of presynaptic afferent ¢, and the rest potential of post-
synaptic neuron j, respectively. A normalized PSP kernel K
vanishing for ¢; > t is as follows:

t—1;

K(t—-t)= Vo(exp(—t — ti) —exp(—

Tm Ts

), @

where Vj is used to normalize the maximum of kernel to be
1.0, which ensures unitary PSP amplitudes to be given by
synaptic efficacies W;;. The parameters 7,,, and 75 denote the
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decay time constants of membrane integration and synaptic
currents, respectively. The postsynaptic neuron j fires a spike
once its voltage V; crosses the firing threshold V;,,.. That is,
neuron j generates an output spike at that time. Since we only
consider the situation that postsynaptic neuron is fired only
once in this paper, the voltages of that fired neuron smoothly
decline to V,..5; by shutting down all the following incoming
spikes.

Connection gates. Based on LIF, we enable structural
learning by using connection gates in the links between neu-
rons, called spiking neural network with connection gates
(SNN-CG). The connection gates control whether two neu-
rons are linked with each other. With the connection gate G
between neurons ¢ and j, (1) can be rewritten as follows:

N
Vit) =Y Wi % Gij Y K(t—t:) + Vst (3)
i=1 ti<t

With a proper connection adjusting rule, the SNN-CG
model establishes connections between neurons only if they
are related. Therefore, the neurons become more sensitive
to related neurons, and thus are able to transmit information
more effectively and robustly than fully connected networks.
Gate functions. The connection gates in SNN-CG model
can be implemented using different functions. We apply the

sigmoid function as the gate function in this work:

1
1+ exp(—b;;)’ @

where b;; is the connecting coefficient between neuron ¢ and
neuron j. A higher b;; indicates stronger connections.

Gij =

2.2 Connection Learning

In biological systems, the links between neurons are adjusted
using the timing information in spikes. According to the Heb-
bian theory, repeatedly and persistently co-active cells would
increase connective synaptic efficacy among populations of
interconnected neurons [Hebb, 1949].

Motivated by the biological mechanism, we adopt the
STDP rule to learn the connections in SNN neurons. The
STDP rule provides powerful guidance for establishing or
eliminating the connections between neurons by considering
both the timing and the order of the spikes. The plasticity
in STDP depends on the intervals between presynaptic and
postsynaptic spikes. As illustrated in Fig. 1 (a), a connec-
tion is strengthened (long-term potentiation, LTP) when the
presynaptic neuron emits spikes preceding the postsynaptic
one and weakened (long-term depression, LTD) when the or-
der is reversed. The STDP rule used is as follows:

if t; < t;(LTP),

ti—t;
AWZ-tdp _ {A+e‘rp(t:‘,—+ )7

A_exp( ®)

i—t
p=
where the parameters 7+ and 7~ determine the ranges of
pre-to-postsynaptic interspike intervals on which synaptic
strengthening and weakening occur. A, and A_ refer to
the maximum amounts of synaptic modification for LTP and
LTD, respectively. The ratio between the A, and A_ bal-
ances the magnitudes of strengthening and weakening of the
connections in STDP.
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According to the STDP rule, the connection gate can be
updated based on ijtdp :

bij = bij + A * Wi?tdp, 6)

where ). is the learning rate for connections, and b;; is the
connecting coefficient between neuron ¢ and neuron j. With
the STDP-based connection learning, the connections be-
tween related neurons are strengthened toward one and the
connections between unrelated neurons decay to zero.

2.3 Weight Learning

The link weights in SNN can be learned with general super-
vised learning methods suitable for temporal coding. In this
study, we employ Tempotron rule due to its good ability for
classification.

In binary classification, the input patterns to the neurons
belong to one of two types of @ and ©. When a & is pre-
sented to the neuron, it fires a spike, and when a & appears,
the neuron does not fire. Tempotron rule learns the synaptic
weights of W;; with gradient descent to minimize the error
signals:

if @ error,
if ©error,

Ej _ {V;thr - ij(tmaa:) (7)

ij (tmaz) - Vvthr
where t,,4. 1S the time point that the neuron reaches its max-
imum voltage, and V3, is the threshold for neurons to fire a
spike. The gradients of parameter W;; are computed follows:

AW
AW,

= Aw Zti<tmaw Gij K(tmaz - ti)
NS, Gy Ktz = 1)

if @ error,

if ©error,

®)
where )\, is the weight learning rate. & error means the error
that the neuron should emit but it does not, and © error is
the error that the neuron should not emit but it does. The
learning window of the Tempotron rule is illustrated in Fig
1 (b). According to the kernel shape, the spikes near t,,,4
change more than those far away from it.

2.4 Iterative Training

To jointly learn the connections and the link weights, we pro-
pose an iterative learning scheme. In the connection learning
stage, the weights of the links are fixed and the connection

00.04 LT ) LS i
2 LTD & LTD
< \ < LY
o 04— " o 04— b e
& At< 0\ At>0 & At <0 At >0
g, 5,
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Figure 1: The learning windows. (a) and (b) are the learning win-
dows of the STDP rule and the Tempotron rule, respectively.
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Algorithm 1 Iterative Training Algorithm of SNN-CG.

Initialization:
1. I,, =M,I, = N.
2: W € [-0.01, 0.01].
3: Wetap =0,G=0.5 x L
Output: W and G.
4: procedure ITERATIVE TRAINING PROCESS(Wqp, W)
while &k < Njieration do
W < W-update(G, I,,,)
G < G-update(Wyqp, In)
end while
return G, W
end procedure

bed

> Iterative training

@YX

procedure W-UPDATE(G, I,,)
while p < I,,, do
VJ VZ, VVU < :t>\u, Zti<tnlam GU K(tmax — tz)
end while
return W
end procedure

> Weight learning

SRR S e

1: procedure G-UPDATE(Wgtap, I,)

2 while ¢ < I,, do
3 Vi Vi, Wi‘;tdp — Ayerp(H5t)
4 Vj Vi, bij < AW
5: VJ VZ, Gij — Trezp(—bi;)
6 end while

7 return G

8. end procedure

> Connection learning

strengths are tuned by the STDP rule. In the weight learning
stage, the connections are fixed and the weights are updated.
The connection learning and the weight learning stages are
conducted alternately until a termination condition is satis-
fied. The details of the iterative training process are presented
in Algorithm 1. The key parameters in the iterative training
algorithm are M and N, which indicate how many epochs
to train in the weight learning stage and connection learning
stage respectively.

2.5 Network Architectures

The network includes an encoding layer and a decoding layer.
The encoding layer converts the real-valued features into
spike trains. The decoding layer determines the classifica-
tion results using the population decoding method [Yu er al.,
2013b].

Encoding layer. The continuous feature values are en-
coded into spike trains using the Gaussian receptive field
method [Bohte er al., 2002] [Eurich and Wilke, 2000]. Sup-
pose a feature value x is in range [Zymin, Tmaz], and it is en-
coded by different Ny coqe Gaussian receptive fields. The
center and width of the k;;, Gaussian kernel are defined as
Wk = Tmin + (2k - 3)/2(xmam - xmin)/(Nencode - 2)»
and o, = 1/1.5(Zmaz — Tmin)/ (Nencode — 2), respectively.
With the Gaussian kernels, a feature value z is encoded to
spike arrays of N¢,code dimensions. Because the Tempotron
model only permits postsynaptic neuron to fire only once,
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there are N, .04 Neurons for each attribute. With the en-
coding method, the higher activated neurons fire earlier, and
vice versa. Suppose there are a total of Nyeqrure features.
Then there are Nencode X N feature NEUrons in the input layer
of the network.

Decoding layer. The binary outputs of networks predict
the class labels by population decoding [Yu et al., 2013b],
according to the biological mechanisms in neurons [Ranhel,
2012]. For classification, each class is represented by a group
of Ngecode neurons. The decisions are made by majority vot-
ing, and the incoming samples are classified into the class
with maximum numbers of firing neurons. Suppose there
are N.qss Of classes. The total number of output neurons is
Nyecode X Neiass- The architecture of the SNN-CG method
is illustrated in Fig. 2.

Network. We use a single-layer SNN model. The neurons
of the encoding layer are fully connected with neurons in the
decoding layer by gated links. The connections and the link
weights can be jointly adjusted in training. Fig. 2 shows a
simple example of the network with three features and two
classes.

Encoding

neurons >  Link weight
""" Connection gate
Decoding
Feature 1 /7 heurons
— ®
oy Class 1
. ‘@ {J
Feature 2 i
-1 . 1
g Class 2
- (]
Feature 3 O Gate closed
w @ Gate open
I IL I I
Encoding Input layer Output layer

Figure 2: The spiking neural network with connection gates.

3 Experiments

In this section, experiments are carried out to evaluate the
performance of our method. Firstly, we give the detail of the
evaluation datasets and settings. Then we assess the influ-
ence of the model settings in SNN-CG, including parameters
in connection learning and iterative training. Finally, we com-
pare our approach with existing methods to demonstrate the
strength of the SNN-CG model.

3.1 Datasets

Four datasets are used in our experiments. The datasets are
selected from the OpenML and the UCI repositories [Dheeru
and Karra Taniskidou, 2017]. The detail of the datasets is as
follows.

e Iris. A benchmark dataset for plant classification. It
contains three types of iris plants with four-dimensional
features. There are a total of 150 instances in the dataset.

e Breast Cancer. A binary classification dataset for breast
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cancer recognition. It contains 295 samples, and each
sample has nine features.

e Liver Disorder. A binary classification dataset for liver
disease detection. There are a total of 345 samples in the
dataset. For each sample, the dimension of feature is six.

e Pima Indians Diabetes. The dataset includes 500 in-
stances of two classes. The instances are described by
eight-dimensional features.

3.2 Settings

Here we give the detail of the configurations of our model,
including the model settings and the parameters in training.

For the network architecture, a one-layer SNN-CG model
is adopted. For the LIF neuron model, the parameters are set
as follows: Vip,r = 1.0mV, Vet = 0mV, Vg = 0.4725mV,
Tm = 4715 = 15bms. For each feature, the encoding neuron
number Neycode 18 set to 12, and the number of decoding neu-
rons Nepcode fOr each class is set to 8. In the initialization,
the connection coefficients b are set to 0.5 x I for the con-
nections gates. The link weights in the network are randomly
initialized in the range of [-0.01, 0.01].

For connection learning, the time constants are set to 77 =
16.8ms and 7~ = 33.7ms in accordance to the observed
measurements experimentally [Bi and Poo, 2001]. The learn-
ing rate of connection gates is A, = 1.0.

The performance is evaluated by the classification accu-
racy. For each dataset, we split the data to ten parts randomly.
The experimental result is the average accuracy of the ten
parts with cross-validation.

3.3 Influence of the Parameters

In this section, we assess the influence of the parameters in
the SNN-CG model. Firstly, we compare the models with
different parameters in connection learning. Then we evalu-
ate the parameters in iterative training of connection learning
and weight updating.

Connection learning. Here we test the influence of the
learning parameters in STDP-based connection training. We
tune the synaptic modification magnitude of A4 and A_ in
(5) to change the balance between strengthening and weak-
ening of the connections. In the STDP rule, the ratio between
the two parameters is considered to be important. In the ex-
periment, we set the A, = 0.0156 and A_ = 0.02656. Then
we tune the ratio between them by multiplying the value of
A_ with a coefficient C' in the range of 0.001 to 0.5. The
criteria of performance are the classification accuracy and the
connection sparsity. The connection sparsity is computed as
the proportion of disconnected links. The links with connec-
tion weights lower than le-8 are considered to be discon-
nected. In training, for each iteration, we use M = 100
epochs for weight learning and N = 10 epochs for connec-
tion learning.

Fig. 3 illustrates the connection sparsity under different set-
tings. As shown in Fig. 3 (a), the heights of the bars indicate
the proportions of disconnected links. With a larger parame-
ter C, the connections in the networks are more sparse. For
the Iris dataset, when C' = 0.001, the network is almost fully
connected. When we tune C to 0.5, 97% of the connections
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Figure 3: The connection sparsity of SNN-CG. The connection spar-
sity is the percentage of unconnected links. (a) is the connection
sparsity with different C' on the datasets. With a bigger C, the links
are prone to be weakened in learning, thus higher sparsity is shown.
(b) is the sparsity of the decoding neurons with C' = 0.01.

Dataset C=0.001 C=0.01 C=0.1 C=05

Iris 0.9467 0.9667 09133 0.7600

Breast Cancer 0.9542 0.9571 0.9270 0.8470
Liver Disorder 0.6162 0.6214 0.6210 0.5429
Pima Indians Diabetes 0.7238 0.7304 0.6966 0.6353

Table 1: Comparison of parameter C' in connection learning.

are disconnected. It is reasonable because with a larger C,
the STDP rule is prone to weaken a connection. We also in-
vestigate the distribution of the connection sparsity over the
decoding neurons. Fig. 3 (b) illustrates the sparsity of the de-
coding neurons with C' = 0.01. For the Liver Disorder and
Pima Indians Diabetes datasets, the sparsity of the neurons is
similar, while for the datasets of Iris and Breast Cancer, the
neurons representing different classes exhibit different spar-
sity.

The classification performance under different parameters
C' is illustrated in Table. 1. Overall, the best classification
accuracies are obtained when C' = 0.01. The accuracies are
96.67%., 95.71%, 62.14%, and 73.04% for the four datasets,
respectively. Combining the results in Fig. 3 (b), when we
tune C' from 0.001 to 0.01, the performance increases despite
the amount of connection is reduced. Since the STDP-based
connection learning rule removes the unuseful connections,
the neurons are more focused on the informative neurons.
Therefore, the network becomes more robust than the fully
connected structures. However, when we continue increas-
ing the value of C' to 0.1, the performance of the SNN-CG
model decreases. This is because, with too many connections
weakened, the useful connections can be lost, thus lower per-
formance is obtained.

It is interesting to see that, the SNN-CG model is able to
achieve good performance even with highly sparse connec-
tions. When the parameter C' is set to 0.1, the proportion of
disconnected links changes from 73% to 91% for the datasets.
However, the classification performance only decreases by
less than 5%.

Iterative training. In this section, we assess the influence
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Dataset R=0.05 R=0.1 R=0.2

Tris 0.9667 09533 0.9533

Breast Cancer 0.9571  0.9686 0.9600
Liver Disorder 0.6214  0.6529 0.6024
Pima Indians Diabetes | 0.7304  0.7342  0.7368

Table 2: Comparison of parameter R in iterative training.

of the parameters M and N in the iterative training. M and N
denote how many epochs are applied in the weight learning
and connection learning stages, respectively. Here we tune
the ratio R between M and N, with R = M /N. The ratio R
balances the update frequencies between the connections and
link weights. Here we tune the parameter R from 0.05 to 0.2.

As illustrated in Table. 2, the best performance is achieved
with different R on different datasets. For the Iris dataset, the
highest accuracy of 96.67% is obtained when R is set to 0.05.
While for the Breast Cancer and the Liver Disorder, the best
accuracies of 96.86% and 65.29% are obtained with R = 0.1.
For the Pima Indians Diabetes, the best accuracy of 73.68%
is achieved when R is 0.2. The results also indicate that, a
larger dataset may require a bigger R in the iterative training.

3.4 Comparison with Other Methods

In this section, experiments are conducted to compare our ap-
proach with existing methods. Firstly, we compare our model
with STDP and Tempotron separately, to evaluate the effec-
tiveness of the joint learning scheme. Then we assess the
structure learning ability of our method in comparison with
Tempotron with L1-norm regularization. Finally, the SNN-
CG model is compared with other supervised learning ap-
proaches in SNN and the SVM classifier.

The methods to be compared in this experiment are config-
ured as follows:

e Tempotron. The classical Tempotron method [Giitig
and Sompolinsky, 2006]. The LIF neurons are applied
in this model, and the network structure is the same as
that in the SNN-CG model.

o STDP. The classical STDP method [Bi and Poo, 2001].
The LIF neurons are applied in this model, and the net-
work structure is the same as the SNN-CG model.

e Tempotron-L1. The settings of this method are the
same as that of the Tempotron. In order to constrain
the sparsity of the weights, we add the L1 norm of the
weights in the cost function with a coefficient of A\. The
parameter A is selected from {0.1, 0.01, 0.001} by cross-
validation. In Tempotron-L1, we remove the connec-
tions with top K % smallest weights, and the K% equals
to the proportion of links cut in the SNN-CG model.

o SpikeProp. A multiple-layer SNN based on the gra-
dient descent rule [Bohte er al., 2002]. We employ a
three-layer network containing Nycgiure * Nencode 1D-
put neurons, 20 hidden neurons, and N,ss output neu-
rons. Each neuron is modeled as Spike Response Model
(SRM). The time constant is set to 7ms. The firing
threshold is set to 1.0 which is the same as that in the
above LIF neuron model. The networks are trained for
100 iterations and the learning rate is set to 0.01.
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Figure 4: Comparison of accuracies and computational costs be-
tween Tempotron and SNN-CG. The height of the bar is the compu-
tational cost, and the corresponding accuracy is labeled above.

e ASA. A supervised learning algorithm with the accu-
rate synaptic-efficiency adjustment method [Xie et al.,
2017]. By focusing on the main contents in the target
spike trains and ignoring other neuron states, this algo-
rithm converges rapidly. The cost function is based on
the voltage difference between the potential of the out-
put neuron and the firing threshold. The accuracies of
this method are quoted from [Xie et al., 2017].

e SVM. The support vector machines. The standard lib-
SVM toolbox with a radial-basis-function (RBF) kernel
is applied to this classification.

e SNN-CG. Our method. The settings of the model are the
same as those described in Section 3.2. The parameter
of C' is set to 0.01, and the parameter of R is selected
according to the model selection in 3.3.

Accuracy Iris Breast Liver Pima Indian
Cancer Disorder Diabetes

Tempotron 0.96 0.96 0.61 0.73
STDP 0.79 0.86 0.58 0.65
Tempotron-L1 | 0.95 0.96 0.61 0.73
SpikeProp 0.96 0.97 0.61 0.72
ASA 0.95 0.95 0.60 0.72
SVM 0.99 0.96 0.61 0.71
SNN-CG (ours) | 0.97 0.97 0.65 0.74

Table 3: Comparison with other methods.

Effectiveness of joint learning. In SNN-CG, network
connections and link weights are jointly learned in the iter-
ative training scheme. To verify the benefit of joint learn-
ing, we compare SNN-CG with single Tempotron and STDP-
based learning methods. The results are shown in Ta-
ble. 3. Overall, the SNN-CG method outperforms both
of Tempotron and STDP algorithms. Compared with the
STDP method, the SNN-CG model achieves significantly
better performances with 7%-18% improvement in accura-
cies. Compared with the classical Tempotron, our method
obtains slightly better accuracies with much lower computa-
tional costs. As shown in Fig. 4, the SNN-CG method out-
performs the classical Tempotron with better accuracies and
lower computational costs. Since the SNN-CG reduces the
number of connections in the network, the feedforward com-
putation becomes more efficient.

Effectiveness of connection learning. To demonstrate
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Figure 5: Comparison between our method and Tempotron-L1 using
different amount of connections. In each subfigure, the vertical axis
is the classification accuracy, and the horizontal axis represents the
parameter C' of the SNN-CG model. With different C', the amount
of connections (as annotated in percentage in brackets) is different.

the strength of STDP-based connection learning, we com-
pare SNN-CG with Tempotron using L.1 norm regularization,
denoted as Tempotron-L1. With the L1-regularization, the
weights are more prone to zeros. As illustrated in Fig. 3, com-
pared with the Tempotron-L1 method, the SNN-CG obtains
better performance. We further compare the SNN-CG and
Tempotron-L1 with different sparsity. As shown in Fig. 5,
compared with Tempotron-L1, the SNN-CG method achieves
better performance, especially in the high connection sparsity.
Comparison with existing methods. To evaluate the ca-
pability of SNN-CG, we compare our method with SVM,
SpikeProp [Bohte er al., 2002], and ASA [Xie et al., 2017].
As illustrated in Table. 3, for the Iris dataset, we achieves 97%
which is higher than SpikeProp (96%) and ASA (95%), and
slightly lower than SVM (99%). For the Liver Disorder and
the Pima Indians Diabetes datasets, SNN-CG achieves higher
accuracies of 65% and 74%. For the Breast Cancer dataset,
both SNN-CG and SpikeProp obtain the highest accuracy of
97%, while those of the SVM and ASA are 96% and 95%.

4 Conclusions

This paper proposed a spiking neural network with connec-
tion gates (SNN-CGQG) to jointly learn the connections and the
link weights in SNN. The connection structures were opti-
mized by the STDP rule with timing information, and the
link weights were optimized by a supervised algorithm. Our
method was evaluated on four benchmark datasets. The SNN-
CG method outperformed other supervised learning rules in
SNN, and the SVM classifier. Experimental results demon-
strated that, the joint learning of the connections and link
weights improved the strength of SNN models with higher
performance and lower computational costs.
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