
RASS: Risk-Aware Swarm Storage
Extended Abstract

Samuel Arseneault
Polytechnique Montréal

Montréal, Canada
samuel.arseneault@polymtl.ca

David Vielfaure
Polytechnique Montréal

Montréal, Canada
david.vielfaure@polymtl.ca

Giovanni Beltrame
Polytechnique Montréal

Montréal, Canada
giovanni.beltrame@polymtl.ca

ABSTRACT
In robotics, data acquisition often plays a key part in unknown en-
vironment exploration. For example, storing information about the
topography of the explored terrain can inform the decision-making
process of the robots. Therefore, it is crucial to store these data
safely and tomake it available quickly to the operators of the robotic
system. In a decentralized system like a swarm of robots, this entails
several challenges. To address them, we propose RASS, a decen-
tralized risk-aware swarm storage and routing mechanism, which
relies exclusively on local information sharing between neighbours
to establish storage and routing fitness. We test our system through
thorough experiments in a physics-based simulator and obtain
convincing reliability, routing speeds, and swarm storage capacity
results.

KEYWORDS
Swarm Robotics; Information Sharing; Robot Safety
ACM Reference Format:
Samuel Arseneault, David Vielfaure, and Giovanni Beltrame. 2022. RASS:
Risk-Aware Swarm Storage: Extended Abstract. In Proc. of the 21st Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2022), Online, May 9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
Using multi-robot systems for the exploration of unknown environ-
ments is very appealing. Indeed, if robots do not overlap in their
exploration task, the amount of terrain covered increases propor-
tionally with the number of robots in the system [4]. This can, for
example, be particularly useful for search and rescue scenarios [6]
where the speed at which the environment is covered is of crit-
ical importance. However, as the number of robots increases so
does the amount of data collected, which puts pressure on the data
storage infrastructure. Unfortunately, multi-robot systems usually
suffer from unreliable connectivity [2], and directly sending the
information to an external storage system (e.g., the cloud) may not
always be feasible. Furthermore, the robots in a swarm are not
necessarily reliable [13]: even in controlled environments, they are
usually meant to be easily replaced. This issue is aggravated when
they must face situations that decrease their reliability, such as
exposure to dangerous environments. Therefore, giving the robots
a way to eventually relay the information they acquired during
their mission to a control station for more permanent storage is a
definite advantage: it not only allows the information to be stored
in a safe location accessible by human operators, it also alleviates

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

the memory usage of the robots and enables continuous operation.
Nonetheless, because in practice robots have a finite communica-
tion range, the information collected at the periphery of the swarm
usually needs to be routed through other robots before reaching a
base station. These constraints motivate the need for a completely
decentralized, risk-aware swarm storage system that can safely
and efficiently store data and route it towards a base station in a
percolating fashion whenever possible.

2 SYSTEM MODEL
We consider a fully decentralized multi-robot system tasked with
the exploration of a dangerous environment. The multi-robot sys-
tem is denoted as the collection of agents 𝑎𝑖 ∈ 𝐴. We assume that
the swarm can be represented by a connected graph G with nodes
A and edges L respectively representing agents and their wire-
less communication links. In practice, this connectivity cannot be
maintained at all times, because of the quality of the links in L and
because of the movements of nodes A. We consider the amount of
data needed to be stored to be greater than the individual storage
capabilities of the robots. Also, we consider that the robots are only
able to communicate if they are within a certain communication
radius 𝑅.

Radiation is known to cause performance loss and failures in
robots [8, 11]. We therefore adapt the risk modelling from [12],
which is based on a set of independent point radiation sources
𝑆 with individual intensity 𝐼 𝑗 ∼ U(0, 1). The perceived intensity
decays exponentially (with 𝜆 as a decay parameter) as the Euclidean
distance 𝜌 (𝒙𝑖 ) between 𝒔 𝑗 and 𝒙𝑖 increases. The total perceived
radiation level by a robot 𝑎𝑖 at position 𝒙𝑖 ∈ 𝐸 is given by:

𝑟 (𝒙𝑖 ) = 𝑏 +
∑︁
𝒔𝒋 ∈𝑆

𝐼𝒔𝒋

1 + 𝜆𝜌 (𝒙𝑖 )2
(1)

and is measured by an on-board sensor with Gaussian measure-
ment noise 𝑏 ∼ N(0, 0.05). We posit the radiation’s effect on the
system is to cause data corruption [8]. The probability of a datum
being corrupted due to the combined effect of radiation sources
follows a Bernoulli distribution given by:

P(𝑐𝑖 = 1|𝑆) ∼ B(𝑟 (𝒙𝑖 )) = 1 −
∏
𝒔𝒋 ∈𝑆

1 − P(𝑐𝑖 = 1|𝒔 𝑗 ) (2)

Our risk-aware storage system draws inspiration from Swar-
mMesh [7], in that each node periodically assigns itself a potential
𝜙𝑖 based on its fitness to store data, given by:

𝜙𝑖 =

{
1

𝛼ℎ𝑖+𝛽𝑟 (𝒙𝑖 ) if𝑚𝑖 > 0
0 otherwise

(3)

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1521



where𝑚𝑖 is the memory available on node 𝑖 , 𝑟𝑖 is the risk asso-
ciated with the current node’s location (stored in the distributed
belief map) and ℎ𝑖 refers to the minimum hop count required to
reach the base station from 𝑖 as specified in the routing table. Given
the existence of at least one (multi-hop) path between any node
and the base station, we can establish a routing table based on hop
count as suggested by [1]. Parameters 𝛼 and 𝛽 are respectively
the routing weights and risk weights, which allow adapting the
policy based on the relative importance of the routing time and the
environmental risk with respect to each other. Similarly to [7], a
node which becomes unfit to store data will evict such data (using
a Least Recently Used policy) by moving it into its routing queue.
The condition for “unfitness” is simply:

𝑇𝜙𝑖 < max
𝑗 ∈N

𝜙 𝑗 (4)

where N and 𝑇 are the set of 𝑖’s neighbours and the fitness
threshold, respectively.

3 EXPERIMENTS
We ran extensive simulations in a physics-based simulator, AR-
GoS [10] with models of Khepera IV [5] robots. We executed 30
simulation runs with 100 robots for each type of experiment to
reach results with low uncertainty. The robots are placed within a
20m by 20m arena and their communication radius 𝑅 is set to 3m.
Three radiation sources are randomly distributed in the environ-
ment around the origin. The base station is located in a corner of
the arena and its storage capacity is assumed to be infinite. In order
to replicate realistic operation scenarios, we artificially introduce
bandwidth limitations of 10 data items transfered per robot at every
time step. For the same reason, our simulated robots have a limited
storage capacity of 50 data items of at most 50 bytes each. This
gives a total storage capacity of 2500kB per robot.

To evaluate the performance of our system in different scenar-
ios, we tested it with static topologies: a grid-like formation, and a
scale-free network; as well as with dynamic topologies: a formation
obtained through Lennard-Jones potential interactions and a for-
mation evolving from random walk motions. Our first benchmark
algorithm is to use a fitness policy based purely on hop count, i.e. if
required, data is sent only to neighbours closer to the base station.
Our second comparison baseline is to store data in a virtual stig-
mergy [9]. The first metric we used in our performance evaluation
is the average data transfer speed, measured as the delay between
the creation of the datum and its arrival by percolation to the base
station. We excluded results of this metric for the virtual stigmergy,
as the stigmergy cannot include the concept of a base station (since
all nodes are peers), and stigmergy propagation speeds are detailed
in [9]. The second metric we used is reliability, expressed as 𝑛𝑔−𝑛𝑙

𝑛𝑔
,

where 𝑛𝑔 and 𝑛𝑙 are respectively the amount of data generated and
the amount of data lost at the end of the simulation.

The results obtained in the 30 simulation runs for the static
topologies (grid-like and scale-free) as well as for the dynamic
topologies (Lennard-Jones potential and random walk) are pre-
sented in table 1. Results show that RASS outperforms the hop-
count algorithm in terms of reliability. Because of the risk aware-
ness component included in its fitness policy as detailed in Eq. 3,

Table 1: Average transfer speed and average individual mem-
ory usage with different topologies

Topology Algorithm
Transfer speed

(hops)
Reliability

(%)

Grid-like
RASS 11.45 77.5
Hop-Count 9.11 46.6
Stigmergy N.A. 1.9

Scale Free
RASS 11.44 82.1
Hop-Count 6.85 72.9
Stigmergy N.A. 1.9

Lennard-Jones
RASS 12.51 90.2
Hop-Count 7.32 66.5
Stigmergy N.A. 1.8

Random search
RASS 12.68 87.4
Hop-Count 7.76 64.8
Stigmergy N.A. 2.0

robots do not always route the data through the shortest path to
the base station. RASS avoids the dangerous storage nodes of the
system when routing data which explains the higher reliability
levels achieved. This is why, on average, RASS takes 54.89% more
time to route the data to the base station when compared to the
hop-count algorithm. On the other hand, the hop-count algorithm
always takes the shortest path towards the base station regardless
of the risk associated with it. This leads to a higher number of data
losses due to corruption and an overall lower reliability. However,
hop count can yield faster transfer speeds as shown in table 1. For
the virtual stigmergy, most of the data losses can be attributed to
the storage having reached its maximum capacity. Indeed, because
of the fully replicated nature of the stigmergy, the memory of the
agents is quickly saturated. This full redundancy prevents losing
data from corruptions, however it entails a very inefficient use of
the memory of the robots and ultimately leads to data losses due to
insufficient memory capacity.

4 CONCLUSIONS
We presented RASS, a Risk-Aware Swarm Storage system in which
a swarm of robots can collectively store data on strategically chosen
members. This choice is made without central coordination and
is purely based on local information shared between the robots.
This information is simply composed of risk measurements and
topological distance from a robot to a base station, and a used to
determine a robot’s fitness to store data as well as to establish the
most reliable and fast route towards the base station. We show
in our experiments that RASS largely outperforms a hop-count-
based solution as well as a virtual stigmergy in terms of reliability
while only being slightly slower in terms of percolation speed
compared to the hop-count-based algorithm. RASS showed good
scalability in physics-based experiments as it repeatedly performed
well with a large number of robots. The complete details regarding
RASS’ implementation, some relevant related works and physical
experiments showcasing the real-world applicability of our system
are presented in [3].

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1522



REFERENCES
[1] Md Ibrahim Abdullah, Mohammad Muntasir Rahman, Mukul Chandra Roy, et al.

2015. Detecting sinkhole attacks in wireless sensor network using hop count. IJ
Computer Network and Information Security 3 (2015), 50–56. http://www.mecs-
press.org/ijcnis/ijcnis-v7-n3/v7n3-7.html

[2] Francesco Amigoni, Jacopo Banfi, and Nicola Basilico. 2017. Multirobot explo-
ration of communication-restricted environments: A survey. IEEE Intelligent Sys-
tems 32, 6 (2017), 48–57. https://ieeexplore.ieee.org/abstract/document/8267592

[3] Samuel Arseneault, David Vielfaure, and Giovanni Beltrame. 2022. RASS: Risk-
Aware Swarm Storage. arXiv:2201.01349 [cs.RO]

[4] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider. 2005.
Coordinated multi-robot exploration. IEEE Transactions on robotics 21, 3 (2005),
376–386. https://ieeexplore.ieee.org/abstract/document/1435481

[5] K-Team. 2021. Khepera IV. https://www.k-team.com/khepera-iv
[6] George Kantor, Sanjiv Singh, Ronald Peterson, Daniela Rus, Aveek Das, Vijay

Kumar, Guilherme Pereira, and John Spletzer. 2003. Distributed Search and
Rescue with Robot and Sensor Teams. Springer Tracts in Advanced Robotics 24,
529–538. https://doi.org/10.1007/10991459_51

[7] Nathalie Majcherczyk and Carlo Pinciroli. 2020. SwarmMesh: A Distributed
Data Structure for Cooperative Multi-Robot Applications. In 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, 4059–4065.

https://ieeexplore.ieee.org/abstract/document/9197403
[8] George CMessenger andMilton S Ash. 1986. The effects of radiation on electronic

systems. (1986). https://inis.iaea.org/search/search.aspx?orig_q=RN:18091073
[9] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. 2016. A tuple space

for data sharing in robot swarms. In Proceedings of the 9th EAI International Con-
ference on Bio-inspired Information and Communications Technologies (formerly
BIONETICS). 287–294. https://carlo.pinciroli.net/pdf/Pinciroli:BICT2015.pdf

[10] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick
Ducatelle, Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. 2012.
ARGoS: a Modular, Parallel, Multi-Engine Simulator for Multi-Robot Systems.
Swarm Intelligence 6, 4 (2012), 271–295.

[11] Richard Sharp and Marc Decreton. 1996. Radiation tolerance of components and
materials in nuclear robot applications. Reliability Engineering & System Safety
53, 3 (1996), 291–299. https://doi.org/10.1016/S0951-8320(96)00054-3

[12] David Vielfaure, Samuel Arseneault, Pierre-Yves Lajoie, and Giovanni Beltrame.
2021. DORA: Distributed Online Risk-Aware Explorer. arXiv:2109.14551 [cs.RO]
https://arxiv.org/abs/2109.14551

[13] Alan FT Winfield and Julien Nembrini. 2006. Safety in numbers: fault-tolerance
in robot swarms. International Journal of Modelling, Identification and Control
1, 1 (2006), 30–37. https://www.inderscienceonline.com/doi/abs/10.1504/IJMIC.
2006.008645

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1523

http://www.mecs-press.org/ijcnis/ijcnis-v7-n3/v7n3-7.html
http://www.mecs-press.org/ijcnis/ijcnis-v7-n3/v7n3-7.html
https://ieeexplore.ieee.org/abstract/document/8267592
https://arxiv.org/abs/2201.01349
https://ieeexplore.ieee.org/abstract/document/1435481
https://www.k-team.com/khepera-iv
https://doi.org/10.1007/10991459_51
https://ieeexplore.ieee.org/abstract/document/9197403
https://inis.iaea.org/search/search.aspx?orig_q=RN:18091073
https://carlo.pinciroli.net/pdf/Pinciroli:BICT2015.pdf
https://doi.org/10.1016/S0951-8320(96)00054-3
https://arxiv.org/abs/2109.14551
https://arxiv.org/abs/2109.14551
https://www.inderscienceonline.com/doi/abs/10.1504/IJMIC.2006.008645
https://www.inderscienceonline.com/doi/abs/10.1504/IJMIC.2006.008645

	Abstract
	1 Introduction
	2 System Model
	3 Experiments
	4 Conclusions
	References



