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ABSTRACT
Continual learning aims to provide intelligent agents capable of
learning multiple tasks sequentially with neural networks. In most
settings of the current approaches, the agent starts from randomly
initialized parameters and is optimized to master the current task
regardless of the usefulness of the learned representation for future
tasks. Moreover, each of the future tasks uses all the previously
learned knowledge although parts of this knowledge might not
be helpful for its learning. These cause interference among tasks,
especially when the data of previous tasks is not accessible. In
this paper, we propose a new method, named Self-Attention Meta-
Learner (SAM)1, which learns a prior knowledge for continual
learning that permits learning a sequence of tasks, while avoiding
catastrophic forgetting. SAM incorporates an attention mechanism
that learns to select the particular relevant representation for each
future task. We empirically show that we can achieve a better
performance than several state-of-the-art methods for continual
learning by building on top of the selected representation learned
by SAM. We also show the role of the meta-attention mechanism in
boosting informative features corresponding to the input task and
identifying the correct target in the task agnostic inference. Finally,
we demonstrate that popular existing continual learning methods
gain a performance boost when they adopt SAM as a starting point.
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1 INTRODUCTION
Deep neural networks have achieved outstanding performance in
different areas such as visual recognition, natural language pro-
cessing, and speech recognition [1, 6, 10, 11, 24]. However, the
performance degrades when the model interacts with a dynamic
open environment and operates on non-stationary data, a phenome-
non known as catastrophic forgetting [15]. Continual learning (CL)
addresses this problem and aims to provide neural networks with
1The full version of this paper is available at https://arxiv.org/abs/2101.12136
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Figure 1: SAM consists of two sub-networks. The first
sub-network is trained using an optimization-based meta-
learning algorithm to learn the generic knowledge 𝜃 . A self-
attention module is added after each layer to select the
relevant representation for each task. In the second sub-
network, each task 𝑡𝑖 builds a specific representation 𝜙𝑖 on
top of the selected representation.

lifelong learning capability. Many works have been proposed to
address the CL paradigm [7, 12, 16, 19–23]. This paradigm includes
many desiderata, other than mitigating forgetting, such as allowing
forward transfer and dealing with the inaccessibility of previous
tasks data (see [2, 8, 18] for the complete list).

In this work, we shed the light on two other desiderata that
are not widely addressed in the state-of-the-art and illustrate their
effective role in boosting the performance and satisfying other CL
desiderata. First, the necessity of having a good quantity of prior
knowledge to help new tasks to learn in the continual learning
paradigm. Second, selecting the useful and relevant parts only from
the previous knowledge to learn each of the future tasks instead of
using the whole knowledge.

Our contributions in this paper can be summarized as follows:
First, we propose a Self-Attention Meta learner (SAM) that builds
a prior knowledge that permits learning a continual sequence of
tasks. In addition, SAM learns to pick the relevant representation
for each task. Second, we address the challenging and realistic
scenario where the task identity is not available during inference
(task agnostic). We also assume that the data of previous tasks is not
accessible. Third, we achieved a better performance than the state-
of-the-art methods by building on top of the learned representation
by SAM. Finally, we show that SAM significantly improves the
performance of popular existing continual learning strategies.

2 SELF-ATTENTION META-LEARNER (SAM)
Figure 1 shows an overview of our proposed approach, SAM. Herein,
we briefly discuss SAM, while its complete description can be found
in the full version1. We can divide our approach into two main
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phases: prior knowledge construction and the continuous learning
of tasks. In particular, the model consists of two parts. The first
part represents the prior knowledge parameterized by the shared
learned meta-parameters 𝜃 . This prior knowledge should be charac-
terized by good generality that enables out-of-domain tasks to learn
on top of it. To satisfy this objective, we train the shared parameters
𝜃 using the optimization-based meta-learning algorithm MAML [3]
which proves its ability to generalize to out-of-distribution tasks
[4]. The second part contains a specific branch for each task 𝑡𝑖
parameterized by 𝜙𝑖 to capture the specific discriminative repre-
sentation. Each branch consists of a few layers that are added on
the top of the shared sub-network when the model faces a new
task. Unlike previous methods in which all the previous knowledge
is used in learning each task, in this work, we select the relevant
sparse representation and each task builds a specific representation
branch on the top of the selected knowledge. To address this goal,
we incorporate the self-attention mechanism proposed by [5] in
our meta-learner. An attention module follows each layer in the
shared sub-network which learns to pick the relevant features from
that layer. Rather than the standard training of the self-attention
mechanism as in [5], we exploit meta-learning to allow the network
to learn to boost the informative features corresponding to the
incoming data. Our analysis shows that the meta-attention mecha-
nism plays an effective role in boosting the performance of the CL
setting and mitigating forgetting.

3 EXPERIMENTS AND RESULTS
We compare SAM with the state-of-the-art approaches in the regu-
larization and architectural strategies on the commonly used bench-
marks for CL: split CIFAR-10/100 and split MNIST [23]. In addition,
we provide an extensive analysis of the role of each of the pro-
posed desiderata in the performance of the CL paradigm. Herein,
we briefly discuss the results on the more complex inputs (split
CIFAR-10/100) and illustrate how SAM enhances the performance
of popular CL methods. For the interested reader, please see the
full version of this paper for the full experiments and analysis.

For the split CIFAR-10/100 benchmark, the shared sub-network
of SAM is trained on MiniImagenet [17] to construct the prior
knowledge and learn the meta-attention mechanism. Then, the
model faces each of the 6 tasks of split CIFAR-10/100 sequentially.
Figure 2 shows the accuracy of each task after training all tasks
along with the average accuracy across all tasks. The regularization
methods (EWC [7], LWF [9], and SI [23]) suffer from forgetting
previous tasks while having a good performance on the last trained
task. On the other hand, the performance achieved by SAM on each
of the tasks is close to each other, outperforming the regularization
methods by a big margin. In addition, the results show that the
learned representation by SAM generalizes better than the counter-
part CWRmethod [13], outperforming it by around 24.5%. It worths
to be highlighted that SAM achieves a performance that is better
than optimizing a separate network for each task from scratch.

To investigate further the importance of our proposed desiderata,
we analyze the performance of popular CL methods when they are
combined with SAM as well as their original form. In particular,
we allow for accumulating the knowledge from each CL task in the
shared sub-network of SAM while the catastrophic forgetting is
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Figure 2: The accuracy of each task of split CIFAR-10/100
as well as the average accuracy across all tasks. Results for
other methods except “Scratch(TA)” are reported from [14].

Table 1: Enhancing existing CL strategies by SAM. “Stan-
dard” represents the original form of the methods.

Split MNIST Split CIFAR-10/100
Method Standard SAM Standard SAM
Fine-tuning 19.86 ± 0.04 53.87 ± 1.73 12.24 ± 0.05 25.45 ± 1.76
SI 19.99 ± 0.06 67.32 ± 0.43 13.39 ± 0.04 42.92 ± 1.01
MER 32.66 ± 2.33 50.04 ± 1.85 - -

addressed using each of the studied methods. We also add the fine-
tuning method as another baseline, where new tasks are trained
continuously without any mechanism to avoid forgetting. Interest-
ingly, SAM always improves the performance as shown in Table
1. Although the regularization methods have low performance in
the task agnostic scenario as shown before, combining SAM with
the SI method leads to a significant improvement: around 47% and
29% on the split MNIST and split CIFAR-10/100 benchmarks respec-
tively. SAM enhances the performance of the optimization-based
meta-learning method (MER) by 17.5% on split MNIST. Moreover,
the combination of SAM with the fine-tuning baseline increases its
performance despite that there is no forgetting avoidance strategy.
SAM reduces the forgetting by allowing an adaptive update for
the weights. The update of the weights becomes a function of the
recalibrated activations by SAM. Therefore, the knowledge accu-
mulated by the new tasks affects a subset of the previously learned
representation which mitigates forgetting.

4 CONCLUSION
In this paper, we propose SAM, a self-attention meta-learner for the
continual learning paradigm. SAM learns a prior knowledge that
can generalize to new distributions and learns to boost the relevant
features to the input task. These two desiderata are largely over-
looked in the state-of-the-art; however, our empirical evaluation
and analysis show their effective role in improving the performance
of the CL paradigm. Finally, we demonstrate that combining SAM
with the existing continual learning methods boosts their perfor-
mance. Our results show the potential of the proposed method in
the CL setting and open the path for several new research directions.
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