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ABSTRACT
Traffic congestion in metropolitan areas is a world-wide problem
that can be ameliorated by traffic lights that respond dynamically to
real-time conditions. Recent studies that applied deep reinforcement
learning (RL) to optimize single traffic lights have shown significant
improvement over conventional control. However, optimization
of global traffic flow over a large road network fundamentally is
a cooperative multi-agent control problem. Centralized learning
via single-agent RL is infeasible due to an exponential joint-action
space, while independent learning suffers from environment non-
stationarity. We propose QCOMBO, a simple yet effective multi-
agent reinforcement learning (MARL) algorithm that combines
the advantages of independent and centralized learning without
their shortcomings. We ensure scalability by selecting actions from
individually optimized utility functions, which are shaped to max-
imize global performance via a novel consistency regularization
loss between individual utility and a global action-value function.
Experiments on diverse road topologies and traffic flow conditions
in the SUMO traffic simulator show competitive performance of
QCOMBO versus recent state-of-the-art MARL algorithms. We
further show that policies trained on small sub-networks can ef-
fectively generalize to larger networks under different traffic flow
conditions, providing empirical evidence for the suitability ofMARL
for intelligent traffic control.
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1 INTRODUCTION
With increasing urbanization, traffic congestion is a significant and
costly problem [10, 15]. While early works proposed to optimize
traffic light controllers based on expert knowledge and traditional
model-based planning [4, 9, 18], there are promising recent results
on applying flexible model-free methods in reinforcement learning
(RL) [21] and deep RL, such as DQN in particular [16], to find opti-
mal policies for traffic light controllers that dynamically respond
to real-time traffic conditions [1, 7, 11, 24]. These works model a
single traffic light as a Markov decision process (MDP) equipped
with a discrete action space (e.g. signal phase change) and a con-
tinuous state space (e.g. vehicle waiting time, queue length), and
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train a policy to optimize the expected return of an expert-designed
reward function.

However, the single-agent RL perspective on traffic control opti-
mization fails to account for the fundamental issue that optimizing
global traffic flow over a densely connected road network is a coop-
erative multi-agent problem, where independently-learning agents
face difficulty in finding global optimal solutions. Instead, all traffic
light agents must act cooperatively to optimize the global traffic
condition while optimizing their own individual reward based on
local observations. On the other hand, existing work that adopt
the multi-agent perspective on traffic signal optimization either
fall back to independent learning [5, 12, 13] or resort to centralized
optimization of coordinated agents [2, 23]. Independent learners
[22] only optimize their own reward based on local observations,
cannot optimize for global criteria (e.g., different priorities for differ-
ent intersections), and they face a nonstationary environment due
to other learning agents, which violates stationarity assumptions
of RL algorithms. Therefore, these approaches do not account for
the importance of macroscopic measures of traffic flow [8]. While
centralized training can leverage global information, it requires
maximization over a combinatorially-large joint action space and
hence is difficult to scale. Motivated by these challenges, our paper
focuses on deep multi-agent reinforcement learning (MARL) for
traffic signal control with the following specific contributions:

1. Novel objective function combining independent and
centralized training. We propose QCOMBO, a Q-learning based
method with a new objective function that combines the benefits
of both independent and centralized learning (Figure 1). We ex-
tended the definition of a single-agent reward [24] by defining the
global reward as a weighted sum of individual rewards using the
PageRank algorithm [17] to decide the weights. The key insight
is to learn a global action-value function using the global reward,
employ agent-specific observations and local rewards for fast inde-
pendent learning of local utility functions, and enforce consistency
between local and global functions via a novel regularizer. Global
information shapes the learning of local utility functions that are
used for efficient action selection.

2. Evaluation of state-of-the-artMARL algorithms on traf-
fic signal optimization. Recent work proposed more sophisti-
cated deep MARL algorithms for cooperative multi-agent problems
with a global reward [6, 19, 20], under the paradigm of centralized
training with decentralized execution [3]. However, as they were
not designed for settings with individual rewards, it is open as to
whether performance can be surpassed by leveraging agent-specific
information. While they have shown promise on video game tasks,
to the best of our knowledge they have not been tested on the
important real-world problem of optimizing traffic signal over a
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network. Hence we conducted extensive experiments comparing
our algorithm versus independent Q-learning (IQL), independent
actor-critic (IAC), COMA [6], VDN [20] and QMIX [19].

3. Generalizability of traffic light control policies. To the
best of our knowledge, we conduct the first investigation on the gen-
eralizability and transferability of deep MARL policies for traffic
signal control. Given improvements in sensor technology, mea-
surements of traffic conditions can be increasingly accurate and
real-world measurements can approach ideal simulated data. Hence,
there is strong motivation to investigate whether a decentralized
policy trained with simulated traffic approximating real-world con-
ditions can be transferred to larger networks and different traffic
conditions without loss of performance.
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Figure 1: QCOMBO architecture combining independent
learning of𝑄𝑛 (𝑜𝑛, 𝑎𝑛) with centralized training of𝑄 (𝑠, a) via
a novel consistency loss 𝐿(𝑄, {𝑄𝑛}𝑛)

2 ARCHITECTURES FOR QCOMBO
QCOMBO is a novel combination of centralized and independent
learning with coupling achieved via a new consistency regularizer.
We optimize a composite objective (1) consisting of three parts: an
individual term based on the loss function of independent DQN (2),
a global term for learning a global action-value function (3), and a
shaping term that minimizes the difference between the weighted
sum of individual Q values and the global Q value (6), where 𝜆

controls the extent of regularization.
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are global and individual utility functions, 𝑦𝑛𝑡 , 𝑦𝑡 are

the individual and global TD target.
By optimizing individual utility functions 𝑄𝑛 instead of a global

optimal 𝑄 function, we reduce the maximization problem at each
step of Q-learning from 𝑂 ( |A|𝑁 ) to 𝑂 (𝑁 |A|). We also learn the
global Q function under the joint policy induced by all agents’ local
utility functions, rather than learn the optimal global Q function,
and use it to shape the learning of individual agents via information
in global state 𝑠 and global reward 𝑅𝑔 . Crucially, action selection for

computing the TD target (5) uses the greedy action from local utility
functions and does not use the global Q function. The collection
of local utility functions induce a joint policy 𝝅 that generates
data for off-policy learning of the global action-value function 𝑄𝝅 .
The regularization brings the weighted sum of individual utility
functions closer to global expected return, so that the optimization
of individual utility functions is influenced by the global objective
rather than purely determined by local information.

(a) (b) (c) (d)

Figure 2: Grid topology used : (a) 1 traffic light example; (b)
2 traffic lights; (c) 2 × 2 traffic lights; (d) 6 × 6 traffic lights

3 EXPERIMENTAL SETUP
We formulate the multi-agent traffic light control problem as a
partially-observed Markov game, consisting of 𝑁 agents (Figure 2).
Each agent controls the phase of one traffic light at an intersection.

We evaluated the performance of our method against a large set
of baselines on multiple road networks under a variety of traffic
conditions in the SUMO simulator [14, 25]. We implemented all
algorithms using deep neural networks as function approximators.
For each algorithm, we report the mean of five independent runs.

Figure 3: Heat map showing each algorithm’s final perfor-
mance, the left six columns are final reward under different
road networks, the rest are measures of traffic conditions

4 RESULTS AND CONCLUSIONS
Over all flow and network configurations, QCOMBO attained the
global optimal performance and is most stable among all algorithms
(Figure 3). The performance of QCOMBO on test conditions does
not heavily depend on specific choices of training conditions. Ex-
periments also indicate that QCOMBO can be generalized with
limited loss of performance to large traffic networks. Our work
gives strong evidence for the feasibility of training cooperative poli-
cies for generalizable, scalable and intelligent traffic light control.
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