
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 5: Programming a RISC-V CPU



www.iaik.tugraz.at

2

Software

Hardware

The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, … 
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The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, … 

• A microarchitecture defines how the instruction set is implemented 
in a concrete processor. This includes all details from realizing the 
register file and ALU up to pipelining, out-of-order execution, …

• Motivation: the programmer should not need to care about the 
microarchitecture (i.e. the concrete realization of the ISA)

Software

Hardware
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The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, … 

• A microarchitecture defines how the instruction set is implemented 
in a concrete processor. This includes all details from realizing the 
register file and ALU up to pipelining, out-of-order execution, …

• Motivation: the programmer should not need to care about the 
microarchitecture (i.e. the concrete realization of the ISA)

Software

Hardware

• The software tool chain maps program description in all kinds 
programming languages down to machine language (i.e.
instructions that the CPU can execute)



Programming in Assembly
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Summing Up 10 Input Values
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Loops

www.iaik.tugraz.at

7



Loops
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Loops
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Loops

www.iaik.tugraz.at

10



Loops

www.iaik.tugraz.at

11

Counting offsets is not a 
nice job for a programmer

→ Let the compiler do it



Symbols

• Basic idea:
• We label memory addresses 

• Each address we label is assigned a symbol (“a name”) 

• When programming, we can replace memory addresses by symbols 
to simplify the complexity of programming
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Loop Using a Label
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Variables, Having Fun With the Memory Layout
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• We can choose the 
memory layout as we like

• We can mix data and 
code

• Try it out with your own 
code



Programming in C
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Software
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.asm file

.hex file

Instruction Set 
Simulation

(“riscvsim.py”)

Verilog RTL 
Simulation
(“iverilog”)

Verilog 
Gate-Level 
Simulation

Assembler (“riscvasm.py”)

Hardware

Synthesis
(using yosys)

Physical Chip

.v file

Placement, Routing, Chip Manufacturing
(this is part of the course “Digitial System Design”)

.c file

Compiler



Program in C

while (1) {
scanf(“%x”, &a);
if (a==0) break;
printf(“%x”, a);

}
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“Simplification”: While → If, goto

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

while (1) {
scanf(“%x”, &a);
if (a==0) break;
printf(“%x”, a);

}

18
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From C to RISCV assembly language

L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

19
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

Copy value from 
location 0x7fc 
to CPU register x1.

20
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)

SW x1, 0x7fc(x0)

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;
Store (= copy) value
in CPU register x1

to address 0x7fc

21
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

If value in CPU register x1 is equal to 0,
Then goto label L1. Else continue with
the statement after the if-statement. 

22
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

This statement stands for
a unconditional “goto”. 

23
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From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1; 
printf(“%x”,a);
goto L0;

L1: ;

The execution of the instruction EBREAK
halts the CPU simulation. 

24
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From assembly language 
to machine language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK

0x00:
0x04:
0x08:
0x0C:
0x10:

TOY starts executing code at address 0x00. 
Every machine instruction needs one word in memory.

25
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Labels are “symbolic addresses”

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK 

0x00:
0x04:
0x08:
0x0C:
0x10:

The label “L0” is a symbolic name for the memory location with address 0x00.
Likewise, the label “L1” is a symbolic name for the memory location with address 0x10.

26
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L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK

0x00: 0x7F C0 20 83
0x04:
0x08:
0x0C:
0x10:

27
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08:
0x0C:
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C:
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0) 
JAL x0,L0

L1 EBREAK
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The Machine Program

32

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73
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The Machine Program in Binary Notation

0x00: 0111_1111_1100_0000_0010_0000_1000_0011
0x04: 0000_0000_0000_0000_1000_0110_0110_0011
0x08: 0111_1110_0001_0000_0010_1110_0010_0011
0x0C: 1111_1111_0101_1111_1111_0000_0110_1111
0x10: 0000_0000_0001_0000_0000_0000_0111_0011

For reasons of readability,
we use hexadecimal
notation.

In memory we always only have 
binary patterns.
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0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63 
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73
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Let’s do a More Complex Example

• The program sums up 4 
numbers and writes the sum to 
stdout

• We translate the program from 
C to ASM step by step

• See examples repo for each 
step
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Important Steps for the Transformation from 
C to ASM
• Transform all For/While loops into conditional goto statements (if + goto

label)

• Resolve complex conditional statements and computational statements 
by using additional temporary variables → ASM instructions can only 
handle two operands

• Ensure the correct handling of the else branch when resolving if 
statements to (if + goto label) statements

• Make pointer arithmetic of e.g. arrays explicit
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Function Calls
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Motivation

• The C to ASM translation we have done so far was limited
• No function calls

• Only global variables – no local variables in functions

• For real-world programs we want to partition our program into 
functions with local variables
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Functions Calls

• Basic Idea:
• partitioning of code into reusable functions

• functions can call other functions arbitrarily 
(nested function calls, recursive function 
calls)

• Interface:
• the function takes input arguments

• the function provides a return value as 
output
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Realizing Function Calls and Returns

• A function call is not a simple branch 
instruction

• Whenever there is a function call, we also  
need to store the return address
• foo2 needs to know whether to return to foo0 or 

foo1

• The return address is a mandatory parameter to 
every function 
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Realizing Function Calls and Returns on RISC-V

• RISC-V has two instructions to perform a “jump 
and link”

• JAL (Jump and Link): JAL rd, offset
• Jump relative to current PC

• The jump destination is PC+offset

• Upon the jump (PC+4) is stored in register rd

• JALR (Jump and Link Register): JALR rd, offset(rs)
• Jump to address (register content from rs) + offset

• Upon the jump (PC+4) is stored in register rd
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Example

• See con06_function_call
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Problem: Nested Subroutine Calls

• JAL and JALR need a register for storing the return address

• We could use a different register for each function call. However, we 
would quickly run out of registers

→We need a data structure in memory to take care of this.

www.iaik.tugraz.at

42



A Stack

• Stack characteristics:
• Two operations:

• “PUSH”: places an element on the stack

• “POP”: receives an element from the stack

• The stack is a FILO (first in, last out) data structure

• The stack typically “grows” from high to low addresses

• The stack is a continuous section in memory

• The “stack pointer” (sp) “points” to the “top of the stack” (TOS)
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Push Value 42
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42

42

top

top

Stack after PushStack before Push



Pop Value 42
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42

42

top

top

Stack after PopStack before Pop



Implementing a Stack with RISC-V

• Initialize a stack pointer
• Set starting point 

• Push value
• Expand stack by 4

• Copy value from register to top of stack

• Pop value
• Copy value from top of stack to destination register

• decrease stack by 4
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Implementing a Stack with RISC-V

• Initialize a stack pointer
• Set starting point 

• Push value
• Expand stack by 4

• Copy value from register to top of stack

• Pop value
• Copy value from top of stack to destination register

• decrease stack by 4
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push_pop.asm

See con2023_05_stack_examples.pdf for a visualization of the stack activities



Register Usage in Subroutines

• We can use a stack to store return addresses

• In fact, the stack can be used as a storage for any register

• Assume you want to use register x1, but it currently stores another value that is needed later 
on
• Push x1 to the stack
• Use x1 
• Restore x1 by popping the content from the stack 
→This is called “register spilling”

Idea: 

→We can use the stack to store and restore register states when entering/exiting function calls

→Every function can use the CPU registers as needed
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Calling Convention
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Calling Convention

• There are many different ways how to handle the stacking of registers 
when calling a subroutine

• There is a calling convention for each platform that defines the 
relationship between the caller (the part of the program doing a call 
to a subroutine) and the callee (the subroutine that is called). It 
defines:
• How are arguments passed between caller and callee?

• How are values returned from the callee to the caller?

• Who takes care of the stacking of which registers?
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RISC-V Registers Summary

• Saved by Caller:
• ra (return address)
• a0 - a1 (arguments/return values)
• a2 – a7 (arguments)
• t0 - t6 (temp. registers)

• Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)

In this lecture we do not use gp
and tp
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From the RISC-V Instruction Set Manual (riscv.org):

. 



The View of the Caller
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. 

Dear Callee,

Use these registers however you like –
I do not care about the content. 
Your arguments are in a0 – a7.
Give me your return value in a0 (32 bit
case) or in a0 and a1 (64 bit value)

Dear Callee,

I want these registers back with 
exactly the same content as I passed 
them to you.  In case you need 
them, these are registers are to be 
saved and restored by you.

Summary

• Saved by Caller:
• ra (return address)
• a0 - a1 (arguments/return values)
• a2 – a7 (arguments)
• t0 - t6 (temp. registers)

• Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)



Switching from HW to SW View

• All subsequent assembler examples will be 
written using the software ABI conventions →
we use no x.. registers any more

• In hardware this does not change anything – it 
is just the naming
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Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)



Code Parts of a Subroutine

• Important code parts for the handling of 
registers, local variables and arguments are

• Function Prolog (“Set up”) – the first instructions of a 
subroutine

• Neighborhood of a Nested Call (before and after call)  

• Epilog (“Clean up”) – the last instructions of a 
subroutine
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Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)



Examples

• Check the examples repo and look at the code in the directory 
stack_according_to_abi

• Compile and understand the following examples
• 01_direct_return.asm

• 02_nested_function_call.asm

• 03_nested_call_with_argument.asm

• 04_recursive_call_with_arguments.asm
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Frame Pointer
• If there are too many arguments to fit them into the registers, the additional parameters are passed via the 

stack

• In order to facilitate the access to these arguments, we introduce the framepointer 

• The framepointer stores the value of the stack pointer upon function entry
→ The framepointer always points to the last element that the caller has put on the stack before jumping to the callee

• In case, there are parameters passed via the stack from the caller to the callee, it holds that 
• FP: points to the first argument on the stack (this was placed last on the stack by the caller)
• FP + 4: points to the second argument on the stack
• FP - 4: this is the first element that is placed on the stack by the callee – in our examples this is typically the return address (ra)

• The frame pointer is set and saved by the callee → If a callee wants to use a frame pointer, the callee needs to
(1) Stack the current framepointer (fp)
(2) Set the fp to its stack frame (the value of sp upon function entry) 

• See example 05_call_with_many_arguments.asm
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Local Variables

• Whenever a function requires local variables, these variables are also 
stored on the stack

• See example 06_local_variables_and_call_by_reference.asm
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Call by Value vs. Call by Reference

• There are two important ways of passing arguments to a function

• Call by Value
• The values of the arguments are provided in the registers a0-a7 and the stack

• Call by Reference
• Instead of values, pointers are passed to the function (they point for example 

to variables of the stack frame of the caller)

• See example 06_local_variables_and_call_by_reference.asm
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Memory Layout of 
Stack Frames

• The frames of the 
functions pile up 
(actually “down”
regarding the address) 
next to each other
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ra, fp, local variables, etc of 
caller

Additional Arguments

ra (if needed)

fp (if needed)

a0-a7, t0-t6 (if needed)

local variables (if needed)

Caller Stack Frame

Callee Stack Frame

Frame of next 
potential Callee

High address

Low address



Full Stack Frame

• In case a function receives arguments via the stack, uses local variables and 
performs calls, the full stack frame looks as follows in our examples (addressing is 
done relative to the framepointer (fp)):

• ….
• FP + 8: third argument passed via stack
• FP + 4: second argument passed via stack 
• FP: first argument passed via stack      (last element that has been put on the stack by the caller)

• FP - 4: Return address  (first element that is put on the stack by the callee)
• FP - 8: Frame pointer of caller
• FP - 12: First local variable
• FP - 16: Second local variable
• …
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Summary on Code Parts of a Subroutine

• Prolog (“Set up”) – the first instructions of a subroutine
• Stacking the return address (in case needed)
• Stacking of frame pointer of caller and initialization of FP for callee (in case needed)
• Stacking of s1-s11 (in case these registers are needed)
• Allocation of stack for local variables

• Neighborhood of a Nested Call (before and after call)  
• Preparation of arguments in registers and on stack (if needed) for the subroutine 
• Stacking and restoring of registers a0-a7, t0-t7 (in case these registers are still needed in the subroutine after 

returning from the call)

• Epilog (“Clean up”) – the last instructions of a subroutine
• Restore frame pointer
• Restore return address
• Restore stack pointer
• Jump to return address
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Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)



Tools
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Tools

• Writing large assembler programs is cumbersome

• Manual stack organization is getting complex

• Portability of assembler code is limited

•→ Use a higher level language, e.g., C and a compiler like gcc, or llvm
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Explore The Output of Different Compilers

Write C code online and compile it to different platforms with different 
compilers 

→ https://godbolt.org/
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https://godbolt.org/
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