
Computer Organization and Networks
(INB.06000UF, INB.07001UF)

Winter 2023/2024

Stefan Mangard, www.iaik.tugraz.at

Chapter 5: Programming a RISC-V CPU

www.iaik.tugraz.at

2

Software

Hardware

The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, …

www.iaik.tugraz.at

3

The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, …

• A microarchitecture defines how the instruction set is implemented
in a concrete processor. This includes all details from realizing the
register file and ALU up to pipelining, out-of-order execution, …

• Motivation: the programmer should not need to care about the
microarchitecture (i.e. the concrete realization of the ISA)

Software

Hardware

www.iaik.tugraz.at

4

The Software/Hardware Interface: Instruction Set Architecture (ISA):
• The ISA defines anything that is needed by programmers to correctly write a program for the hardware.
• In particular this includes defining, instructions, registers, data types, memory model, …

• A microarchitecture defines how the instruction set is implemented
in a concrete processor. This includes all details from realizing the
register file and ALU up to pipelining, out-of-order execution, …

• Motivation: the programmer should not need to care about the
microarchitecture (i.e. the concrete realization of the ISA)

Software

Hardware

• The software tool chain maps program description in all kinds
programming languages down to machine language (i.e.
instructions that the CPU can execute)

Programming in Assembly

www.iaik.tugraz.at

5

Summing Up 10 Input Values

www.iaik.tugraz.at

6

Loops

www.iaik.tugraz.at

7

Loops

www.iaik.tugraz.at

8

Loops

www.iaik.tugraz.at

9

Loops

www.iaik.tugraz.at

10

Loops

www.iaik.tugraz.at

11

Counting offsets is not a
nice job for a programmer

→ Let the compiler do it

Symbols

• Basic idea:
• We label memory addresses

• Each address we label is assigned a symbol (“a name”)

• When programming, we can replace memory addresses by symbols
to simplify the complexity of programming

www.iaik.tugraz.at

12

Loop Using a Label

www.iaik.tugraz.at

13

Variables, Having Fun With the Memory Layout

www.iaik.tugraz.at

14

• We can choose the
memory layout as we like

• We can mix data and
code

• Try it out with your own
code

Programming in C

www.iaik.tugraz.at

15

Software

www.iaik.tugraz.at

16

.asm file

.hex file

Instruction Set
Simulation

(“riscvsim.py”)

Verilog RTL
Simulation
(“iverilog”)

Verilog
Gate-Level
Simulation

Assembler (“riscvasm.py”)

Hardware

Synthesis
(using yosys)

Physical Chip

.v file

Placement, Routing, Chip Manufacturing
(this is part of the course “Digitial System Design”)

.c file

Compiler

Program in C

while (1) {
scanf(“%x”, &a);
if (a==0) break;
printf(“%x”, a);

}

17

www.iaik.tugraz.at

“Simplification”: While → If, goto

L0: scanf(“%x”, &a);
if (a == 0) goto L1;
printf(“%x”,a);
goto L0;

L1: ;

while (1) {
scanf(“%x”, &a);
if (a==0) break;
printf(“%x”, a);

}

18

www.iaik.tugraz.at

From C to RISCV assembly language

L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1;
printf(“%x”,a);
goto L0;

L1: ;

19

www.iaik.tugraz.at

From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1;
printf(“%x”,a);
goto L0;

L1: ;

Copy value from
location 0x7fc
to CPU register x1.

20

www.iaik.tugraz.at

From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)

SW x1, 0x7fc(x0)

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1;
printf(“%x”,a);
goto L0;

L1: ;
Store (= copy) value
in CPU register x1

to address 0x7fc

21

www.iaik.tugraz.at

From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1;
printf(“%x”,a);
goto L0;

L1: ;

If value in CPU register x1 is equal to 0,
Then goto label L1. Else continue with
the statement after the if-statement.

22

www.iaik.tugraz.at

From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1;
printf(“%x”,a);
goto L0;

L1: ;

This statement stands for
a unconditional “goto”.

23

www.iaik.tugraz.at

From C to RISCV assembly language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

Labels

L0: scanf(“%x”, &a);
if (a == 0) goto L1;
printf(“%x”,a);
goto L0;

L1: ;

The execution of the instruction EBREAK
halts the CPU simulation.

24

www.iaik.tugraz.at

From assembly language
to machine language

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

0x00:
0x04:
0x08:
0x0C:
0x10:

TOY starts executing code at address 0x00.
Every machine instruction needs one word in memory.

25

www.iaik.tugraz.at

Labels are “symbolic addresses”

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

0x00:
0x04:
0x08:
0x0C:
0x10:

The label “L0” is a symbolic name for the memory location with address 0x00.
Likewise, the label “L1” is a symbolic name for the memory location with address 0x10.

26

www.iaik.tugraz.at

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

0x00: 0x7F C0 20 83
0x04:
0x08:
0x0C:
0x10:

27

www.iaik.tugraz.at

28

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63
0x08:
0x0C:
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

www.iaik.tugraz.at

29

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63
0x08: 0x 7E 10 2E 23
0x0C:
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

www.iaik.tugraz.at

30

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10:

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

www.iaik.tugraz.at

31

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73

L0 LW x1, 0x7fc(x0)
BEQ x1, x0, L1
SW x1, 0x7fc(x0)
JAL x0,L0

L1 EBREAK

www.iaik.tugraz.at

The Machine Program

32

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73

www.iaik.tugraz.at

The Machine Program in Binary Notation

0x00: 0111_1111_1100_0000_0010_0000_1000_0011
0x04: 0000_0000_0000_0000_1000_0110_0110_0011
0x08: 0111_1110_0001_0000_0010_1110_0010_0011
0x0C: 1111_1111_0101_1111_1111_0000_0110_1111
0x10: 0000_0000_0001_0000_0000_0000_0111_0011

For reasons of readability,
we use hexadecimal
notation.

In memory we always only have
binary patterns.

33

0x00: 0x 7F C0 20 83
0x04: 0x 00 00 86 63
0x08: 0x 7E 10 2E 23
0x0C: 0x FF 5F F0 6F
0x10: 0x 00 10 00 73

www.iaik.tugraz.at

Let’s do a More Complex Example

• The program sums up 4
numbers and writes the sum to
stdout

• We translate the program from
C to ASM step by step

• See examples repo for each
step

www.iaik.tugraz.at

34

Important Steps for the Transformation from
C to ASM
• Transform all For/While loops into conditional goto statements (if + goto

label)

• Resolve complex conditional statements and computational statements
by using additional temporary variables → ASM instructions can only
handle two operands

• Ensure the correct handling of the else branch when resolving if
statements to (if + goto label) statements

• Make pointer arithmetic of e.g. arrays explicit

www.iaik.tugraz.at

35

Function Calls

www.iaik.tugraz.at

36

Motivation

• The C to ASM translation we have done so far was limited
• No function calls

• Only global variables – no local variables in functions

• For real-world programs we want to partition our program into
functions with local variables

www.iaik.tugraz.at

37

Functions Calls

• Basic Idea:
• partitioning of code into reusable functions

• functions can call other functions arbitrarily
(nested function calls, recursive function
calls)

• Interface:
• the function takes input arguments

• the function provides a return value as
output

www.iaik.tugraz.at

38

Realizing Function Calls and Returns

• A function call is not a simple branch
instruction

• Whenever there is a function call, we also
need to store the return address
• foo2 needs to know whether to return to foo0 or

foo1

• The return address is a mandatory parameter to
every function

www.iaik.tugraz.at

39

Realizing Function Calls and Returns on RISC-V

• RISC-V has two instructions to perform a “jump
and link”

• JAL (Jump and Link): JAL rd, offset
• Jump relative to current PC

• The jump destination is PC+offset

• Upon the jump (PC+4) is stored in register rd

• JALR (Jump and Link Register): JALR rd, offset(rs)
• Jump to address (register content from rs) + offset

• Upon the jump (PC+4) is stored in register rd

www.iaik.tugraz.at

40

Example

• See con06_function_call

www.iaik.tugraz.at

41

Problem: Nested Subroutine Calls

• JAL and JALR need a register for storing the return address

• We could use a different register for each function call. However, we
would quickly run out of registers

→We need a data structure in memory to take care of this.

www.iaik.tugraz.at

42

A Stack

• Stack characteristics:
• Two operations:

• “PUSH”: places an element on the stack

• “POP”: receives an element from the stack

• The stack is a FILO (first in, last out) data structure

• The stack typically “grows” from high to low addresses

• The stack is a continuous section in memory

• The “stack pointer” (sp) “points” to the “top of the stack” (TOS)

www.iaik.tugraz.at

43

Push Value 42

www.iaik.tugraz.at

44

42

42

top

top

Stack after PushStack before Push

Pop Value 42

www.iaik.tugraz.at

45

42

42

top

top

Stack after PopStack before Pop

Implementing a Stack with RISC-V

• Initialize a stack pointer
• Set starting point

• Push value
• Expand stack by 4

• Copy value from register to top of stack

• Pop value
• Copy value from top of stack to destination register

• decrease stack by 4

www.iaik.tugraz.at

46

Implementing a Stack with RISC-V

• Initialize a stack pointer
• Set starting point

• Push value
• Expand stack by 4

• Copy value from register to top of stack

• Pop value
• Copy value from top of stack to destination register

• decrease stack by 4

www.iaik.tugraz.at

47

push_pop.asm

See con2023_05_stack_examples.pdf for a visualization of the stack activities

Register Usage in Subroutines

• We can use a stack to store return addresses

• In fact, the stack can be used as a storage for any register

• Assume you want to use register x1, but it currently stores another value that is needed later
on
• Push x1 to the stack
• Use x1
• Restore x1 by popping the content from the stack
→This is called “register spilling”

Idea:

→We can use the stack to store and restore register states when entering/exiting function calls

→Every function can use the CPU registers as needed

www.iaik.tugraz.at

48

Calling Convention

www.iaik.tugraz.at

49

Calling Convention

• There are many different ways how to handle the stacking of registers
when calling a subroutine

• There is a calling convention for each platform that defines the
relationship between the caller (the part of the program doing a call
to a subroutine) and the callee (the subroutine that is called). It
defines:
• How are arguments passed between caller and callee?

• How are values returned from the callee to the caller?

• Who takes care of the stacking of which registers?

www.iaik.tugraz.at

50

RISC-V Registers Summary

• Saved by Caller:
• ra (return address)
• a0 - a1 (arguments/return values)
• a2 – a7 (arguments)
• t0 - t6 (temp. registers)

• Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)

In this lecture we do not use gp
and tp

www.iaik.tugraz.at

51

From the RISC-V Instruction Set Manual (riscv.org):

.

The View of the Caller

www.iaik.tugraz.at

52
.

Dear Callee,

Use these registers however you like –
I do not care about the content.
Your arguments are in a0 – a7.
Give me your return value in a0 (32 bit
case) or in a0 and a1 (64 bit value)

Dear Callee,

I want these registers back with
exactly the same content as I passed
them to you. In case you need
them, these are registers are to be
saved and restored by you.

Summary

• Saved by Caller:
• ra (return address)
• a0 - a1 (arguments/return values)
• a2 – a7 (arguments)
• t0 - t6 (temp. registers)

• Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)

Switching from HW to SW View

• All subsequent assembler examples will be
written using the software ABI conventions →
we use no x.. registers any more

• In hardware this does not change anything – it
is just the naming

www.iaik.tugraz.at

53

Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)

Code Parts of a Subroutine

• Important code parts for the handling of
registers, local variables and arguments are

• Function Prolog (“Set up”) – the first instructions of a
subroutine

• Neighborhood of a Nested Call (before and after call)

• Epilog (“Clean up”) – the last instructions of a
subroutine

www.iaik.tugraz.at

54

Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)

Examples

• Check the examples repo and look at the code in the directory
stack_according_to_abi

• Compile and understand the following examples
• 01_direct_return.asm

• 02_nested_function_call.asm

• 03_nested_call_with_argument.asm

• 04_recursive_call_with_arguments.asm

www.iaik.tugraz.at

55

Frame Pointer
• If there are too many arguments to fit them into the registers, the additional parameters are passed via the

stack

• In order to facilitate the access to these arguments, we introduce the framepointer

• The framepointer stores the value of the stack pointer upon function entry
→ The framepointer always points to the last element that the caller has put on the stack before jumping to the callee

• In case, there are parameters passed via the stack from the caller to the callee, it holds that
• FP: points to the first argument on the stack (this was placed last on the stack by the caller)
• FP + 4: points to the second argument on the stack
• FP - 4: this is the first element that is placed on the stack by the callee – in our examples this is typically the return address (ra)

• The frame pointer is set and saved by the callee → If a callee wants to use a frame pointer, the callee needs to
(1) Stack the current framepointer (fp)
(2) Set the fp to its stack frame (the value of sp upon function entry)

• See example 05_call_with_many_arguments.asm

www.iaik.tugraz.at

56

Local Variables

• Whenever a function requires local variables, these variables are also
stored on the stack

• See example 06_local_variables_and_call_by_reference.asm

www.iaik.tugraz.at

57

Call by Value vs. Call by Reference

• There are two important ways of passing arguments to a function

• Call by Value
• The values of the arguments are provided in the registers a0-a7 and the stack

• Call by Reference
• Instead of values, pointers are passed to the function (they point for example

to variables of the stack frame of the caller)

• See example 06_local_variables_and_call_by_reference.asm

www.iaik.tugraz.at

58

Memory Layout of
Stack Frames

• The frames of the
functions pile up
(actually “down”
regarding the address)
next to each other

www.iaik.tugraz.at

59

ra, fp, local variables, etc of
caller

Additional Arguments

ra (if needed)

fp (if needed)

a0-a7, t0-t6 (if needed)

local variables (if needed)

Caller Stack Frame

Callee Stack Frame

Frame of next
potential Callee

High address

Low address

Full Stack Frame

• In case a function receives arguments via the stack, uses local variables and
performs calls, the full stack frame looks as follows in our examples (addressing is
done relative to the framepointer (fp)):

• ….
• FP + 8: third argument passed via stack
• FP + 4: second argument passed via stack
• FP: first argument passed via stack (last element that has been put on the stack by the caller)

• FP - 4: Return address (first element that is put on the stack by the callee)
• FP - 8: Frame pointer of caller
• FP - 12: First local variable
• FP - 16: Second local variable
• …

www.iaik.tugraz.at

60

Summary on Code Parts of a Subroutine

• Prolog (“Set up”) – the first instructions of a subroutine
• Stacking the return address (in case needed)
• Stacking of frame pointer of caller and initialization of FP for callee (in case needed)
• Stacking of s1-s11 (in case these registers are needed)
• Allocation of stack for local variables

• Neighborhood of a Nested Call (before and after call)
• Preparation of arguments in registers and on stack (if needed) for the subroutine
• Stacking and restoring of registers a0-a7, t0-t7 (in case these registers are still needed in the subroutine after

returning from the call)

• Epilog (“Clean up”) – the last instructions of a subroutine
• Restore frame pointer
• Restore return address
• Restore stack pointer
• Jump to return address

www.iaik.tugraz.at

61

Saved by Caller:
• ra (return address)
• a0 - a7 (arguments)
• t0 - t6 (temp. registers)

Saved by Callee:
• fp (frame pointer)
• sp (stack pointer)
• s1 – s11 (saved registers)

Tools

www.iaik.tugraz.at

62

Tools

• Writing large assembler programs is cumbersome

• Manual stack organization is getting complex

• Portability of assembler code is limited

•→ Use a higher level language, e.g., C and a compiler like gcc, or llvm

www.iaik.tugraz.at

63

Explore The Output of Different Compilers

Write C code online and compile it to different platforms with different
compilers

→ https://godbolt.org/

www.iaik.tugraz.at

64

https://godbolt.org/

	Slide 1: Computer Organization and Networks (INB.06000UF, INB.07001UF)
	Slide 2: Software
	Slide 3: Software
	Slide 4: Software
	Slide 5
	Slide 6: Summing Up 10 Input Values
	Slide 7: Loops
	Slide 8: Loops
	Slide 9: Loops
	Slide 10: Loops
	Slide 11: Loops
	Slide 12: Symbols
	Slide 13: Loop Using a Label
	Slide 14: Variables, Having Fun With the Memory Layout
	Slide 15
	Slide 16: Software
	Slide 17: Program in C
	Slide 18: “Simplification”: While  If, goto
	Slide 19: From C to RISCV assembly language
	Slide 20: From C to RISCV assembly language
	Slide 21: From C to RISCV assembly language
	Slide 22: From C to RISCV assembly language
	Slide 23: From C to RISCV assembly language
	Slide 24: From C to RISCV assembly language
	Slide 25: From assembly language to machine language
	Slide 26: Labels are “symbolic addresses”
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: The Machine Program
	Slide 33: The Machine Program in Binary Notation
	Slide 34: Let’s do a More Complex Example
	Slide 35: Important Steps for the Transformation from C to ASM
	Slide 36
	Slide 37: Motivation
	Slide 38: Functions Calls
	Slide 39: Realizing Function Calls and Returns
	Slide 40: Realizing Function Calls and Returns on RISC-V
	Slide 41: Example
	Slide 42: Problem: Nested Subroutine Calls
	Slide 43: A Stack
	Slide 44: Push Value 42
	Slide 45: Pop Value 42
	Slide 46: Implementing a Stack with RISC-V
	Slide 47: Implementing a Stack with RISC-V
	Slide 48: Register Usage in Subroutines
	Slide 49
	Slide 50: Calling Convention
	Slide 51: RISC-V Registers
	Slide 52: The View of the Caller
	Slide 53: Switching from HW to SW View
	Slide 54: Code Parts of a Subroutine
	Slide 55: Examples
	Slide 56: Frame Pointer
	Slide 57: Local Variables
	Slide 58: Call by Value vs. Call by Reference
	Slide 59: Memory Layout of Stack Frames
	Slide 60: Full Stack Frame
	Slide 61: Summary on Code Parts of a Subroutine
	Slide 62
	Slide 63: Tools
	Slide 64: Explore The Output of Different Compilers

