Logic and Computability

SCIENCE PASSION **TECHNOLOGY**

Theories in Predicate Logic

and Satisfiability Modulo Theories

Bettina Könighofer bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at

https://xkcd.com/2323/

Motivation – Satisfiability Modulo Theory

■ We want solve formulas

2

- over Real Numbers, Integers,...
- that use functions and predicates like $+, -, <, =, >...$
- E.g., $\varphi = x \ge 0$ Λ $(x + y \le 2 \vee x + y \ge 6)$ Λ $(x + y \ge 1 \vee x y \ge 4)$
- Solving a formula = Find a **model** that makes the formula true
- The following model makes the formula true:
	- $A = \{0,1,2,3,4,5,6\},\$
	- \geq^M , \leq^M : always return true (e.g., $0 \leq 1, 1 \leq 0, 0 \leq 2, 2 \leq 0, ...$)
	- $+$ ^M, $-$ ^M: always return 5 (e.g., 0 + 0 = 5, 0 0 = 5, ...)
- We are typically not interested in such arbitrary models!

Motivation – Satisfiability Modulo Theory

- Usually we are **not** interested in **arbitrary models**
	- E.g., Models in which $5 + 3 = 10$ or $20 2 = 1$
- Only interested in models with **well-established interpretation** of function & predicates
- Theory

3

- **Axioms** that define **interpretation/meaning** for **functions** and **predicates**
- E.g., $1 + 1 = 2$, $1 + 2 = 3$, $1 + 3 = 4$, ...
- Satisfiable Modulo Theory (SMT)
	- Deciding whether a formula logic is **satisfiable modulo theory** means that we only consider **models** that **interpret functions** and **predicates** as defined by the **axioms in the theory**.

Outline

- What are Theories?
	- **•** Definition
	- **Example Theories:** $T_{\rm E}$ and $T_{\rm E,IF}$
- Notations and Concepts
	- **•** $\mathcal T$ -Terms, $\mathcal T$ -Atoms, $\mathcal T$ -Literals and $\mathcal T$ -Formulas
	- **•** $\mathcal T$ -Satisfiability, $\mathcal T$ -Validity, $\mathcal T$ -Equivalence
- Implementation of SMT Solvers
	- **Eager Encoding**
		- explicit encoding of axioms
		- Ackermann & Graph-based reduction
	- Lazy Encoding
		- use combination of theory solvers and SAT solver
		- congruence Closure

Learning Outcomes

After this lecture…

- 1. students can explain the concept of a theory in first-order logic.
- 2. students can state the axioms of T_E and T_{UE} .
- 3. students can explain the meaning of "Satisfiability Modulo Theories".
- 4. students can explain the concept of **eager encoding**.
- 5. students can solve formulas in T_{UE} by applying Ackermann's & Graph-based reduction
- 6. students can explain the concept of **lazy encoding**.
- 7. students can solve formulas in the conjunctive fragment of T_{UE} using Congruence Closure.

⁶ Notion of "Theory"

■ Theories define axioms often used domains and applications/problems

Definition of a Theory

Definition of a First-Order Theory :

• Signature Σ

7

- is a set of **constants, predicate and function symbols**
- → Do not use any non-logical symbols not contained in Σ !
	- Logical symbols are logical connectives like \wedge , \vee …, variables like x, y …, and quantifiers like ∀x
- **E** Set of Axioms \mathcal{A}
	- Gives **meaning** to the predicate and function symbols
	- Sentences (=Formulas without free variables) with symbols from Σ only

Theory of Linear Integer Arithmetic \mathcal{T}_{LIA}

Example:
$$
\varphi
$$
: $= x \geq 0 \land (x + y \leq 2 \lor x + y \geq 6)$

Definition of :

■
$$
\Sigma_{LIA} := \mathbb{Z} \cup \{+, -\} \cup \{=, \neq <, \leq, >, \geq\}
$$

- \blacksquare \mathcal{A}_{LIA} : defines the usual meaning to all symbols
	- \blacksquare Maps constants to their corresponding value in $\mathbb Z$
	- E.g., The function + is interpreted as the addition function, e.g.
		- \blacksquare
		- \bullet 0+0 \rightarrow 0
		- \blacksquare 0+1 \rightarrow 1....

Theory of Equality \mathcal{T}_E

Example: $\varphi := (x = b) \wedge (y \neq x) \rightarrow (w = b)$ **Definition of :**

$$
\bullet \Sigma_{E} := \{a_0, b_0, c_0, ..., =\}
$$

- \blacksquare Binary equality predicate \blacksquare
- Arbitrary constant symbols

1.
$$
\forall x. x = x
$$

 \blacksquare \mathcal{A}_{E} :

2.
$$
\forall x. \forall y. (x = y \rightarrow y = x)
$$

3.
$$
\forall x. \forall y. \forall z. (x = y \land y = z \rightarrow x = z)
$$

(reflexivity) (symmetry) (transitivity)

Theory of Equality & Uninterpreted Functions \mathcal{T}_{EIF}

- An **uninterpreted function** has no other property than its name, its arity and the **function congruence property:**
	- Given the same inputs, it gives the same outputs
- Used for abstractions
	- Example

 $\bullet a \cdot (f(b) + f(c)) = d \wedge b \cdot (f(a) + f(c)) \neq d \wedge a = b$

■ Using uninterpreted functions we get:

■ $m(a, p(f(b), f(c))) = d \land m(b, p(f(a), f(c))) \neq d \land a = b$

■ Can be used to show UNSAT of the formula

11 Theory of Equality & Uninterpreted Functions \mathcal{T}_{EIF}

Example: $\varphi := ((f(x) = g(b)) \wedge (f(y) \neq f(x))) \rightarrow P(x)$ **Definition of** $\mathcal{T}_{E I F}$ **:**

- $\mathbf{E}_{\text{EUF}} = \{a_0, b_0, c_0, ..., \pm\}$
	- \blacksquare Binary equality predicate \blacksquare
	- Arbitrary constant, function and predicate symbols

\blacksquare $\mathcal{A}_{E I I F}$

1-3 same as in \mathcal{A}_F (reflexivity), (symmetry), (transitivity)

4
$$
\forall \overline{x}.\forall \overline{y}.((\Lambda_i x_i = y_i) \rightarrow f(\overline{x}) = f(\overline{y}))
$$
 (function congruence)

5
$$
\forall \overline{x}
$$
. $\forall \overline{y}$. $((\Lambda_i x_i = y_i) \rightarrow P(\overline{x}) = P(\overline{y}))$ (predicate equivalence)

Outline

- What are Theories?
	- **•** Definition
	- **Example Theories:** T_E and T_{EUF}
- Notations and Concepts
	- **•** $\mathcal T$ -Terms, $\mathcal T$ -Atoms, $\mathcal T$ -Literals and $\mathcal T$ -Formulas
	- **•** $\mathcal T$ -Satisfiability, $\mathcal T$ -Validity, $\mathcal T$ -Equivalence
- **Implementation of SMT Solvers**
	- Eager Encoding
	- **Example 25 Lazy Encoding**

T -terms, T -atoms and T -literals

- \blacksquare $\mathcal{T}\text{-term}$:
	- **Constants** in Σ, **variables**, **function** instances with function symbols and inputs in Σ
	- Examples: 0, x , $x + y$, $x y$
- *T*-atom:
	- **Predicate** instances with predicate symbol and inputs in Σ
	- Examples: $x \ge 0$, $x + y \le 2$,....
- **F** J-literal:
	- \blacksquare $\mathcal T$ -atom or its negation
	- $x + y \leq 2, \neg(x + y \leq 2), ...$

■ $φ = x ≥ 0 ∧ ¬(x + y ≤ 2 ∨ x + y ≥ 6) ∧ (x + y ≥ 1 ∨ x - y ≥ 4)$

- **-formula:**
	- **Predicate logic formula consisting of T-literals** and logical connectives, and quantifiers.

Models within a Theory **¹⁵**

- Model in Predicate Logic
	- **Defines domain**
	- Value for free variables
	- Concrete interpretation of functions and predicates
- Model in Predicate Logic using Theories?
	- Value of free variables

A model M within a theory T is therefore an assignment of all free variables to a constant in Σ .

¹⁶ Models within a Theory

- **Example: consider the formula** φ **in** T_{LIA} $\bullet \varphi := (x + y > 0) \wedge (x = 0)$
- **Give a model for** φ **in** \mathcal{T}_{LIA} **?**

■ E.g.,
$$
M_0 = \{x \to 5, y \to 1\}
$$

■ $M_1 = \{x \to 0, y \to 1\}$

T -Satisfiability, T -validity, T -Equivalence

- Only models satisfying axioms are relevant
- → "Satisfiability *modulo* (='with respect to') theories"

T -Satisfiability

A formula φ is τ -satisfiable, if and only if there exists is a model M within T (satisfying all its axioms) that satisfies φ .

• **Violet:** Models Satisfying Formula in Question

Not -Satisfiable

¹⁹ Models within a Theory

- **Example: consider the formula** φ **in** T_{IIA}
	- $\bullet \varphi := (x + y > 0) \wedge (x = 0)$
- **Give a satisfying and a falsifying model for** φ **in** T_{IIA} **?**

- Falsifying model: $M_f = \{x \rightarrow 5, y \rightarrow 1\}$
- Satisfying model: $M_s = \{x \to 0, y \to 1\}$

A formula φ is $\mathcal T$ -valid, if and only if all models within $\mathcal T$ satisfy φ .

• **Violet:** Models Satisfying Formula in Question

Not T-Valid

- Similar: Only consider models that satisfy all axioms
	- Models not satisfying (at least) one axiom: Irrelevant Model!

Two formulas φ and ψ are τ -equivalent, if and only if they evaluate to ture for the exact same models in T .

Outline

- What are Theories?
	- **•** Definition
	- **Example Theories:** T_E and T_{EUF}
- Notations and Concepts
	- **•** $\mathcal T$ -Terms, $\mathcal T$ -Atoms, $\mathcal T$ -Literals and $\mathcal T$ -Formulas
	- **•** $\mathcal T$ -Satisfiability, $\mathcal T$ -Validity, $\mathcal T$ -Equivalence
- **Implementation of SMT Solvers**
	- Eager Encoding
	- **Example 25 Lazy Encoding**

²³ Implementations of SMT Solvers

- Eager Encoding
	- **Equisatisfiable propositional formula**

- Adds all constraints that could be needed at once
- SAT Solver

Eager Encoding for Formulas in $\mathcal{T}_{E I F}$

Ackermann's Reduction **²⁵**

Input: Formula ϕ _{EUF} in T_{EUF} Output: Formula ϕ_F in T_F

- Replace each function instance via a fresh variable
	- **•** $f(x)$ we f_x
	- **•** Form formula $\widehat{\boldsymbol{\phi}}$ **EUF**

■ For all function instances, add functional-consistency constraints

- $\bullet (x = y) \rightarrow (f_x = f_y)$
- **Form formula** ϕ_{FC}
- \bullet ϕ _E = ϕ _{FC} \land $\widehat{\phi}$ **EUF**

²⁶ Example of Ackermann's Reduction

$$
\blacktriangleright \phi_{EUF} := (f(a) = f(b)) \land \lnot (f(b) = f(c))
$$

1.
$$
\hat{\phi}_{EUF} := (f_a = f_b) \wedge \neg (f_b = f_c)
$$

2.
$$
f: a, b, c
$$

\n
$$
\phi_{FC} := ((a = b) \rightarrow (f_a = f_b)) \land ((b = c) \rightarrow (f_b = f_c)) \land ((a = c) \rightarrow (f_a = f_c))
$$

3. $\phi_E = \phi_{FC} \wedge \hat{\phi}$ EUF

²⁷ Example of Ackermann's Reduction

$$
\varphi_{EUF} \quad := \quad f(g(x)) = f(y) \ \lor \ (z = g(y) \land z \neq f(z))
$$

$$
\varphi_{FC} := (x = y \to g_x = g_y) \wedge
$$

\n
$$
(g_x = y \to f_{gx} = f_y) \wedge
$$

\n
$$
(g_x = z \to f_{gx} = f_z) \wedge
$$

\n
$$
(y = z \to f_y = f_z)
$$

\n
$$
\hat{\varphi}_{EUF} := f_{gx} = f_y \vee (z = g_y \wedge z \neq f_z)
$$

\n
$$
\varphi_E := \hat{\varphi}_{EUF} \wedge \varphi_{FC}
$$

²⁸ Example of Ackermann's Reduction

$$
\varphi_{EUF} \quad := \quad f(x,y) = f(y,z) \ \lor \ (z = f(y,z) \land f(x,x) \neq f(x,y))
$$

$$
\varphi_{FC} := (x = y \land y = z \to f_{xy} = f_{yz}) \land
$$

\n
$$
(x = x \land y = x \to f_{xy} = f_{xx}) \land
$$

\n
$$
(y = x \land z = x \to f_{yz} = f_{xx})
$$

\n
$$
\hat{\varphi}_{EUF} := f_{xy} = f_{yz} \lor (z = f_{yz} \land f_{xx} \neq f_{xy})
$$

\n
$$
\varphi_E := \hat{\varphi}_{EUF} \land \varphi_{FC}
$$

Eager Encoding for Formulas in \mathcal{T}_{EUF}

³⁰ Graph-Based Reduction

- Step 1: Draw a non-polar equality graph
	- Node per variable
	- Edge per (dis)equality
- Step 2: Make graph chordal
	- No cycles size > 3

³¹ Graph-Based Reduction

- Step 3: Introduce fresh propositional variable per equation
	- $a = b$ we $e_{a=b}$
	- Order! (To ensure symmetry) $b = a \rightsquigarrow e_{a=b}$
- **E** Step 4: For each triangle (i, j, k) :
	- Add transitivity constraints

$$
(e_{i=j} \land e_{j=k} \rightarrow e_{i=k}) \land (e_{i=j} \land e_{i=k} \rightarrow e_{j=k}) \land (e_{i=k} \land e_{j=k} \rightarrow e_{i=j})
$$

■ Step 5: $\phi_{prop} = \phi_{TC} \wedge \hat{\phi}$ \overline{E}

³² Example 1. Graph-Based Reduction

$$
\phi_E := a = b \land b = c \land c = d \land d = a
$$

$$
\hat{\phi}_E := e_{ab} \wedge e_{bc} \wedge e_{cd} \wedge \neg e_{ad}
$$

$$
\phi_{prop} := \phi_{TC} \wedge \phi_E
$$

³³ Example 3. Graph-Based Reduction

$$
\phi_E := a = b \land b \neq c \to \neg (c \neq d \lor d = e \land e = f)
$$

$$
\phi_{prop} := e_{ab} \land \neg e_{bc} \rightarrow \neg (\neg e_{cd} \lor e_{de} \land e_{ef})
$$

Eager Encoding for Formulas in \mathcal{T}_{EUF}

Outline

- What are Theories?
	- **•** Definition
	- **Example Theories:** T_E and T_{EUF}
- Notations and Concepts
	- **•** $\mathcal T$ -Terms, $\mathcal T$ -Atoms, $\mathcal T$ -Literals and $\mathcal T$ -Formulas
	- **•** $\mathcal T$ -Satisfiability, $\mathcal T$ -Validity, $\mathcal T$ -Equivalence
- **Implementation of SMT Solvers**
	- **Eager Encoding**
	- **Example 25 Lazy Encoding**

Lazy Encoding

Lazy Encoding

Lazy Encoding

Theory Solver for T_{IF}

■ Theory solver takes conjunctions of theory literals as input

- **Equalities** ($t_1 = t_2$)
- Disequalities $(t_1 \neq t_2)$
- **Terms** t_i
	- Constants
		- \blacksquare a, b, c, d, ...
	- **Uninterpreted Function instance**
		- \blacksquare $f(a)$, $g(b)$, $h(c, d)$, ...

Congruence-Closure Algorithm

- 1. For every equality, create a congruence class
	- **E.g.** $t_1 = t_2$: create class for t_1, t_2
- 2. Create a singleton class for every term that only appears in disequalites
- 3. Merge clases:
	- Shared term between classes: Merge classes! (repeat)
	- *t_i, t_j from same class: Merge classes of* $f(t_i)$ *,* $f(t_j)$ *(repeat)*
	- No merging possible anymore, go to step 4
- 4. Check Disequalities $t_k \neq t_l$
	- t_k , t_l in same class: **UNSAT!**
	- Otherwise: **SAT!**

Example 1. CC-Algorithm

$$
\bullet \varphi := x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land f(x_1) \neq f(x_3)
$$

 $\{x_1, x_2\}, \{x_2, x_3\}, \{x_4, x_5\}, \{f(x_1)\}, \{f(x_3)\}\$ $\mathbb{E}\{x_1, x_2, x_3\}, \{x_4, x_5\}, \{f(x_1)\}, \{f(x_3)\}\$ $\mathbb{E}\{x_1, x_2, x_3\}, \{x_4, x_5\}, \{f(x_1), f(x_2)\}\$

■ Check: $f(x_1) \neq f(x_3)$: both are in the same class \rightarrow φ is $\bm{T}_{\bm{F}\bm{H}\bm{F}}$ -UNSAT

Example 2. CC-Algorithm

 $\bullet \varphi := x = f(y) \wedge y = f(u) \wedge u = v \wedge v = z \wedge v = f(y) \wedge f(x) \neq f(z)$

- $\{x, f(y)\}, \{y, f(u)\}, \{u, v\}, \{v, z\}, \{v, f(y)\}, \{f(x)\}, \{f(z)\}\$
- $\{x, f(y), v\}, \{y, f(u)\}, \{u, v, z\}, \{f(x)\}, \{f(y)\}\$
- $\{x, y, z, f(y)\}, \{y, f(u)\}, \{f(x)\}, \{f(z)\}\$
- $\mathbf{F}\{x, y, z, f(y)\}, \{y, f(u)\}, \{f(x), f(z)\}\$
- $\mathbf{F}\{x, y, z, f(y), f(u)\}, \{f(x), f(z)\}\$
- $\mathbf{F} \{x, y, z, f(y), f(u), f(x), f(z)\}\$

■ Check: $f(x) \neq f(z)$ both are in the same class $\rightarrow \varphi$ is \mathcal{T}_{EUF} -UNSAT

Thank You

43

https://xkcd.com/1033/