Logic and Computability

Topic 1: Theories in Predicate Logic –

Lazy Encoding

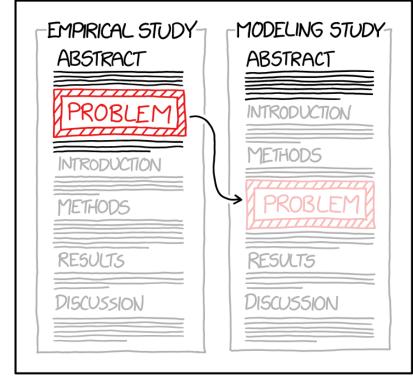
Topic 2: Symbolic Encoding

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at



A MATHEMATICAL MODEL IS A POWERFUL TOOL FOR TAKING HARD PROBLEMS AND MOVING THEM TO THE METHODS SECTION.

Plan for Today

- Part 1 Lazy Encoding / DPLL(T)
 - Recap: Theories in Predicate Logic
 - Recap: Lazy Encoding and Congruence Closure
 - Simplified Version of DPLL(T)
 - Discuss via example

- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Learning Outcomes

After this lecture...

- 1. students can explain the simplified version of DPLL(T), especially the interaction of SAT solver and theory solver.
- 2. students can apply the simplified version of DPPL(T) to decide the satisfiability of formulas in \mathcal{T}_{UFE} .

Recap - Definition of a Theory

Definition of a First-Order Theory T:

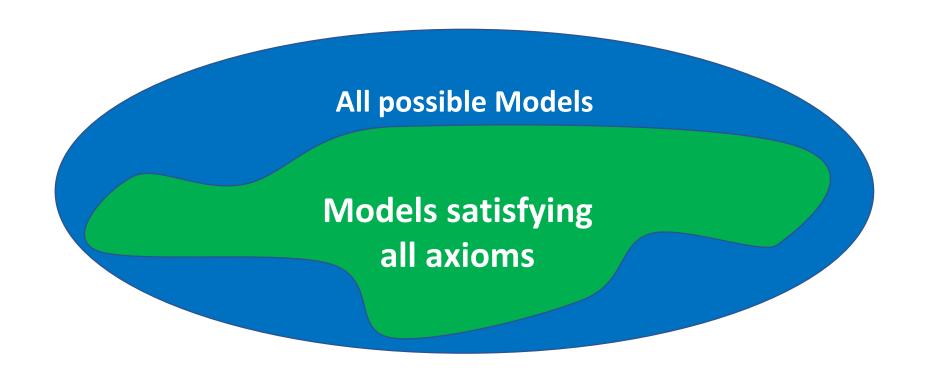
- Signature Σ
 - Defines the set of constants, predicate and function symbols
- Set of Axioms A
 - Gives meaning to the predicate and function symbols

Example: Theory of Lineare Integer Arithmetic \mathcal{T}_{LIA} :

- $\Sigma_{\text{LIA}} := \mathbb{Z} \cup \{+, -\} \cup \{=, \neq <, \leq, >, \geq\}$
- \mathcal{A}_{LIA} : defines the usual meaning to all symbols
 - E.g., The function + is interpreted as the addition function, e.g.
 - **...**
 - $-0+0 \to 0$
 - 0+1 → 1....

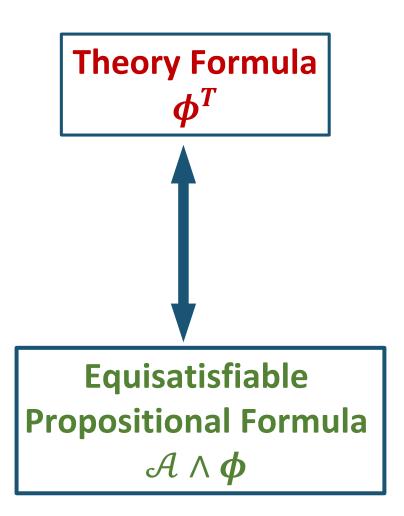
Recap: \mathcal{T} -Satisfiability, \mathcal{T} -validity, \mathcal{T} -Equivalence

- Only models satisfying axioms are relevant
- → "Satisfiability *modulo* (='with respect to') theories"



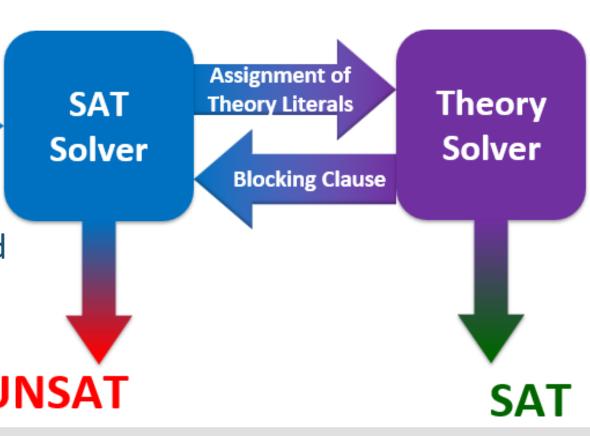
Recap - Implementations of SMT Solvers

- Eager Encoding
 - Equisatisfiable propositional formula
 - Adds all constraints that could be needed at once
 - SAT Solver

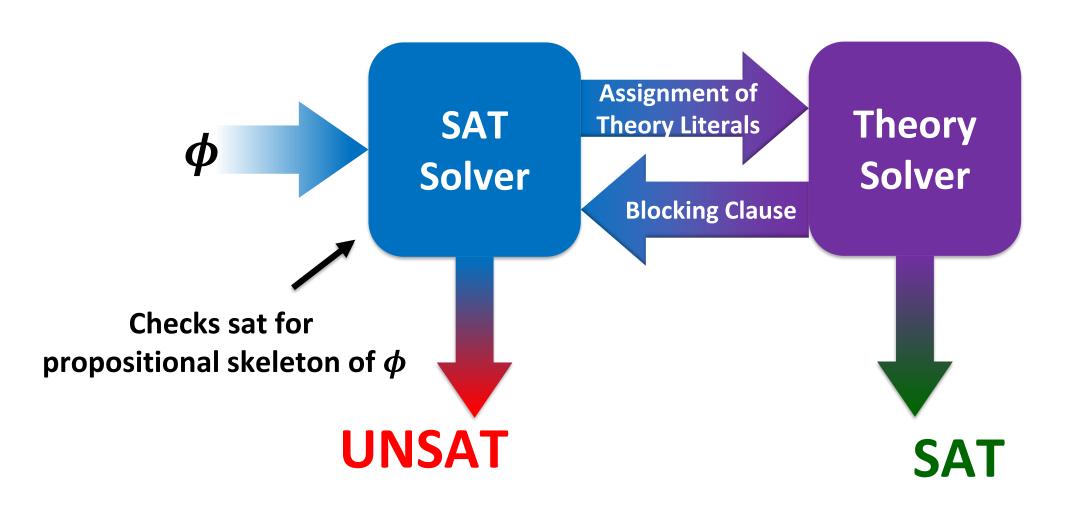


Recap - Implementations of SMT Solvers

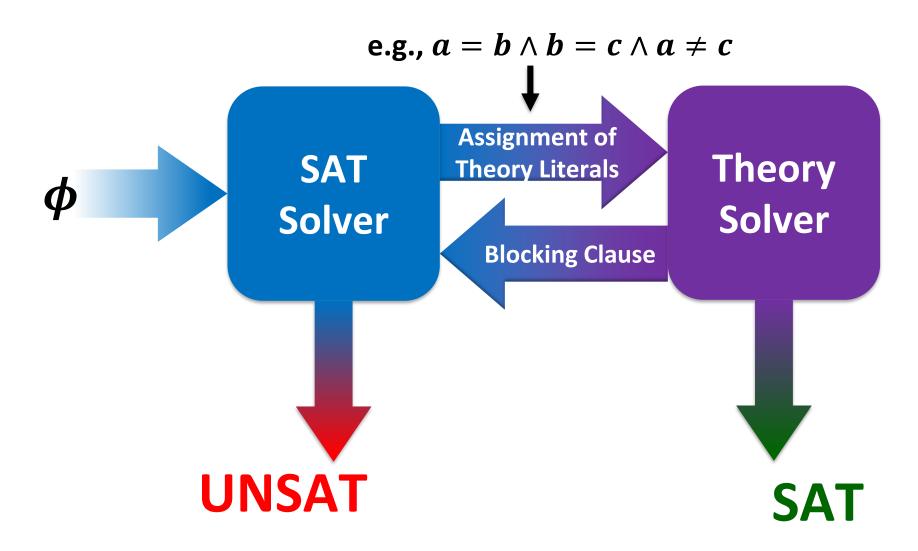
- Eager Encoding
 - Equisatisfiable propositional formula
 - Adds all constraints that could be needed at once
 - SAT Solver
- Lazy Encoding
 - SAT Solver and Theory Solver
 - Add constrains only when needed



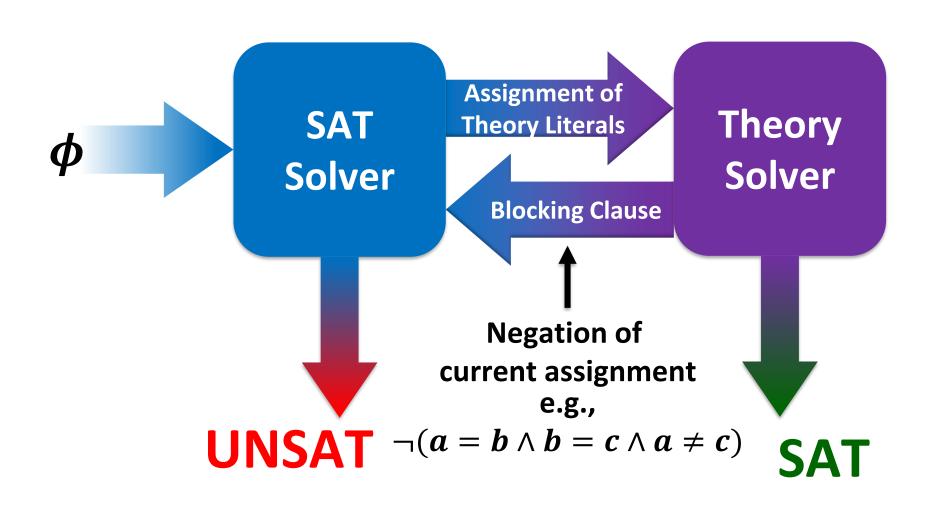
Recap - Lazy Encoding



Recap - Lazy Encoding



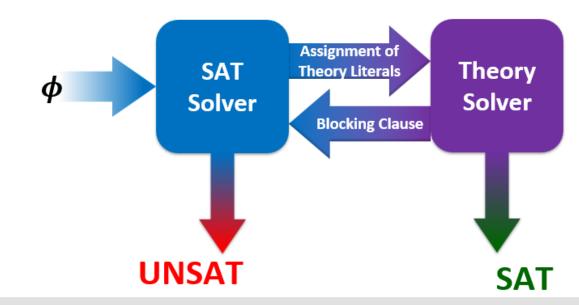
Recap - Lazy Encoding



Recap – Theory Solver for $\mathcal{T}_{\mathrm{UF}E}$

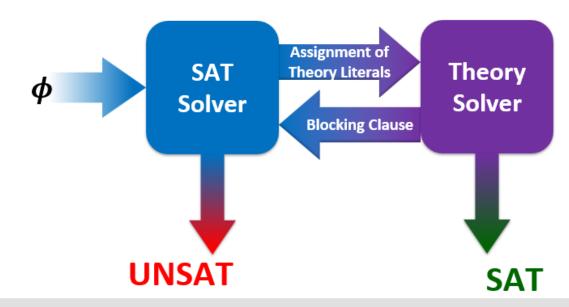
Congruence Closure Algorithm

- Takes conjunctions of theory literals as input
 - Equalities (e.g., f(g(a)) = g(b))
 - Disequalities (e.g., $a \neq f(b)$)
- Checks whether assignment to literals is consistent with theory
 - e.g., a = b, b = c, $c \neq a$ is \mathcal{T}_{UFE} unsat



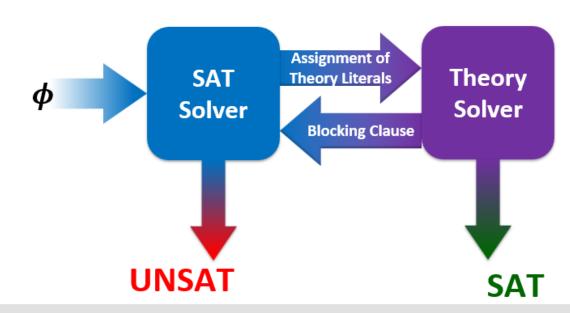
Plan for Today

- We did not do an example for lazy encoding yet
 - → Plan for today: Examples ©

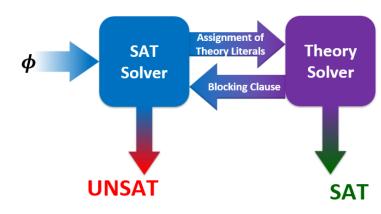


Plan for Today

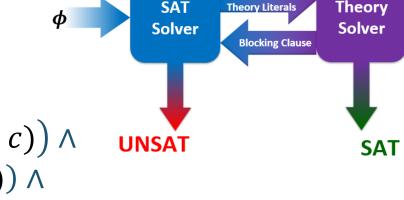
- We did not do an example for lazy encoding yet
 - → Plan for today: Examples ©
- Deciding Satisfiability of Formulas in \mathcal{T}_{UFE} using (a simplified version of) DPLL(T)
 - Execute **DPLL with theory literals**
 - Use Congrence Closure to check assignment of theory literals



Use the simple version of DPLL(T) to find satisfying assignment for φ within \mathcal{T}_{UFE} (if one exists).



$$\varphi = ((f(g(a)) = b) \lor (f(b) = a)) \land ((f(g(a)) \neq b) \lor (f(b) = c)) \land ((f(g(a)) = b) \lor (f(a) \neq b)) \land ((f(b) \neq a) \lor (f(b) = c)) \land ((f(b) = c) \lor (f(a) = b)) \land ((f(b) \neq c) \lor (f(c) \neq a)) \land ((f(a) \neq b) \lor (f(c) \neq a))$$



$$\varphi = ((f(g(a)) = b) \lor (f(b) = a)) \land ((f(g(a)) \neq b) \lor (f(b) = c)) \land$$

$$((f(g(a)) = b) \lor (f(a) \neq b)) \land ((f(b) \neq a) \lor (f(b) = c)) \land$$

$$((f(b) = c) \lor (f(a) = b)) \land ((f(b) \neq c) \lor (f(c) \neq a)) \land ((f(a) \neq b) \lor (f(c) \neq a))$$

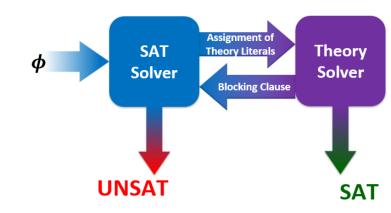
Step 1: Assign propositional variables to theory literals

$$e_0 \Leftrightarrow (f(g(a)) = b)$$
 $e_3 \Leftrightarrow (f(a) = b)$
 $e_1 \Leftrightarrow (f(b) = a)$ $e_4 \Leftrightarrow (f(c) = a)$
 $e_2 \Leftrightarrow (f(b) = c)$

• Step 2: Compute propositional skeleton $\hat{\varphi}$

$$\hat{\varphi} = (e_0 \lor e_1) \land (\neg e_0 \lor e_2) \land (e_0 \lor \neg e_3) \land (\neg e_1 \lor e_2) \land (e_2 \lor e_3) \land (\neg e_2 \lor e_4) \land (\neg e_3 \lor \neg e_4)$$

$$\hat{\varphi} = (e_0 \lor e_1) \land (\neg e_0 \lor e_2) \land (e_0 \lor \neg e_3) \land (\neg e_1 \lor e_2) \land (e_2 \lor e_3) \land (\neg e_2 \lor e_4) \land (\neg e_3 \lor \neg e_4)$$



• Step 3: Use SAT Solver to find satisfying Model for $\hat{\varphi}$ (if one exists)

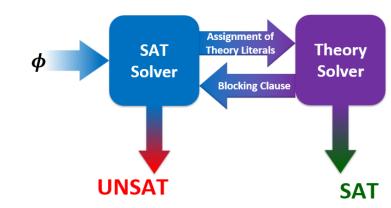
 $\hat{\varphi} = (e_0 \vee e_1) \wedge (\neg e_0 \vee e_2) \wedge (e_0 \vee \neg e_3) \wedge (\neg e_1 \vee e_2) \wedge (e_2 \vee e_3) \wedge (\neg e_2 \vee e_4) \wedge (\neg e_3 \vee \neg e_4)$

Decision heuristic: alphabetical order starting with the **negative** phase

Step	1	2	3	4	5	6	7
Dec. Level							
Assignment							
1: { <i>e</i> ₀ , <i>e</i> ₁ }							
2: $\{\neg e_0, e_2\}$							
$3:\{e_0,\neg e_3\}$							
4: $\{\neg e_1, e_2\}$							
5: { <i>e</i> ₂ , <i>e</i> ₃ }							
6: $\{\neg e_2, e_4\}$							
7: $\{ \neg e_3, \neg e_4 \}$							
LC 1							
LC 2							
ВСР							
Pure Literal							
Decision							

 $\hat{\varphi} = (e_0 \lor e_1) \land (\neg e_0 \lor e_2) \land (e_0 \lor \neg e_3) \land (\neg e_1 \lor e_2) \land (e_2 \lor e_3) \land (\neg e_2 \lor e_4) \land (\neg e_3 \lor \neg e_4)$ Decision heuristic: alphabetical order starting with the **negative** phase

Step	1	2	3	4	5	6
Decision Level	0	1	1	1	1	1
Assignment	-	$\neg e_0$	$\neg e_0, e_1$	$\neg e_0, e_1, e_2$		
Cl. 1: e_0, e_1	e_{0}, e_{1}	e_1	✓	✓	✓	✓
Cl. 2: $\neg e_0, e_2$	$\neg e_0, e_2$	✓	✓	✓	✓	✓
Cl. 3: $e_0, \neg e_3$	$e_0, \neg e_3$	$\neg e_3$	$\neg e_3$	$\neg e_3$	✓	✓
Cl. 4: $\neg e_1, e_2$	$\neg e_1, e_2$	$\neg e_1, e_2$	e_2	✓	✓	✓
Cl. 5: e_2, e_3	e_{2}, e_{3}	e_{2}, e_{3}	e_{2}, e_{3}	✓	✓	✓
Cl. 6: $\neg e_2, e_4$	$\neg e_2, e_4$	$\neg e_2, e_4$	$\neg e_2, e_4$	e_4	e_4	✓
Cl. 7: $\neg e_3, \neg e_4$	✓	✓				
BCP	-	e_1	e_2	$\neg e_3$	e_4	-
PL	-	-	-	-	-	-
Decision	$\neg e_0$	-	-	-	-	SAT

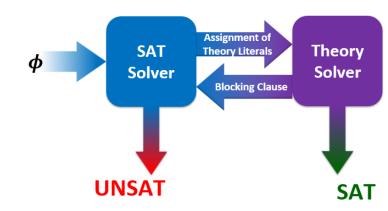


- DPLL returned satisfying assignment from SAT Solver
 - $M_{prop} = \{e_0 = F, e_1 = T, e_2 = T, e_3 = F, e_4 = T\}$
 - $M_{prop} \models \hat{\varphi}$

- Step 4: Check if assignment of theory literals is consistent with theory
 - Translate back to theory literals using

$$e_0 \Leftrightarrow (f(g(a)) = b)$$
 $e_3 \Leftrightarrow (f(a) = b)$
 $e_1 \Leftrightarrow (f(b) = a)$ $e_4 \Leftrightarrow (f(c) = a)$
 $e_2 \Leftrightarrow (f(b) = c)$

•
$$M_{T_{UFF}} := \{ (f(g(a)) \neq b), (f(b) = a), (f(b) = c), (f(a) \neq b), (f(c) = a) \}$$



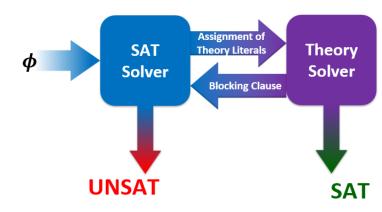
- Execute Congruence Closure Algorithm
 - $M_{T_{UFE}}$: = { $(f(g(a)) \neq b)$, (f(b) = a), (f(b) = c), $(f(a) \neq b)$, (f(c) = a)} {f(b), a}, {f(b), c}, {f(c), a}, {f(g(a))}, {b}, {f(a)} {a, c, f(b)}, {f(c), a}, {f(g(a))}, {b}, {f(a)} {a, c, f(b), f(c)}, {f(g(a))}, {b}, {f(a)}

• T_{UFE} -Satisfiable since f(g(a)) and b as well as f(a) and b are in different equivalence classes.

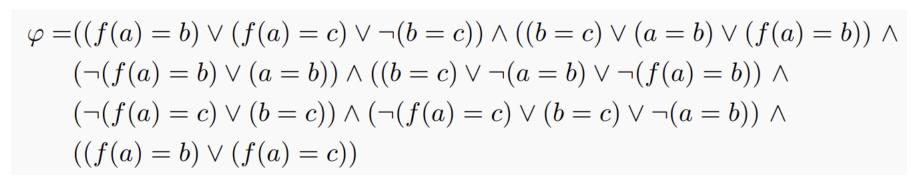
 $\{a, c, f(a) f(b), f(c)\}, \{f(g(a))\}, \{b\}$

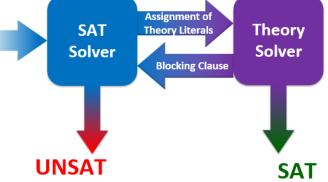
• $\rightarrow M_{\mathcal{T}_{\text{UFE}}}$ is a satisfying assignment for φ . Algorithm terminates with SAT.

Use the simple version of DPLL(T) to find satisfying assignment for φ within \mathcal{T}_{UFE} (if one exists).



$$\varphi = ((f(a) = b) \lor (f(a) = c) \lor \neg(b = c)) \land ((b = c) \lor (a = b) \lor (f(a) = b)) \land (\neg(f(a) = b) \lor (a = b)) \land ((b = c) \lor \neg(a = b) \lor \neg(f(a) = b)) \land (\neg(f(a) = c) \lor (b = c)) \land (\neg(f(a) = c) \lor (f(a) = c)) \land ((f(a) = b) \lor (f(a) = c))$$



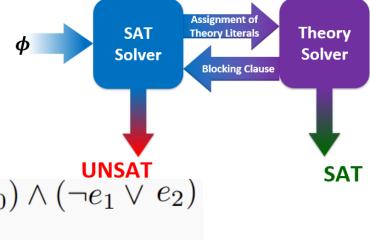


Step 1: Assign propositional variables to theory literals

- $e_0 \Leftrightarrow (f(a) = b)$ $e_2 \Leftrightarrow (b = c)$
- $e_1 \Leftrightarrow (f(a) = c)$ $e_3 \Leftrightarrow (a = b)$

• Step 2: Compute propositional skeleton $\hat{\varphi}$

$$\hat{\varphi} = (e_0 \lor e_1 \lor \neg e_2) \land (e_2 \lor e_3 \lor e_0) \land (\neg e_0 \lor e_3) \land (e_2 \lor \neg e_3 \lor \neg e_0) \land (\neg e_1 \lor e_2) \land (\neg e_1 \lor e_2 \lor \neg e_3) \land (e_0 \lor e_1)$$



$$\hat{\varphi} = (e_0 \lor e_1 \lor \neg e_2) \land (e_2 \lor e_3 \lor e_0) \land (\neg e_0 \lor e_3) \land (e_2 \lor \neg e_3 \lor \neg e_0) \land (\neg e_1 \lor e_2) \land (\neg e_1 \lor e_2 \lor \neg e_3) \land (e_0 \lor e_1)$$

• Step 3: Use SAT Solver to find satisfying Model for $\hat{\varphi}$ (if one exists)

$$\hat{\varphi} = (e_0 \lor e_1 \lor \neg e_2) \land (\neg e_1 \lor e_2 \lor e_3) \land (e_2 \lor e_3 \lor e_0) \land (\neg e_0 \lor e_3) \land (e_0 \lor e_1 \lor \neg e_3) \land (e_2 \lor \neg e_3 \lor \neg e_0)$$

 $\mathcal{M}_{\mathcal{T}_{EUF}} := \{ (f(a) \neq b), (f(a) = c), (b = c) \}$

Decision heuristic: alphabetical order starting with the **negative** phase

Step	1	2	3	4
Decision Level	0	1	1	1
Assignment	-	$\neg e_0$	$\neg e_0, e_1$	$\neg e_0, e_1, e_2$
Cl. 1: $e_0, e_1, \neg e_2$	$e_0, e_1, \neg e_2$	$e_1, \neg e_2$	√	✓
Cl. 2: e_2, e_3, e_0	e_2, e_3, e_0	e_2,e_3	e_2, e_3	✓
Cl. 3: $\neg e_0, e_3$	$\neg e_0, e_3$	✓	√	✓
Cl. 4: $e_2, \neg e_3, \neg e_0$	$e_2, \neg e_3, \neg e_0$	✓	√	✓
Cl. 5: $\neg e_1, e_2$	$\neg e_1, e_2$	$\neg e_1, e_2$	e_2	✓
Cl. 6: $\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$e_2, \neg e_3$	✓
Cl. 7: e_0, e_1	e_0, e_1	e_1	✓	✓
BCP	ı	e_1	e_2	-
PL	-	-	-	-
Decision	$\neg e_0$	-	_	_

- **Theory** Solver Solver **Blocking Clause UNSAT**
- Step 4: Check if assignment of theory literals is consister
 - Translate back to theory literals using

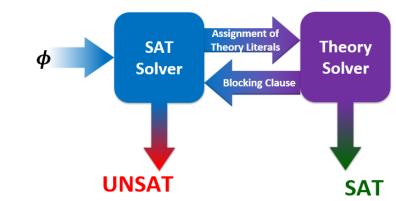
•
$$e_0 \Leftrightarrow (f(a) = b)$$
 • $e_2 \Leftrightarrow (b = c)$

•
$$e_2 \Leftrightarrow (b=c)$$

•
$$e_1 \Leftrightarrow (f(a) = c)$$
 • $e_3 \Leftrightarrow (a = b)$

•
$$e_3 \Leftrightarrow (a=b)$$

$$\mathfrak{M}_{\mathfrak{I}_{EUF}} := \{ (f(a) \neq b), (f(a) = c), (b = c) \}$$



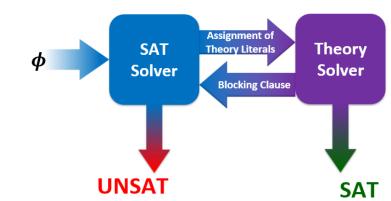
- Execute Congruence Closure Algorithm
 - $\mathcal{M}_{\mathcal{T}_{EUF}} := \{ (f(a) \neq b), (f(a) = c), (b = c) \}$

$$\{f(a), c\}, \{b, c\}$$

 $\{b, c, f(a)\}$

 $\mathcal{M}_{\mathcal{T}_{EUF}}$ is not consistent with the theory, because of: $(f(a) \neq b)$ \Rightarrow We need to add a blocking clause from $\mathcal{M}_{\mathcal{T}_{EUF}}$:

$$BC_8 := e_0 \vee \neg e_1 \vee \neg e_2$$



- Execute Congruence Closure Algorithm
 - $\mathcal{M}_{\mathcal{T}_{EUF}} := \{ (f(a) \neq b), (f(a) = c), (b = c) \}$

$$\{f(a), c\}, \{b, c\}$$

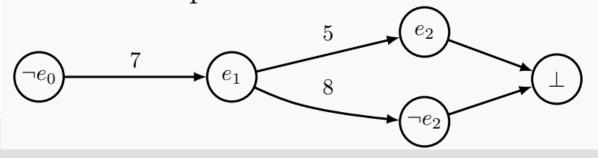
 $\{b, c, f(a)\}$

 $\mathcal{M}_{\mathcal{T}_{EUF}}$ is not consistent with the theory, because of: $(f(a) \neq b)$ \Rightarrow We need to add a blocking clause from $\mathcal{M}_{\mathcal{T}_{EUF}}$:

$$BC_8 := e_0 \vee \neg e_1 \vee \neg e_2$$

Step	5	6	7	8
Decision Level	0	1	1	1
Assignment	-	$\neg e_0$	$\neg e_0, e_1$	$\neg e_0, e_1, \neg e_2$
Cl. 1: $e_0, e_1, \neg e_2$	$e_0, e_1, \neg e_2$	$e_1, \neg e_2$	✓	✓
Cl. 2: e_2, e_3, e_0	e_2, e_3, e_0	e_2, e_3	e_2, e_3	e_3
Cl. 3: $\neg e_0, e_3$	$\neg e_0, e_3$	✓	✓	✓
Cl. 4: $e_2, \neg e_3, \neg e_0$	$e_2, \neg e_3, \neg e_0$	✓	✓	✓
Cl. 5: $\neg e_1, e_2$	$\neg e_1, e_2$	$\neg e_1, e_2$	e_2	{} X
Cl. 6: $\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$e_2, \neg e_3$	$\neg e_3$
Cl. 7: e_0, e_1	e_0, e_1	e_1	✓	✓
Blocking Cl. 8: $e_0, \neg e_1, \neg e_2$	$e_0, \neg e_1, \neg e_2$	$\neg e_1, \neg e_2$	$\neg e_2$	✓
BCP	-	e_1	$\neg e_2$	-
PL	-	-	-	-
Decision	$\neg e_0$	-	-	-

Conflict in step 8



$$\frac{5. \neg e_1 \lor e_2}{\neg e_1 \lor e_0} \quad \frac{8. e_0 \lor \neg e_1 \lor \neg e_2}{\neg e_1 \lor e_0}$$

7. $e_0 \lor e_1$

Assignment of Theory Literals

Blocking Clause

Theory

Solver

SAT

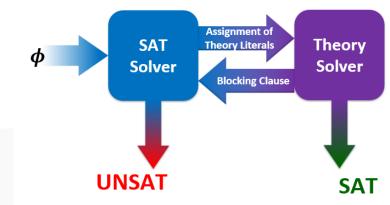
SAT

Solver

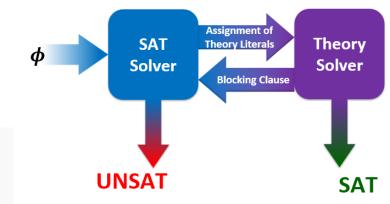
UNSAT

 e_0

Step	9	10	11	12
Decision Level	0	0	0	0
Assignment	-	e_0	e_0, e_3	e_0, e_3, e_2
Cl. 1: $e_0, e_1, \neg e_2$	$e_0, e_1, \neg e_2$	✓	✓	✓
Cl. 2: e_2, e_3, e_0	e_2, e_3, e_0	✓	✓	✓
Cl. 3: $\neg e_0, e_3$	$\neg e_0, e_3$	e_3	✓	✓
Cl. 4: $e_2, \neg e_3, \neg e_0$	$e_2, \neg e_3, \neg e_0$	$e_2, \neg e_3$	e_2	✓
Cl. 5: $\neg e_1, e_2$	$\neg e_1, e_2$	$\neg e_1, e_2$	$\neg e_1, e_2$	✓
Cl. 6: $\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2$	✓
Cl. 7: e_0, e_1	e_0, e_1	✓	✓	✓
Cl. 8: $e_0, \neg e_1, \neg e_2$	$e_0, \neg e_1, \neg e_2$	✓	✓	✓
Cl. 9: e_0	e_0	✓	✓	✓
BCP	e_0	e_3	e_2	-
PL	-	-	-	-
Decision	-	-	-	SAT



Step	9	10	11	12
Decision Level	0	0	0	0
Assignment	-	e_0	e_0, e_3	e_0, e_3, e_2
Cl. 1: $e_0, e_1, \neg e_2$	$e_0, e_1, \neg e_2$	✓	✓	✓
Cl. 2: e_2, e_3, e_0	e_2, e_3, e_0	✓	✓	✓
Cl. 3: $\neg e_0, e_3$	$\neg e_0, e_3$	e_3	✓	✓
Cl. 4: $e_2, \neg e_3, \neg e_0$	$e_2, \neg e_3, \neg e_0$	$e_2, \neg e_3$	e_2	✓
Cl. 5: $\neg e_1, e_2$	$\neg e_1, e_2$	$\neg e_1, e_2$	$\neg e_1, e_2$	✓
Cl. 6: $\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2, \neg e_3$	$\neg e_1, e_2$	✓
Cl. 7: e_0, e_1	e_0, e_1	✓	✓	✓
Cl. 8: $e_0, \neg e_1, \neg e_2$	$e_0, \neg e_1, \neg e_2$	✓	✓	✓
Cl. 9: e_0	e_0	✓	✓	✓
BCP	e_0	e_3	e_2	-
PL	-	-	-	-
Decision	-	-	-	SAT



Assignment of Theory Literals Solver

Blocking Clause

UNSAT

SAT

Execute Congruence Closure Algorithm

$$\mathcal{M}_{\mathfrak{I}_{EUF}}:=(f(a)=b)\wedge(b=c)\wedge(a=b)$$
 Check if the assignment is consistent with the theory:
$$\{f(a),b\},\{b,c\},\{a,b\}$$

$$\{a,b,c,f(a)\}$$

- T_{UFE} -Satisfiable since there are no disequalities that could be violated.
- $\rightarrow M_{\mathcal{T}_{\text{UFE}}}$ is a satisfying assignment for φ . Algorithm terminates with SAT.

Thank You

