TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Logic and Computability

Topic 1: Theories in Predicate Logic —
La Zy Enco d I N g EMPRICAL STUDY-, - MODEUNG STUDY
ABSTRACT ABSTRACT

Topic 2: Symbolic Encoding PROBLEMFl_#

—

Bettina Kénighofer
bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at

A MATHEMATICAL MODEL \S A POWERFUL
TOOL FOR TAKING HARD PROBLEMS AND
MOVING THEM TO THE METHODS SECTION.

https://xkcd.com/2323/

= Plan for Today

= Part 1- Lazy Encoding / DPLL(T)
= Recap: Theories in Predicate Logic
= Recap: Lazy Encoding and Congruence Closure
= Simplified Version of DPLL(T)
= Discuss via example

= Part 2 - Symbolic Encoding
" Transition systems
= Symbolic representation of sets of states
= Symbolic representation of the transition relation
= Symbolic encodings of arbitrary sets
= Set operations on symbolically encoded sets

Learning Outcomes

After this lecture...

1. students can explain the simplified version of DPLL(T),
especially the interaction of SAT solver and theory solver.

2. students can apply the simplified version of DPPL(T) to decide
the satisfiability of formulas in T rg.

N Recap - Definition of a Theory

Definition of a First-Order Theory T':

= Signature X
= Defines the set of constants, predicate and function symbols

= Set of Axioms A
= Gives meaning to the predicate and function symbols

Example: Theory of Lineare Integer Arithmetic Tyx:
u ZLIA =7 U {‘l‘, _} U {=,:/: <, S, >, 2}
" Aj;4 : defines the usual meaning to all symbols

= E.g., The function + is interpreted as the addition function, e.g.

= 0+0—>0
= 0+1 2> 1....

LN Recap: J'-Satisfiability, 7'-validity, I"-Equivalence

" Only models satisfying axioms are relevant
= = “Satisfiability modulo (=‘with respect to’) theories”

All possible Models

Models satisfying
all axioms

= Recap - Implementations of SMT Solvers

= Eager Encoding
= Equisatisfiable propositional formula
= Adds all constraints that
could be needed at once
= SAT Solver

Theory Formula

¢T

Equisatisfiable

Propositional Formula
ANP

Recap - Implementations of SMT Solvers

= Eager Encoding
= Equisatisfiable propositional formula
= Adds all constraints that
could be needed at once
= SAT Solver Assignment of

¢ SAT Theory Literals ThEOI’v
= Lazy Encoding Solver Solver

Blocking Clause
= SAT Solver and Theory Solver =
= Add constrains only when needed

UNSAT SAT

Recap - Lazy Encoding

Assignment of

¢ SAT Theory Literals Theory
Solver Solver
B

locking Clause

Checks sat for
propositional skeleton of ¢

UNSAT SAT

Recap - Lazy Encoding

eg,a=bAb=cANa#c

|

Assignment of

¢ SAT Theory Literals Theory
Solver Solver
B

locking Clause

UNSAT SAT

Recap - Lazy Encoding

Assignment of

¢ SAT Theory Literals Theory
Solver Solver
B

locking Clause

I

Negation of

current assignment
e‘g"

UNSAT —(a=bAb=cAa+*c) SAT

= Recap — Theory Solver for Jygg

Congruence Closure Algorithm

= Takes conjunctions of theory literals as input

= Equalities (e.g., f(g(a)) = g(b))
* Disequalities (e.g.,a # f(b))

" Checks whether assignment to literals

Assignment of

is consistent with theory ¢ SSfT Theo O ;hTorv
olver oliver
u e.g., a — b, b — C, C 7& a Blocking Clause

is Jypp unsat

UNSAT SAT

= Plan for Today

= We did not do an example for lazy encoding yet
= - Plan for today: Examples ©

Assignment of

SAT Theory Literals Theo ry
"b Solver Solver

Blocking Clause

UNSAT SAT

= Plan for Today

= We did not do an example for lazy encoding yet
= - Plan for today: Examples ©

* Deciding Satisfiability of Formulas in T ;gg using
(a simplified version of) DPLL(T)
= Execute DPLL with theory literals
= Use Congrence Closure to check

Assignment of

assignment of theory literals b SAT M Theory
Solver Solver

Blocking Clause

UNSAT SAT

= Example y

Use the simple version of DPLL(T) to find satisfying
assignment for @ within T ygg (if one exists). UNSAT SAT

¢ =((f(g@) =b) Vv (f(b)=a)A((f(g(@) #b)V (f(b) =c)) A
((flg(@) =b)v (fla) #b)) A (f(b) #a) V (f(b) =c)) A
(fB) =)V (f(@=b))A((fb) =)V (f(e) #a)) A((f(@) # b) V (f(c) # a))

= Example y

o =((flg@)=bVvFDL) =a) A((f(g@) =b)V(f(b) =c))A unsar SAT
(f@@)=b)v(fla) #b)) AN (f(b) £a) vV (f(b) =c)) A
(D) =)V (F@=b))A((fB) =)V (flc) =a)) A((fa) #b) Vv (f(c) # a))

= Step 1: Assign propositional variables to theory literals

eo © (f(g(a)) =b) e3 e (f(a)=D)
ey < (f(b) = a) e, < (f(c) =a)
e; < (f(b) =c¢)

= Step 2: Compute propositional skeleton @

P =(yVe)N(qeygVe,) AN(egVae3) A(me; Vey) A(ey Ves) A(—e, Vey) A(nezV—ey)

Assignment of

n Exa m ple ® SAT Theo L.iterals Theory

Solver

Solver

O =(egVe)N(neygVey)) AlegV-e3) N(meg Ve, A
(e;Vez) A(—ey Vey) A(—ezV —ey) UNSAT SAT

= Step 3: Use SAT Solver to find satisfying Model for @ (if one exists)

(ﬁ — (80 V 81) /\ (_Ieo V 62) /\ (60 V _Ie3) /\ (—|81 V 32) /\ (32 V 33) /\ (—|62 V 64) /\ (_Ie3 V _Ie4_)
Decision heuristic: alphabetical order starting with the negative phase

Step 1 2 3 4 5 6

Dec. Level

Assignment

1: {eo, el}

2: {_Ie(), 62}

3: {eo, —|83}

4. {—|61, 32}

5: {82) 83}

6: {_Iez, 84}

7: {—|e3, —|€4}

LC1

LC 2

BCP

Pure Literal

Decision

Decision heuristic: alphabetical order starting with the negative phase

Step 1 2 3 4 5 6
Decision Level 0 1 1 1 1 1
Assignment - e —ep.er | meg,er en |0 T2 OO L6,
el €3, €4

Cl. 1: eg, e eg, €1 €1 v v v v
Cl. 2: —eq, ez —eq, €9 v v v v v
ClL 3: ey, es €g, €3 —es —es —e3 v v
Cl. 4: —eq,es —e1, €3 —e1, €9 €9 v v v
Cl. 5: €2, €3 €2, €3 €2, €3 €2, €3 v v v
Cl. 6: €9, €4 —1€9, €4 €9, €4 €9, €4 €4 €4 /
Cl. 7: €3, T1€4 €3, T1€4 —1€3, €4 —1€3, T1€4 €3, €4 v v
BCP - e1 €9 —e3 €4 -
PL - - - - - -
Decision —e(- - - - SAT

= Example -y ..

Solver

= DPLL returned satisfying assignment from SAT Solver
* Myrop ={eg=F,e; =T,e;=T,e3=F, e, =T}

. A4prop F=<ﬁ

UNSAT SAT

= Step 4: Check if assignment of theory literals is consistent with theory
* Translate back to theory literals using
eo © (f(g(@) =b) e3e (f(a)=Dh)

er < (f(b) =a) e, < (f(c) =a)
e, < (f(b) =c¢)

" My,.:={(f(g(@) # b),(f(b) = a),(f(b) = ¢),(f(a) # b),(f(c) = a)}

= Example y

= Execute Congruence Closure Algorithm

UNSAT SAT

" My,.:={(f(g(@) # b),(f(b) = a),(f(B) = ¢),(f(a) # b),(f(c) = a)}

{f(b),a}, {f (D), c}, {f(c), a}, {f (g(@))}, (b}, {f (@)}
{a,c.f(0)}, {f(©)abif(g(@)} (b}, {f(@}
{a,c,f(b), f(0)}, {f(g(@)},{b} {f (@)}
{a,c,f(@) f(b), f ()} {f(g(@))}, {b}

= Typg-Satisfiable since f(g(a)) and b as well as /(a) and b are in different
equivalence classes.

= > My is a satisfying assignment for ¢. Algorithm terminates with SAT.

= Example 2 Y

Solver

Use the simple version of DPLL(T) to find satisfying
assignment for ¢ within I ypg (if one exists). UNSAT SAT

(fla) =)V (f(a) =¢c) V(b =c) A((b=¢)V (a=0b)V(f(a)=D)) A
~(fla) =0)V(a=b)) A((b=c)V(a=0b)V~(fla)=b)) A

~(fla) =)V (b=c)) A(=(f(a) =)V (b=1c)V—(a=D)) A

(f(a) =b) Vv (f(a) =)

gp:

P~~~ o~

ample 2 N

Solver

b) v (fla) =c)Vo(b=c)) A((b=¢c)V(a=Db)V(f(a)=D0)) A
=b)V(e=0)A((b=¢c)V-(a=0)V=(fla)=0)) A
=)V (b=c))A(=(f(a) =c)V (b=¢c)V(a=1D)) A
b) vV (f(a) = c))

UNSAT SAT

= Step 1: Assign propositional variables to theory literals

e e < (f(a)
o e1 < (f(a)

b) o ex & (b=c)
)

e 34 (a=0b)

= Step 2: Compute propositional skeleton @

~

Y = (60 VeV —'62) AN (62 VezV 60) N\ (—leo V 83) N\ (62 V —ez V —'80) AN (—'61 V €2)
A (—ep VeaV—es)A(egVer)

= Example 2 y

Solver

A UNSAT SAT
©=(egVerV-ey)A(eaVesVeg)A(—egVes)A(eaV—eszV—ey) A(—ep V e2)

A (—'61 Ves V —'63) AN (60 V 61)
= Step 3: Use SAT Solver to find satisfying Model for @ (if one exists)

®= (egVeVae)A(ne Ve Ve)A(e,V eV ey A

(_Ieov 83)/\(80V 81V_|€3)/\(82V _Ie3V _Ieo)
Decision heuristic: alphabetical order starting with the negative phase

Step 1 2 3 4
Decision Level 0 1 1 1
Assignment - —eg —ep, €1 | —T€ep,e1, €2
Cl. 1: €0, €1, €2 €p, €1, €2 €1, €2 v v
ClL. 2: €2, €3, € €2, €3, €0 €2, €3 €2, €3 v
Cl. 3: —1€0p, €3 —€0, €3 v v v
Cl. 4: €2, €3, € €2, €3, 1€ v v v
Cl. b5: —€1,€92 —€1,€9 —€1, €9 €9 v
Cl. 6: —1€1, €92, €3 —1€1, €2, €3 —€1, €2, €3 €2, €3 v
Cl 7: €0, €1 €0, €1 €1 v v
BCP - €1 €9 -
PL - - - -
Decision —€Q - - -

Mypyr = 1(f(a) #b),(f(a) = ¢), (b=

Assignment of

= Example 2 » » >

Solver

Solver
Blocking Clause

= Step 4: Check if assignment of theory literals is consister

= Translate back to theory literals using UNSAT SAT

e o< (f(a)
o e1 < (f(a)

« Mgy = 1{(f(a) #b),(f(a) =c),(b=c)}

b) o ex & (b=c)
c) o e3< (a=0)

= Example 2 » R

Solver

= Execute Congruence Closure Algorithm

" Mypyr == 1(f(a) 70),(fla) =¢),(b=c);

{f(a),c}, {b; ¢}
{b,¢, f(a)}

UNSAT SAT

Mg .., is not consistent with the theory, because of: (f(a) # b)
= We need to add a blocking clause from Mg, .
B(Cs :=¢eg V —eq V —esy

Example 2 »

Solver

= Execute Congruence Closure Algorithm UNSAT SAT

" Mypyr == 1(f(a) 70),(fla) =¢),(b=c);

{f(a),c}, {b; ¢}
{b,¢, f(a)}

Mg .., is not consistent with the theory, because of: (f(a) # b)
= We need to add a blocking clause from Mg, .
B(Cs :=¢eg V —eq V —esy

=l Example 2

Assignment of

b SAT Theoliterals Theory
Solver Solver
Blocking Clause
Step 5 6 7 8
Decision Level 0 1 1 1
Assignment - —eg —eg,e1 | —eg,e1, €
ClL 1: eg, €1, mes €o, €1, €9 e1, esy v v UNSAT SAT
ClL 2: eq,e3,eq €2, €3, €0 €9, €3 €s, €3 €3
Cl. 3: —€p, €3 —€p, €3 v v v
Cl. 4: es, —es, —eg €a, €3, 7€y v v v
Cl. 5: €1, €2 €1, €9 —€1, €2 €92 {} X
Cl. 6: —€1, €9, €3 —€1, €2, €3 €1, €92, €3 €2, €3 €3
ClL 7: eg, €1 €0, €1 e1 v v
Blocking Cl. 8: eg, ey, —es | eg, meq, e €1, "€ —e9 v
BCP - €1 €D -
PL - - - -
Decision =€ - - -
Conflict in step 8
s ()
—eg g e ° D. ey Ves 8.e9V —er Ve
—ey1 Ve 7.e9 Vel

€0

= Example 2

Step 9 10 11 12
Decision Level 0 0 0 0
Assignment - € eg,€3 | €g,e3, e
ClL 1: eg, ey, —es €g, €1, €2 v v v
ClL 2: eq,e3,€eq €2, €3, €q v v v
ClL. 3: —€p, €3 —€p, €3 €3 v v
ClL 4: e, —e3,—eqg | es, —es3, —eg €9, T€3 € v
ClL 5: —eq,es —eq, €9 —eq, €9 —e1, €9 v
Cl. 6: —ej,eq,me3 | e, ea, ez | —ep, e, me3 | —eq, es v
CL 7: eg,e1 €o, €1 v v v
Cl 8: €p, €1, €2 €p, €1, €9 v v v
CL 9: eg €0 v v v
BCP €0 €3 €o -
PL - - - -
Decision . - - SAT

SAT
Solver

UNSAT

Assignment of

Theo Literals '

Blocking Clause

Theory
Solver

SAT

= Example 2

Step 9 10 11 12
Decision Level 0 0 0 0
Assignment - € eg,€3 | €g,e3, e
ClL 1: eg, ey, —es €g, €1, €2 v v v
ClL 2: eq,e3,€eq €2, €3, €q v v v
ClL. 3: —€p, €3 —€p, €3 €3 v v
ClL 4: e, —e3,—eqg | es, —es3, —eg €9, T€3 € v
ClL 5: —eq,es —eq, €9 —eq, €9 —e1, €9 v
Cl. 6: —ej,eq,me3 | e, ea, ez | —ep, e, me3 | —eq, es v
CL 7: eg,e1 €o, €1 v v v
Cl 8: €p, €1, €2 €p, €1, €9 v v v
CL 9: eg €0 v v v
BCP €0 €3 €o -
PL - - - -
Decision . - - SAT

SAT
Solver

UNSAT

Assignment of

Theo Literals '

Blocking Clause

Theory
Solver

SAT

Assignment of

ﬂ Exa m ple 2 s SAT The“.m.s Theory

Solver

Solver

= Execute Congruence Closure Algorithm UNSAT SAT

MTEUF = (f((l) — b) /\(bzc)/\ (a’:b)

Check if the assignment is consistent with the theory:

{f(a),0},{b,c}, {a, b}
{a,b,¢c, fa)}

» Jyre-Satisfiable since there are no disequalities that could be violated.

= > My, is asatisfying assignment for ¢. Algorithm terminates with SAT.

Thank YoL

https://xkcd.com/1033/

