
Lecture Notes for

Logic and Computability

Course Number: IND04033UF

Contact

Bettina Könighofer
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
bettina.koenighofer@iaik.tugraz.at

mailto:bettina.koenighofer@iaik.tugraz.at

Table of Contents

8 Satisfiability Modulo Theories 3
8.1 Definitions and Notations . 4

8.1.1 Theory of Equality and Uninterpreted Functions 5
8.2 Eager Encoding . 6
8.3 Lazy Encoding . 11

8.3.1 Congruence Closure - A Theory Solver for TEUF 12

1

8
Satisfiability Modulo Theories

The satisfiability modulo theories (SMT) problem refers to the problem of deter-
mining whether a formula in predicate logic is satisfiable with respect to some the-
ory. A theory specifies the interpretation/meaning of certain predicate and function
symbols. Checking whether a formula in predicate logic is satisfiable with respect
to a theory means that we are not interested in arbitrary models but in models
that interpret the functions and predicates contained in the theory as defined by
the axioms in the theory. Consider the following formula that uses arithmetic:

ϕ := ¬(a ≥ b) ∧ (a+ 1 > b).

We are not interested in models that use a nonstandard interpretation of the sym-
bols <, +, and 1. We only want to consider models that use the well-established
interpretation of those symbols.
There exist several commonly used theories in computer science. For example,
Presburger arithmetic is the theory of natural numbers with addition, more com-
plex theories include the theory of integers or real numbers with arithmetic, and
the theories of data structures such as lists, arrays, or bit vectors.
In this chapter, we discuss the two most commonly used approaches for implement-
ing SMT solvers, namely eager encoding and lazy encoding. In eager encoding, all
axioms of the theory are explicitly incorporated into the input formula. Eager
encoding is not always possible and even if it is, the performance of solvers using
eager encoding is often unacceptable. To avoid the explicit encoding of axioms,
solvers based on lazy encoding use specialized theory solvers in combination with
SAT solvers to decide the satisfiability of formulas within a given theory.

3

4 Chapter 8. Satisfiability Modulo Theories

8.1 Definitions and Notations

A theory in predicate logic consists of two parts:
• A signature Σ, which is a set of constants, functions, and predicate symbols

and
• a set of axioms A that gives meaning to the predicate and function symbols.

In SMT the interpretation defined by A is fixed and corresponds to the common
semantic of the operators.
Definition 8.1 (Theory) A theory is as a pair (Σ;A), where Σ is a signature that
defines the set of constant, function, and predicate symbols used in the theory. The
set of axioms A is a set of closed predicate logic formulas in which only constant,
function, and predicate symbols of Σ appear. We assume the equality symbol =
to be included in every signature.
A formula ϕ in SMT regarding a fixed theory T = (Σ,A) may only consist of
logical connectives, variables, quantifiers and symbols from Σ.
Linear Integer Arithmetic. A first example for a theory is linear integer arith-
metic. The constant symbols of this theory consist of the set Z. The function
symbols are + and − and predicate symbols for this theory are =, 6=, <. ≤, >
and ≥. The set of axioms A gives the well-established meaning to these function
and predicate symbols.
Therefore, for the theory of linear integer arithmetic TLIA we have:

• Σ = Z ∪ {+,−} ∪ {=, 6=, <,≤, >,≥}
• A defines the usual meaning to all symbols:

– Constant symbols are mapped to the corresponding value in Z.
– + is interpreted as the function 0 + 0 → 0, 0 + 1 → 1, − follows it

analogous interpretation.
– The predicate symbols are interpreted as their respective comparison

operator.
An example for a formula in TLIA:

ϕ := x ≥ 0 ∧ (x+ y ≤ 2 ∨ x+ y ≥ 6) ∧ (x+ y ≥ 1 ∨ x− y ≥ 4).

T-Terms, T-Atoms, T-Literals and T-Formulas
Definition 8.2 (T-terms) A T-term is either a constant or variables x, y,
An application of a function symbol in Σ where all inputs are T-terms is a T-term.
Examples for T-terms in TLIA are: x+ 2, 5, x− y.
Definition 8.3 (T-atom) A T-atom is the application of a predicate symbol in
Σ where all inputs are T-terms.
Examples for T-atoms in TLIA are: x+ 2 > 0, 5 ≤ 2, x− y > 10.
Definition 8.4 (T-literal) A T-literal is a T-atoms or its negation.

8.1. Definitions and Notations 5

Definition 8.5 (T-formula) A T-formula is a well-formed predicate logic formula
consisting of T-literals and logical connectives, variables and quantifiers.
An example for a T-formula is: ∀x ∀y x+ y = y + x

For the remainder of this chapter, we will consider only the quantifier-free fragment
of a given theory.

Models and T-Satisfiability

In SMT, the interpretation of the predicate and function symbols is fixed. The
only unspecified entities are free variables, for which a model has to define an
assignment. A model M within a theory T is therefore an assignment of all free
variables to a constant in Σ.
For example, lets consider the formula ϕ in TLIA:

ϕ := (x+ y > 0) ∧ (x = 0).

Under the model M0 = {x → 5, y → 1} the formula ϕ evaluates to false. Under
the model M1 = {x→ 0, y → 1} the formula ϕ evaluates to true.
Definition 8.6 (T-satisfiablility) A formula ϕ is satisfiable in a theory T, or
T-satisfiable, if and only if there is a model M within T, this is M � A for every
A ∈ A, that satisfies ϕ.
Definition 8.7 (T-validity) A formula ϕ is valid in a theory T, or T-valid, if
and only if all models within T satisfy ϕ.
Definition 8.8 (T-entailment) A set of formulas ϕ1, . . . ϕn T-entails a for-
mula ψ, written as ϕ1, . . . ϕn �T ψ, if every model of T that satisfies all formulas
ϕ1, . . . ϕn satisfies ψ as well.
Definition 8.9 (T-decidable) A theory T is decidable if there exists an algorithm
that always terminates with “yes” if ϕ is T-valid or with “no” if ϕ is not T-valid.

8.1.1 Theory of Equality and Uninterpreted Functions

We continue with an in depth discussion of the theory of equality and uninterpreted
functions TEUF in detail. TEUF is one of the simplest first-order theories and we
will therefore use it to discuss lazy encoding and eager encoding.
Uninterpreted functions serve as a way to describe uninterpreted relations between
elements of the theory. They have no explicit property apart from functional con-
gruence, meaning that a function always returns the same output for the same
input. Uninterpreted functions are often used as an abstraction technique to re-
move unnecessarily complex or irrelevant details of a system being modeled.
Definition 8.10 (Theory of Equality and Uninterpreted Functions) The
theory of equality and uninterpreted functions TEUF has the signature

ΣEUF := {a, b, c, . . .} ∪ {f, g, h, . . .} ∪ {=, P,Q,R, . . .},

6 Chapter 8. Satisfiability Modulo Theories

where

• a, b, c, . . . are constant symbols,
• f, g, h, . . . are function symbols, and
• P,Q,R, . . . are predicate symbols.

The axioms AEUF are the following:

1. ∀x. x = x (reflexivity)
2. ∀x, y. x = y → y = x (symmetry)
3. ∀x, y, z. x = y ∧ y = z → x = z (transitivity)
4. ∀x, y. (

∧
i = 1nxi = yi) → f(x) = f(y) (congruence)

5. ∀x, y. (
∧
i = 1nxi = yi) → (P (x) ↔ P (y)) (equivalence)

Example. By using the theory of uninterpreted function and equality it is often
possible to show properties of systems that use complex functions by abstracting
away the complexity of the functions, e.g., in order to analyse properties of en-
cryption schemas. For example, suppose we want to prove that the following set
of theory literals is unsatisfiable:

{a · (f(b) + f(c)) = d, b · (f(a) + f(c)) 6= d, a = b}.

At first, it may appear that this requires reasoning in the theory of arithmetic.
However, if we replace + and · with uninterpreted functions p and m respectively,
we get a new set of literals:

{m(a, p(f(b), f(c))) = d, m(b, p(f(a), f(c))) 6= d, a = b}.

We can prove that the conjunction of these literals is unsatisfiable without any
arithmetic, just by using the defined uninterpreted functions.

8.2 Eager Encoding

The eager encoding approach for solving SMT formulas involves translating the
original formula to an equisatisfiable propositional formula in, potentially multiple,
preprocessing steps. The translations are done as a preprocessing step to encode
enough relevant consequences of the axioms A of T into the propositional formula.
The eager approach applies in principle to any theory with a decidable satisfiability
problem, possibly however at the cost of a significant blow-up in the translation,
where the translations are of course dependent on T. After encoding the relevant
consequences of A into the propositional formula, the formula can be given to any
off-the-shelf SAT solver.
In order to perform eager encoding of a formula ϕ, any algorithm follows the
following general steps:

(I) Replace any unique T-atom in the original formula ϕ with a fresh proposi-
tional variable to get a propositional formula ϕ̂.

8.2. Eager Encoding 7

(II) Generate a propositional formula ϕcons that constrains the values of the
introduced propositional variables to preserve the information of the theory.

(III) Invoke a SAT solver on the propositional formula ϕprop := ϕ̂ ∧ ϕcons that
corresponds to an equisatisfiable propositional formula to ϕ.

Note that steps (I) and (II) might be split into multiple steps to encode the con-
sequences of A.
In the following, we will discuss the exact steps needed to translate a formula
within TEUF to an equisatisfiable propositional formula.

Elimination of Function Applications - via Ackermann Algo-
rithm

The first step for transforming a formula ϕEUF in TEUF to a propositional formula
is to eliminate applications of function and predicate symbols of non-zero arity.
These applications are replaced by new propositional symbols and additional con-
straints are added on this fresh variables to maintain functional consistency, i.e.
the congruence property.
The Ackermann algorithm performs the following steps:

• Generate the formula ϕ̂EUF by replacing every function application and
predicate application in ϕEUF with a fresh variables.

• Generate the formula ϕFC which encodes all required functional congruence
constraints.

• ϕE = ϕ̂EUF ∧ ϕFC is equisatisfiable with ϕEUF and contains no uninter-
preted function symbols. Therefore, ϕE is in TE .

8 Chapter 8. Satisfiability Modulo Theories

Example 1

Given the formula

ϕUEF := (f(a) = f(b)) ∧ ¬(f(b) = f(c)).

Apply the Ackermann construction algorithm to compute an equisatisfiable
formula in TE .

Solution.
Replacing the function instances with fresh variables yields:

ϕ̂EUF := (fa = fb) ∧ ¬(fb = fc).

Next, we encode the functional consistency constraints for f :

ϕFC := ((a = b) → fa = fb) ∧ ((b = c) → fb = fc) ∧ ((a = c) → fa = fc).

The resulting equisatisfiable formula in TE is ϕE := ϕ̂EUF ∧ ϕFC .

Example 2

Given the formula ϕEUF :=

(z = f(x, z) ↔ f(x, y) = x)∧(y 6= x∨f(y, z) = f(x, y)∨x = z) → f(x, z) = z.

Apply the Ackermann construction algorithm to compute an equisatisfiable
formula in TE .

Solution.

ϕFC ≡(x = x ∧ y = z) → (fxy = fxz) ∧
(x = y ∧ y = z) → (fxy = fyz) ∧
(x = y ∧ z = z) → (fxz = fyz)

ϕ̂EUF ≡(z = fxz ↔ fxy = x) ∧
(y 6= x ∨ fyz = fxy ∨ x = z) → fxz = z

ϕE ≡ ϕFC ∧ ϕ̂EUF

8.2. Eager Encoding 9

Example 3

Given the formula ϕEUF := f(x) = f(g(y))∧f(y) 6= y∨f(x) = f(y)∧f(y) =
y ∨ f(y) = f(x) ∧ y 6= f(g(y)) ∨ f(y) = g(x) ∧ f(y) = y.
Apply the Ackermann construction algorithm to compute an equisatisfiable
formula in TE .

Solution.

ϕFC ≡(x = y) → (fx = fy) ∧
(x = gy) → (fx = fgy) ∧
(y = gy) → (fy = fgy) ∧
(x = y) → (gx = gy)

ϕ̂EUF ≡(fx = fgy ∧ fy 6= y) ∧
(fx = fy ∧ fy = y) ∧
(fy = fx ∧ y 6= fgy) ∧
(fy = gx ∧ fy = y)

ϕE ≡ϕFC ∧ ϕ̂EUF

Elimination of Equalities - Graph-based Reduction

For an input formula ϕE in TE , the graph based reduction algorithm, introduced
by Bryant and Velev, computes an equisatisfiable propositional formula. The
algorithm computes ϕ̂E to preserve the logical structure, reflexivity and symmetry
properties, and ϕTC encodes transitivity constraints.
The formula ϕ̂E is computed via the following steps:

1. Every reflexivity instance a = a in ϕE is replaced by true.
2. Every equality atom is rewritten such that the first term precedes the second

term with respect to some total order.
3. Every equality atom a = b is replaced by a fresh propositional variable ea=b.

This results in the formula ϕ̂E .
To compute ϕTC , we construct a so-called non-polar equality graph: This graph
has a node for every term and an edge for every equality and inequality in the
formula (there is no difference between equality and disequality in the graph).
This graph is then made chordal.
Definition 8.11 (Chords, Chord-free Cycles, and Chordal Graphs.) In a
graph G, let n1 and n2 be two non-adjacent nodes in a cycle. An edge between n1
and n2 is called a chord. A cycle is said to be chord-free, if in the cycle there exist
no non-adjacent nodes that are connected by an edge. A graph is called chordal,
if it contains no chord-free cycles with size greater than 3.

10 Chapter 8. Satisfiability Modulo Theories

A graph can be made chordal by adding additional edges. By only having such
triangles in the graph, we avoid an exponential blow-up in the number of transi-
tivity constraints. Based on the chordal graph, we can compute the transitivity
constraints. For every triangle (x, y, z) in the graph, we add the following con-
straints:

(ex=y ∧ ey=z → ex=z) ∧ (ex=y ∧ ex=z → ey=z) ∧ (ey=z ∧ ex=z → ex=y)

We connect the transitivity constraints for all triangles via conjunction to obtain
ϕTC . The resulting equisatisfiable propositional formula:

ϕprop := ϕ̂E ∧ ϕTC .

Example 4

Perform the graph-based reduction on the following formula to compute an
equisatisfiable formula in propositional logic.

fx = fa ∧ fy 6= y ∨ fx = fy ∧ fy = y ∨ fy = fx ∧ y 6= fa ∨ fy = gx ∧ fy = y

Solution.

ϕ̂E ≡efx=fa ∧ ¬efy=y ∨
efx=fy ∧ efy=y ∨
efy=fx ∧ ¬ey=fa ∨
efy=gx ∧ efy=y

ϕTC ≡(efx=fa ∧ ey=fa → efx=y) ∧
(efx=fa ∧ efx=y → ey=fa) ∧
(ey=fa ∧ efx=y → efx=fa) ∧
(efx=y ∧ ey=fy → efx=fy) ∧
(efx=y ∧ efx=fy → ey=fy) ∧
(ey=fy ∧ efx=fy → efx=fy)

ϕprop ≡ϕTC ∧ ϕ̂E

8.3. Lazy Encoding 11

Example 5

Perform graph-based reduction to translate a formula in TE into an equi-
satisfiable formula in propositional logic.

(z = fxz ↔ fxy = x) ∧ (¬y = x ∨ fyz = fxy ∨ x = z) → z = fxz

Solution.

ϕ̂E ≡(ez=fxz
↔ efxy=x) ∧ (¬ey=x ∨ efyz=fxy

∨ ex=z) → ez=fxz

ϕTC ≡ true

ϕprop ≡ϕTC ∧ ϕ̂E

8.3 Lazy Encoding

The lazy encoding aproach is based on the interaction between a SAT solver and
a so-called theory solver. A theory solver is able to decide the satisfiability of the
conjunctive fragment of a theory. In contrast to eager encoding,the lazy approach
starts with no constraints at all, and adds constraints when required during the
computation.
The principle of lazy encoding is shown in Figure 8.1. To decide if a T-formula ϕ
is T-satisfiable, the propositional skeleton skel(ϕ) is given to a SAT solver.
Definition 8.12 (Propositional Skeleton) The propositional skeleton skel(ϕ)
of a formula ϕ is obtained by replacing each occurance of a T-literal with a propo-
sitional variable.
If the SAT solver returns unsatisfiable when given skel(ϕ), we can deduce that
the propositional structure of ϕ is unsatisfiable, and therefore ϕ cannot be T-
satisfiable. If, however, the SAT solver returns satisfiable, we obtain a satisfying
assignment for the truth values of the T-literals in ϕ. This assignment is a formula
in the conjunctive fragment of T, which we pass to a dedicated theory solver. If
the theory solver returns satisfiable, we have found an assignment of truth values
to the theory literals that is consistent with the axioms A in T. If, however, the
theory solver returns unsatisfiable the current assignment is not consistent with T

and we have to consider a different assignment. To obtain a different assignment,
we negate the inconsistent assignment - which conveniently turns it into a clause
- and add it as a so-called blocking clause to the CNF of skel(ϕ). The blocking
clause ensures that the next potential satisfying assignment obtained from the
SAT solver is different from the current one. If the SAT solver cannot produce a
satisfying assignment, we deduce that ϕ is unsatisfiable.

12 Chapter 8. Satisfiability Modulo Theories

Figure 8.1: The propositional skeleton of ϕ is given to a SAT solver. If a satisfying
assignment is found, it is checked by a theory solver. If the assignment is
consistent with the theory, ϕ is T-satisfiable. Otherwise, a blocking clause
is generated and the SAT solver searches for a new assignment. This is
repeated until either a T-consistent assignment is found, or the SAT solver
cannot find any more assignments.

8.3.1 Congruence Closure - A Theory Solver for TEUF

Theory Solvers. Theory solvers are dedicated for a specific theory, or a fragment
of a theory. The common practice is to write theory solvers just for deciding
conjunctions of T-literals.The main advantage of theory-specific solvers is that one
can use whatever specialized algorithms and data structures are best for the theory
in question.
The role of the theory solver is to accept a set of literals and report whether the
set is T-satisfiable or not. The congruence closure algorithm is the most common
theory solver for TEUF .
Congruence Closure
Given a conjunction of TEUF -literals, the congruence closure algorithm computes
a set of congruence classes, such that all terms in the same congruence class are
equal. Congruence classes are computed in the following way.

1. All terms for which there is a (positive) equality in the conjunction of literals
are put into the same congruence class. All remaining terms are put in
singleton classes.

2. Any two classes that contain common terms are merged. This accounts for
the transitivity of the equality predicate.

3. Classes are merged based on function congruence. That is, if two classes both
contain an instance of the same uninterpreted function, and corresponding
parameters are already in the same congruence class (which means that they
are equal), the classes of the function instances are merged.

4. Repeat step 2 and 3 until no more merging can be done.

8.3. Lazy Encoding 13

5. In the last step, all the inequalities from the set of input literals are checked
against the merged congruence classes. If there is a inequality that con-
tradicts the congruence classes (both its terms are in the same congruence
class), the conjunction of literals is unsatisfiable. If no such inequality exists,
the conjunction of literals is satisfiable.

Example 6

Use the congruence closure algorithm to check whether the following for-
mula is satisfiable.

ϕ :=f(a) = e ∧ f(c) 6= f(e) ∧ a = f(b) ∧
f(b) 6= c ∧ b 6= a ∧ f(a) = d ∧
d 6= f(c) ∧ b = d ∧ a 6= e ∧ c = d

Solution.

{f(a), e}, {a, f(b)}, {f(a), d}, {b, d}, {c, d}, {f(c)}, {f(e)}
{f(a), e, d}, {a, f(b)}, {b, d}, {c, d}, {f(c)}, {f(e)}
{f(a), e, d, b, c}, {a, f(b)}, {f(c)}, {f(e)}
{f(a), e, d, b, c}, {a, f(b)}, {f(c), f(e)}
{f(a), e, d, b, c}, {a, f(b), f(c), f(e)}

Checking the inequality f(c) 6= f(e) leads to the result that the assignment
is UNSAT, since f(c) and f(e) are in the same congruence class.

14 Chapter 8. Satisfiability Modulo Theories

Example 7

Use the congruence closure algorithm to check whether the following for-
mula is satisfiable.

ϕ :=f(b) = a ∧ c 6= d ∧ f(e) = b ∧
d 6= f(b) ∧ f(a) = f(e) ∧ b 6= f(b) ∧
a 6= e ∧ f(a) = e ∧ a = c ∧
f(b) 6= e ∧ d = f(c)

Solution.

{f(b), a}, {f(e), b}, {f(a), f(e)}, {f(a), e}, {a, c}, {d, f(c)}
{f(b), a}, {f(e), b}, {f(a), f(e), e}, {a, c}, {d, f(c)}
{f(b), a}, {f(a), f(e), e, b}, {a, c}, {d, f(c)}
{f(b), a, c}, {f(a), f(e), e, b}, {d, f(c)}
{f(b), a, c, f(a), f(e), e, b}, {d, f(c)}

Checking the inequality f(b) 6= e leads to the result that the assignment is
UNSAT, since f(b) and e are in the same congruence class.

Example 8

Use the congruence closure algorithm to check whether the following for-
mula is satisfiable:

ϕ :=x = y ∧ v = w ∧ z = f(w) ∧ z 6= x ∧ w 6= f(y) ∧
f(x) = w ∧ f(z) = f(x) ∧ f(z) = f(v)

Solution.

{x, y}, {v, w}, {z, f(w)}, {f(x), w}, {f(z), f(x)}, {f(z), f(v)}
{x, y}, {v, w, f(x)}, {z, f(w)}, {f(z), f(x)}, {f(z), f(v)}
{x, y}, {v, w, f(x), f(z)}, {z, f(w)}, {f(z), f(v)}
{x, y}, {v, w, f(x), f(z), f(v)}, {z, f(w)}

We have to check the following two inequalities:
• z 6= xX
• w 6= f(y)X

Since both are not violated we can conclude that ϕ is SAT.

8.3. Lazy Encoding 15

We conclude this chapter with examples showing the application of the lazy ap-
proach.

Example 9

Use the lazy encoding approach to check whether the formula ϕ in TEUF

is satisfiable.

ϕ := (x = y) ∧ (y = f(y)) ∧ (y 6= f(x)) ∧ (z = f(z)) ∧ (f(z) = f(x))

Solution. We start by computing skel(ϕ):
• e0 ⇔ (x = y)

• e1 ⇔ (y = f(y))

• e2 ⇔ (y = f(x))

• e3 ⇔ (z = f(z))

• e4 ⇔ (f(z) = f(x))

skel(ϕ) = e0 ∧ e1 ∧ ¬e2 ∧ e3 ∧ e4
Step 1 2 3 4 5 6
Decision Level 0 0 0 0 0 0

Assignment - e0 e0, e1 e0, e1,¬e2
e0, e1,¬e2,

e3

e0, e1,¬e2,
e3, e4

Cl. 1: e0 e0 3 3 3 3 3

Cl. 2: e1 e1 e1 3 3 3 3

Cl. 3: ¬e2 ¬e2 ¬e2 ¬e2 3 3 3

Cl. 4: e3 e3 e3 e3 e3 3 3

Cl. 5: e4 e4 e4 e4 e4 e4 3

BCP e0 e1 ¬e2 e3 e4 -
PL - - - - - -
Decision - - - - - SAT

The SAT solver has computed that skel(ϕ) is satisfiable, we are therefore
going to check for consistency with the theory:

{x, y}, {y, f(y)}, {z, f(z)}, {f(z), f(x)}
{f(y), x, y}, {f(x), f(z), z}

The TEUF -Solver returned SAT, therefore ϕ is satisfiable.

16 Chapter 8. Satisfiability Modulo Theories

Example 10

Use the lazy encoding approach to check whether the formula ϕ in TEUF

is satisfiable.

ϕ =((f(a) = b) ∨ (f(a) = c) ∨ ¬(b = c)) ∧ ((b = c) ∨ (a = b) ∨ (f(a) = b)) ∧
(¬(f(a) = b) ∨ (a = b)) ∧ ((b = c) ∨ ¬(a = b) ∨ ¬(f(a) = b)) ∧
(¬(f(a) = c) ∨ (b = c)) ∧ (¬(f(a) = c) ∨ (b = c) ∨ ¬(a = b)) ∧
((f(a) = b) ∨ (f(a) = c))

Solution. We start by translating ϕ to ϕ̂ = skel(ϕ) and assign the following
variables to the theory literals:

• e0 ⇔ (f(a) = b)

• e1 ⇔ (f(a) = c)

• e2 ⇔ (b = c)

• e3 ⇔ (a = b)

ϕ̂ = (e0 ∨ e1 ∨ ¬e2) ∧ (e2 ∨ e3 ∨ e0) ∧ (¬e0 ∨ e3) ∧ (e2 ∨ ¬e3 ∨ ¬e0) ∧ (¬e1 ∨
e2) ∧ (¬e1 ∨ e2 ∨ ¬e3) ∧ (e0 ∨ e1)

Step 1 2 3 4
Decision Level 0 1 1 1
Assignment - ¬e0 ¬e0, e1 ¬e0, e1, e2
Cl. 1: e0, e1,¬e2 e0, e1,¬e2 e1,¬e2 3 3

Cl. 2: e2, e3, e0 e2, e3, e0 e2, e3 e2, e3 3

Cl. 3: ¬e0, e3 ¬e0, e3 3 3 3

Cl. 4: e2,¬e3,¬e0 e2,¬e3,¬e0 3 3 3

Cl. 5: ¬e1, e2 ¬e1, e2 ¬e1, e2 e2 3

Cl. 6: ¬e1, e2,¬e3 ¬e1, e2,¬e3 ¬e1, e2,¬e3 e2,¬e3 3

Cl. 7: e0, e1 e0, e1 e1 3 3

BCP - e1 e2 -
PL - - - -
Decision ¬e0 - - -

MTEUF
:= {(f(a) 6= b), (f(a) = c), (b = c)}

Check if the assignment is consistent with the theory:

{f(a), c}, {b, c}
{b, c, f(a)}

MTEUF
is not consistent with the theory, because of: (f(a) 6= b)

⇒ We need to add a blocking clause from MTEUF
:

BC8 := e0 ∨ ¬e1 ∨ ¬e2

8.3. Lazy Encoding 17

Step 5 6 7 8
Decision Level 0 1 1 1
Assignment - ¬e0 ¬e0, e1 ¬e0, e1,¬e2
Cl. 1: e0, e1,¬e2 e0, e1,¬e2 e1,¬e2 3 3

Cl. 2: e2, e3, e0 e2, e3, e0 e2, e3 e2, e3 e3
Cl. 3: ¬e0, e3 ¬e0, e3 3 3 3

Cl. 4: e2,¬e3,¬e0 e2,¬e3,¬e0 3 3 3

Cl. 5: ¬e1, e2 ¬e1, e2 ¬e1, e2 e2 {} 7

Cl. 6: ¬e1, e2,¬e3 ¬e1, e2,¬e3 ¬e1, e2,¬e3 e2,¬e3 ¬e3
Cl. 7: e0, e1 e0, e1 e1 3 3

Blocking Cl. 8: e0,¬e1,¬e2 e0,¬e1,¬e2 ¬e1,¬e2 ¬e2 3

BCP - e1 ¬e2 -
PL - - - -
Decision ¬e0 - - -

Conflict in step 8

7
5

8¬e0 e1 ⊥

e2

¬e2

5. ¬e1 ∨ e2 8. e0 ∨ ¬e1 ∨ ¬e2
¬e1 ∨ e0 7. e0 ∨ e1

e0

Step 9 10 11 12
Decision Level 0 0 0 0
Assignment - e0 e0, e3 e0, e3, e2
Cl. 1: e0, e1,¬e2 e0, e1,¬e2 3 3 3

Cl. 2: e2, e3, e0 e2, e3, e0 3 3 3

Cl. 3: ¬e0, e3 ¬e0, e3 e3 3 3

Cl. 4: e2,¬e3,¬e0 e2,¬e3,¬e0 e2,¬e3 e2 3

Cl. 5: ¬e1, e2 ¬e1, e2 ¬e1, e2 ¬e1, e2 3

Cl. 6: ¬e1, e2,¬e3 ¬e1, e2,¬e3 ¬e1, e2,¬e3 ¬e1, e2 3

Cl. 7: e0, e1 e0, e1 3 3 3

Cl. 8: e0,¬e1,¬e2 e0,¬e1,¬e2 3 3 3

Cl. 9: e0 e0 3 3 3

BCP e0 e3 e2 -
PL - - - -
Decision - - - SAT

MTEUF
:= (f(a) = b) ∧ (b = c) ∧ (a = b)

Check if the assignment is consistent with the theory:

{f(a), b}, {b, c}, {a, b}
{a, b, c, f(a)}

MTEUF
is consistent with the theory,

⇒ MTEUF
is a satisfying assignment and ϕ is SAT.

18 Chapter 8. Satisfiability Modulo Theories

Chapter 7 is based on the following books.
• A. Biere, M. Heule, H. van Maaren, and T. Walsh: Handbook of Satisfiabil-

ity. Volume 185 of Frontiers in Artificial Intelligence and Applications, IOS
Press, (2009)

• Georg Hofferek: Controller Synthesis with Uninterpreted Functions. PhD
Thesis. 2014. Graz University of Technology.

List of Definitions

8.1 Theory . 4
8.2 T-terms . 4
8.3 T-atom . 4
8.4 T-literal . 4
8.5 T-formula . 4
8.6 T-satisfiablility . 5
8.7 T-validity . 5
8.8 T-entailment . 5
8.9 T-decidable . 5
8.10 Theory of Equality and Uninterpreted Functions 5
8.11 Chords, Chord-free Cycles, and Chordal Graphs. 9
8.12 Propositional Skeleton . 11

19

	Satisfiability Modulo Theories
	Definitions and Notations
	Theory of Equality and Uninterpreted Functions

	Eager Encoding
	Lazy Encoding
	Congruence Closure - A Theory Solver for TEUF

