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Starting in Real Mode www.tugraz.at

• 16 bit mode

• Address space: 1MB

• How is this possible?
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Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access
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Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM
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BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory
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Booting x86 Intel (Illustration) www.tugraz.at
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Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!
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Real Mode - Memory Layout www.tugraz.at
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Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...
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Real Mode → Protected Mode www.tugraz.at

• Disable interrupts

• Setup Global Descriptor Table (GDT)

• Load GDT

• Enable protected mode by setting bit 0 in CR0

• Immediately long jump to set CS

• Load DS, ES, FS, GS, SS, ESP
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Protected Mode



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging
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Protected Mode - Memory Layout www.tugraz.at
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Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags
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Segment Register www.tugraz.at
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Segmentation Inner Workings www.tugraz.at
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Segmentation with Paging www.tugraz.at
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Segmentation Dream www.tugraz.at
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Segmentation Reality www.tugraz.at
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Paging: x86-32 with page size 4 KiB www.tugraz.at

PML5

PDPTI (9 bit)PDI (10 bit) PTI (10 bit) Offset (12 bit)

32-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
.
.
.

#PML4I
.
.
.

PML4E 511

PDPT

PDPTE 0

PDPTE 1
.
.
.

#PDPTI
.
.
.

PDPTE 511

CR3
Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 1023

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 1023

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095
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Who could ever need more than 4GB of RAM?
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Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4
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32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped
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Paging: x86-32-PAE with page size 4 KiB www.tugraz.at

PML5

PDPTI (2 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)

32-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
.
.
.

#PML4I
.
.
.

PML4E 511

CR3
PDPT

PDPTE 0

PDPTE 1

PDPTE 2

PDPTE 3
Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095
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Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Paging Transitions www.tugraz.at
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Long Mode



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs
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Paging: x86-64 with page size 4 KiB www.tugraz.at

PML5

PML4I (9 bit) PDPTI (9 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095
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Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment
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Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3
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Interrupt Descriptor Table



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved
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IDTR www.tugraz.at
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Interrupt/Trap Gate www.tugraz.at
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Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code
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Exceptions and Interrupts www.tugraz.at
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Exceptions and Interrupts (Contd.) www.tugraz.at
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Booting SWEB



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB
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Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry
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Questions? www.tugraz.at
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