
Cloud Operating Systems

Booting x86

Fabian Rauscher, Daniel Gruss, Andreas Kogler

2023-03-20



Real Mode



Starting in Real Mode www.tugraz.at

• 16 bit mode

• Address space: 1MB

• How is this possible?

1 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Starting in Real Mode www.tugraz.at

• 16 bit mode

• Address space: 1MB

• How is this possible?

1 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Starting in Real Mode www.tugraz.at

• 16 bit mode

• Address space: 1MB

• How is this possible?

1 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Starting in Real Mode www.tugraz.at

• 16 bit mode

• Address space: 1MB

• How is this possible?

1 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Starting in Real Mode www.tugraz.at

• 16 bit mode

• Address space: 1MB

• How is this possible?

1 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Starting in Real Mode www.tugraz.at

• 16 bit mode

• Address space: 1MB

• How is this possible?

1 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Segementation www.tugraz.at

• 16 bit segment resgisters (CS, SS, DS, ES, FS, GS)

• Every memory access uses a segment register and a 16 bit offset

→ Actual address is (segment register ≪ 4) + offset

• 0x3000 segment, 0xd463 offset = 0x3d463

• 0x1004 segment, 0x11c8 offset = 0x128c8

• 0x345 segment, 0xf478 offset = 0x128c8

• 0xff13 segment, 0xfff0 offset = 0x10f120 = 0xf120

• Direct physical memory access

2 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting x86 Intel www.tugraz.at

3 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting in Real Mode www.tugraz.at

• Address: 0xFFFFFFF0

• How is this possible?

• CS register also has a 32-bit base address (initialized to 0xFFFF0000)

• What if I have < 4GB RAM?

• physical address space ̸= RAM

4 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



BIOS www.tugraz.at

• BIOS initializes hardware platform

• Select a device to boot from

• Load MBR from device into memory (0x7C00)

• Execute code from the MBR

• MBR code loads more data from the disk into memory

5 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting x86 Intel (Illustration) www.tugraz.at

6 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Hardware Interaction www.tugraz.at

• How can we interact with the hardware?

• Where do we get the memory layout from?

• How can we access the disk?

• How can we configure the video output?

• ...

→ BIOS calls!

• We can trigger standardized software interrupts and let the BIOS

handle it!

7 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - Memory Layout www.tugraz.at

8 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode - A20 www.tugraz.at

• Memory accesses above 1 MB wrap around

• Done to fix software compatability issues

→ Memory line 20 (A20) needs to be enabled by software to disable this

”feature”

• 65520 Bytes of extra memory!

• Multiple ways of doing this:

• Keyboard controller

• Fast A20 gate

• BIOS call

• ...

9 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode → Protected Mode www.tugraz.at

• Disable interrupts

• Setup Global Descriptor Table (GDT)

• Load GDT

• Enable protected mode by setting bit 0 in CR0

• Immediately long jump to set CS

• Load DS, ES, FS, GS, SS, ESP

10 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode → Protected Mode www.tugraz.at

• Disable interrupts

• Setup Global Descriptor Table (GDT)

• Load GDT

• Enable protected mode by setting bit 0 in CR0

• Immediately long jump to set CS

• Load DS, ES, FS, GS, SS, ESP

10 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode → Protected Mode www.tugraz.at

• Disable interrupts

• Setup Global Descriptor Table (GDT)

• Load GDT

• Enable protected mode by setting bit 0 in CR0

• Immediately long jump to set CS

• Load DS, ES, FS, GS, SS, ESP

10 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode → Protected Mode www.tugraz.at

• Disable interrupts

• Setup Global Descriptor Table (GDT)

• Load GDT

• Enable protected mode by setting bit 0 in CR0

• Immediately long jump to set CS

• Load DS, ES, FS, GS, SS, ESP

10 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode → Protected Mode www.tugraz.at

• Disable interrupts

• Setup Global Descriptor Table (GDT)

• Load GDT

• Enable protected mode by setting bit 0 in CR0

• Immediately long jump to set CS

• Load DS, ES, FS, GS, SS, ESP

10 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Real Mode → Protected Mode www.tugraz.at

• Disable interrupts

• Setup Global Descriptor Table (GDT)

• Load GDT

• Enable protected mode by setting bit 0 in CR0

• Immediately long jump to set CS

• Load DS, ES, FS, GS, SS, ESP

10 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode www.tugraz.at

• 32 bit mode

• More 32 bit registers

• Access to up to 4GB of memory

• Segmentation uses the GDT

• It is possible to address the whole address space without switching

segments

→ Segmentation more optional!

• Optional paging

11 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode - Memory Layout www.tugraz.at

12 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Global Descriptor Table (GDT) www.tugraz.at

• Segment registers are offsets into the GDT

• GDT is an array of segment descriptors that each hold ...

• Base address

• Limit

• Access rights

• Flags

13 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Segment Register www.tugraz.at

14 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Segmentation Inner Workings www.tugraz.at

15 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Segmentation with Paging www.tugraz.at

16 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Segmentation Dream www.tugraz.at

17 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Segmentation Reality www.tugraz.at

18 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Paging: x86-32 with page size 4 KiB www.tugraz.at

PML5

PDPTI (9 bit)PDI (10 bit) PTI (10 bit) Offset (12 bit)

32-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
.
.
.

#PML4I
.
.
.

PML4E 511

PDPT

PDPTE 0

PDPTE 1
.
.
.

#PDPTI
.
.
.

PDPTE 511

CR3
Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 1023

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 1023

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

19 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Who could ever need more than 4GB of RAM?

20 Fabian Rauscher, Daniel Gruss, Andreas Kogler



21 Fabian Rauscher, Daniel Gruss, Andreas Kogler



22 Fabian Rauscher, Daniel Gruss, Andreas Kogler



23 Fabian Rauscher, Daniel Gruss, Andreas Kogler



24 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Physical Address Extension (PAE) www.tugraz.at

• 4 GB of physical address space is not enough

• Increase of page table entry sizes from 4 to 8 Bytes

• More address bits in page table entries

→ Access to a bigger physical address space with paging

• Has no effect when paging is disabled

• Can be enabled with bit 5 in CR4

25 Fabian Rauscher, Daniel Gruss, Andreas Kogler



32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped

26 Fabian Rauscher, Daniel Gruss, Andreas Kogler



32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped

26 Fabian Rauscher, Daniel Gruss, Andreas Kogler



32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped

26 Fabian Rauscher, Daniel Gruss, Andreas Kogler



32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped

26 Fabian Rauscher, Daniel Gruss, Andreas Kogler



32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped

26 Fabian Rauscher, Daniel Gruss, Andreas Kogler



32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped

26 Fabian Rauscher, Daniel Gruss, Andreas Kogler



32 bit PAE paging www.tugraz.at

• Adds PDPT to account for larger entry sizes

• Linear address is still 32 bit

→ Virtual address space is still 4 GB

but physical pages above 4 GB can be mapped

26 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Paging: x86-32-PAE with page size 4 KiB www.tugraz.at

PML5

PDPTI (2 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)

32-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
.
.
.

#PML4I
.
.
.

PML4E 511

CR3
PDPT

PDPTE 0

PDPTE 1

PDPTE 2

PDPTE 3
Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

27 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Protected Mode → Long Mode www.tugraz.at

• Disable interrupts

• Setup 64 bit segmend descriptors

• Setup paging structure and set CR3

• Enable long mode via bit 8 of the EFER MSR

• Enable PAE via bit 5 of CR4

• Enable paging via bit 31 in CR0

• Reload segment selectors to enter long mode proper

28 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Paging Transitions www.tugraz.at

29 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode www.tugraz.at

• Only supported with paging enabled

• Register extensions and new 64 bit registers

→ RAX, RBX, RCX RDX, ..., R8-R15

• 64 bit pointers

• 48 bit virtual addresses (57 bit with 5-level paging)

• Segmentation is simplified

• Code and data segment limits are ignored

• CS, SS, ES, DS have a base of 0

• Bases for FS and GS can be set via MSRs

30 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Paging: x86-64 with page size 4 KiB www.tugraz.at

PML5

PML4I (9 bit) PDPTI (9 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

31 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment

32 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment

32 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment

32 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment

32 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment

32 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment

32 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Long Mode Segmentation www.tugraz.at

• Most bases and limits are ignored

• Why do we still need it?

→ CS holds the current execution privilege level and execution mode

→ task state segment

32 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Task State Segments (TSS) www.tugraz.at

• Can be used for task switches in protected mode

• Mostly a list of stack addresses in long mode

• Holds RSP0, RSP1, RSP2, ISTs and an IO bitmap

• RSPx: RSP is set to RSPx when an interrupt causes a privilege change

from a ring < x to x

• ISTs: can be used to force a stack switch on an interrupt to a specific

address

• IO bitmap: manages IO port permissions for ring 3

33 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt Descriptor Table www.tugraz.at

• Tells the CPU what to do in case of an interrupt

• Linear address and size stored in the IDTR

(loaded with the lidt instruction)

• Up to 256 entries (vectors)

• Two types of entries:

• Interrupt gates: disable interrupts

• Trap gates: don’t disable interrupts

• Vector numbers 0-31 are reserved

34 Fabian Rauscher, Daniel Gruss, Andreas Kogler



IDTR www.tugraz.at

35 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Interrupt/Trap Gate www.tugraz.at

36 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions www.tugraz.at

• not the same as C++ or Java exceptions

• ”Exceptions occur when the processor detects an error condition while

executing an instruction [...]”

• Located in vector numbers 0-31

→ Other interrupts have to be remapped to not use this range

• Some exceptions push an error code

37 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions and Interrupts www.tugraz.at

38 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Exceptions and Interrupts (Contd.) www.tugraz.at

39 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Booting SWEB



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



GRUB www.tugraz.at

• Grand Unified Bootloader (GRUB)

• Runs in real mode and protected mode

→ Protected mode: most of the time

→ Real mode: entry and BIOS calls

• Basic hardware detection and framebuffer setup

• Loads SWEB into memory

• Provides hardware information according to the Multiboot spec

• Runs SWEB

40 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Multiboot www.tugraz.at

• Provides standardized format for passing information from the

Bootloader to the OS

• Memory areas and their type

• Location of the framebuffer and the configured video mode

• Drive infos

• ...

• Pointer to the multiboot header passed via EBX to the kernel entry

41 Fabian Rauscher, Daniel Gruss, Andreas Kogler



Questions? www.tugraz.at

42 Fabian Rauscher, Daniel Gruss, Andreas Kogler


