UNLIMITED

Futurity

AI could mine the past for faster, better weather forecasts

Artificial intelligence could use past weather data rather than complex, costly physics calculations to deliver faster, more accurate weather forecasts.
A person with an umbrella walks past vertical stripes of light in silhouette

Artificial intelligence can analyze past weather patterns to predict future events, much more efficiently and potentially someday more accurately than today’s technology, researchers say.

Today’s weather forecasts come from some of the most powerful computers on Earth. The huge machines churn through millions of calculations to solve equations to predict temperature, wind, rainfall, and other weather events. A forecast’s combined need for speed and accuracy taxes even the most modern computers.

The newly developed global weather model bases its predictions on the past 40 years of weather data, rather than on detailed physics calculations.

The simple, data-based AI model can simulate a year’s weather around the globe much more quickly and almost as well as traditional weather models, by taking similar repeated steps from one forecast to the next, according to a paper in the Journal of Advances in Modeling Earth Systems.

“Machine learning is essentially doing a glorified version of pattern recognition,” says lead author Jonathan Weyn, who did the research as part of his University of Washington doctorate in atmospheric sciences. “It sees a typical pattern, recognizes how it usually evolves and decides what to do based on the examples it has seen in the past 40 years of data.”

The image shows the steps researchers used in using machine learning to predict weather
First the authors divide the planet’s surface into a grid with a six-sided cube (top left) and then flatten out the six sides into a 2D shape, like in a paper model (bottom left). This new technique let the authors use standard machine learning techniques, developed for 2D images, for weather forecasting. (Credit: Weyn et al./Journal of Advances in Modeling Earth Systems)

Although the new model is, unsurprisingly, less accurate than today’s top traditional forecasting models, the current AI design uses about 7,000 times less computing power to create forecasts for the same number of points on the globe. Less computational work means faster results.

That speedup would allow the forecasting centers to quickly run many models with slightly different starting conditions, a technique called “ensemble forecasting” that lets weather predictions cover the range of possible expected outcomes for a weather event—for instance, where a hurricane might strike.

“There’s so much more efficiency in this approach; that’s what’s so important about it,” says author Dale Durran, a professor of atmospheric sciences. “The promise is that it could allow us to deal with predictability issues by having a model that’s fast enough to run very large ensembles.”

Coauthor Rich Caruana at Microsoft Research had initially approached the researchers to propose a project using artificial intelligence to make weather predictions based on historical data without relying on physical laws. Weyn was taking a computer science course in machine learning and decided to tackle the project.

“After training on past weather data, the AI algorithm is capable of coming up with relationships between different variables that physics equations just can’t do,” Weyn says. “We can afford to use a lot fewer variables and therefore make a model that’s much faster.”

To merge successful AI techniques with weather forecasting, the team mapped six faces of a cube onto planet Earth, then flattened out the cube’s six faces, like in an architectural paper model. The authors treated the polar faces differently because of their unique role in the weather as one way to improve the forecast’s accuracy.

The authors then tested their model by predicting the global height of the 500 hectopascal pressure, a standard variable in weather forecasting, every 12 hours for a full year. A recent paper, which included Weyn as a coauthor, introduced WeatherBench as a benchmark test for data-driven weather forecasts. On that forecasting test, developed for three-day forecasts, this new model is one of the top performers.

The data-driven model would need more detail before it could begin to compete with existing operational forecasts, the authors say, but the idea shows promise as an alternative approach to generating weather forecasts, especially with a growing amount of previous forecasts and weather observations.

Weyn is now a data scientist with Microsoft’s weather and finance division. This research was funded by the US Office of Naval Research and a Department of Defense graduate fellowship.

Source: University of Washington

The post AI could mine the past for faster, better weather forecasts appeared first on Futurity.

More from Futurity

Futurity2 min read
Clay Cylinders Upend The Origin Story Of The Alphabet
What appears to be evidence of some of the oldest alphabetic writing in human history is etched onto finger-length, clay cylinders excavated from a tomb in Syria by a team of researchers. The writing, which is dated to around 2400 BCE, precedes other
Futurity3 min read
Can You Get Sleep’s Brain Benefits Without Actually Sleeping?
New research could potentially change our fundamental understanding of how sleep boosts brainpower. While it’s well known that sleep enhances cognitive performance, the underlying neural mechanisms, particularly those related to nonrapid eye movement
Futurity3 min read
Tiny ‘Backpacks’ Aid Hummingbird Conservation
Researchers attached tiny “backpack” trackers to hummingbirds in the Colombian Andes to learn more about their movements. As they report in a paper in the journal Ecology and Evolution, the tracking system will aid conservation efforts in this region

Related Books & Audiobooks