Fuzzy-match repair guided by quality estimation
John E. Ortega, Mikel L. Forcada, Felipe Sanchez-Martinez

Abstract—Computer-aided translation tools based on translation memories are widely used to assist professional translators. A
translation memory (TM) consists of a set of translation units (TU) made up of source- and target-language segment pairs. For the
translation of a new source segment s’, these tools search the TM and retrieve the TUs (s, ¢) whose source segments are more similar
to s’. The translator then chooses a TU and edit the target segment ¢ to turn it into an adequate translation of s’. Fuzzy-match repair
(FMR) techniques can be used to automatically modify the parts of ¢ that need to be edited. We describe a language-independent FMR
method that first uses machine translation to generate, given s’ and (s, t), a set of candidate fuzzy-match repaired segments, and then
chooses the best one by estimating their quality. An evaluation on three different language pairs shows that the selected candidate is a
good approximation to the best (oracle) candidate produced and is closer to reference translations than machine-translated segments

and unrepaired fuzzy matches (t). In addition, a single quality estimation model trained on a mix of data from all the languages

performs well on any of the languages used.

Index Terms—fuzzy-match repair, computer-aided translation, translation memories, quality estimation

1 INTRODUCTION

Computer-aided translation (CAT) tools [1] based on trans-
lation memories are one of the most used translation tech-
nologies among professional translators [2]. They exploit a
translation memory (TM), that is, a collection of translation
units (TU), to improve translation productivity by providing
the translators with target segments similar to those they
have to produce. In particular, a TU (s,t) is made up of a
source language segment s and a target language segment
t; TM-based CAT tools exploit them by looking for TUs
whose source segment are similar to the segment s’ to be
translated. When, instead of an exact match (100%, s = s’),
a fuzzy match is available, the translator has to manually edit
the translation proposal ¢ to make the changes necessary to
produce t/, an adequate translation of s’. Alternatively, they
can use a fuzzy-match repair (FMR) method [3], [4], [5], [6],
[7] to repair the translation proposal t. The aim of FMR is to
replace the sub-segments in ¢ that are the translation of the
sub-segments in s that do not appear in s’ by the translation
of the corresponding sub-segment in s’. Therefore, FMR
aims at translating only the mismatched sub-segments and
keeping the parts of ¢ that can be reused because they have
been professionally translated.

In this paper, we describe a method for FMR that first
generates a set of candidate fuzzy-match repaired segments
from a TU (s,t) and the source segment to be translated

e J.E. Ortega is with the Dep. de Llenguatges i Sistemes Informatics,
Universitat d’Alacant, Spain.
E-mail: jeo10@alu.ua.es

e M.L. Forcada and F. Sdnchez-Martinez are with the Dep. de Llenguatges
i Sistemes Informatics, Universitat d’Alacant, Spain.
E-mail: {mlf fsanchez)@dlsi.ua.es

J. E. Ortega, M. L. Forcada and F. Sanchez-Martinez (2022), “Fuzzy-
match repair guided by quality estimation,” in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 3, pp. 1264-1277,
doi: 10.1109/TPAMI.2020.3021361.

Accepted version. Published online: September 2020.
https://doi.org/10.1109/TPAMI.2020.3021361

©2020 IEEE

s', and then estimates the quality of these candidate fuzzy-
match repaired segments to select the best one.

The algorithm for generating the set of candidate fuzzy-
match repaired segments, introduced in a conference paper
by the same authors [6], can use any available source of
bilingual information (SBI), such as an on-line MT system,
for the translation of the mismatched sub-segments. It first
aligns the words in the source segment s of the TU being
repaired (s,t) with the words in the source segment to be
translated s’ and identifies the mismatched words in s and
s/, that is, the sub-segments they do not have in common.! It
then uses the SBIs available to identify the sub-segments in
t that are the translations of the mismatched sub-segments
in s, in a way similar to that of [8], and builds a set of repair
operators by translating the mismatched sub-segments in s'.
Each repair operator specifies the TL sub-segment 7 in ¢ that
needs to be repaired and the TL sub-segment 7’ to be used
for repairing. Combinations of compatible repair operators
are then applied to obtain a set of candidate fuzzy-match
repaired segments from which the one to be finally used
can be selected.

The method for estimating the quality of the candidate
fuzzy-match repaired segments produced, inspired by the
work on sentence-level MT quality estimation (QE) [9],
[10], uses regressors trained on a combination of black-
box, system-independent features and glass-box, system-
dependent features. In our experiments we use extremely
randomised trees [11] as regressors and evaluate our approach
on three different language pairs for varying fuzzy-match
score thresholds. The results show that the set of features
we propose are informative enough to obtain regressors that
allow us to select candidate fuzzy-match repaired segments
close to the best (oracle) one among those produced by our
FMR algorithm. The selected candidates are consistently
closer to the reference translations in our test sets than
both the non-repaired target segments ¢ and the translations
obtained by translating whole source segments s’ using

1. This is usually obtained as a by-product of fuzzy matching.

the MT system used as SBI. Moreover, the best regressors
are most of the times obtained when they are trained on
all language pairs together, which signifies that the values
of the features proposed and the regressors learned are
language-independent.

The rest of the paper is organised as follows. The next
section discusses related work on FMR and stresses the
main differences with respect to the approach described
in this paper. Section 3 then presents the algorithm used
to generate all possible candidate fuzzy-match repaired
segments, whereas Section 4 describes the QE approach we
propose to automatically select the best one. Sections 5 and
6 discuss, respectively, the experimental settings and the re-
sults obtained when evaluating the success of our approach.
Section 7 ends the paper with concluding remarks.

2 RELATED WORK

Most of the approaches combining MT and TM do so by
integrating sub-segments from the TM into the decoding
process of a phrase-based statistical MT system [12], [13],
[14], [15], [16], [17] or a neural MT system [18], [19]. There
are also approaches that incorporate target segments re-
trieved from the TM along with the source segment to
be translated [20] so that the NMT system can use them
to produced translation closer to the TM matches. Other
approaches [3], [4], [5], [7], however, use the target segment
tina TU (s,t) as the basis of the translation to be produced
instead of as an additional source of information: they repair
t by modifying those sub-segments that are the translation
of the sub-segments not common to s and s’, the segment to
be translated. The method described in this paper belongs
to this last group.?

Kranias and Samiotou [3] use several linguistic resources
—such as bilingual dictionaries and lists of suffixes and
closed-class words— to align the words in s to those in ¢
and use these alignments to identify the words in ¢ to be
repaired. The words to be repaired are then replaced (edited,
inserted or deleted) by the translation of the corresponding
mismatch in s’ obtained using MT. This method is similar to
the one we describe in this paper, but differs in that it uses
context around the mismatches only when the new segment
s’ contains words not found in s that need to be inserted. In
contrast, we use context around all mismatches, when avail-
able, and this allows us to treat insertions, deletions and
substitutions in the same way. It also allow us to mitigate
the incomplete reordering and agreement errors that may
occur because of not using context. In addition, in [3] only a
single fuzzy-match repaired segment is produced, whereas
we produce as many fuzzy-match repaired segments as
possible and then select the best one using QE techniques.

In [4] the authors first use a modified IBM model 1 to
align the mismatched words in s to sequences of one or
more words in ¢ and then directly map the sequence of
source-side one-word edit operations (substitutions, dele-
tions and insertions) needed to convert s into s’ into an
identical sequence of edit operations on the corresponding
word sequences in t to generate the repaired translation.
An important strength of the method in [4] is that multiple

2. This section updates the related work section of a conference paper
by the same authors [6] and contains paragraphs taken from that paper.

2

alternative target-side edits are possible for each source-side
insertion or substitution, and that they are scored using a
probabilistic model. An important limitation, as compared
with ours, is the lack of source context around source-side
one-word edits.

The method described in [5] first aligns, in a way similar
to ours, the words in s and s’ using the (word-based) edit
distance [21] and marks the mismatched sub-segments in
s and ¢ for translation. The mismatched sub-segments in
s are then aligned with their counterparts in ¢ by using a
sub-segmental TM built on the user’s TM by means of the
method used to obtain phrase tables in statistical MT [22].
Finally, the sub-segments in ¢ aligned to mismatched sub-
segments in s are replaced by the translations of the cor-
responding sub-segments in s’ as they are found in the
sub-segmental TM. There are three main differences with
the approach described in this paper. First, context around
mismatches is not taken into account, which may lead to
incorrect translations due to boundary friction problems [23,
p- 341], such as incorrect agreement or incomplete word
reorderings. Second, the methods relies on the user’s TM
(which may be small) rather than on an external SBI. And
third, a single fuzzy-match repaired segment is produced,
even when the sub-segmental TM contains several transla-
tion alternatives per sub-segment, whereas we generate as
many fuzzy-match repaired segments as possible and then
use QE to select the best one.

A method for FMR to be applied on close matches
is described in [7]. It first performs a simple punctuation
repair and then applies a set of edit operations —deletions,
insertions and substitutions— to the target segment ¢ of the
TU (s,t) being repaired. To detect the target sub-segments
to be repaired it uses statistical word alignment models.
For deletions, it just removes from ¢ the translation of the
mismatched sub-segment in s, and the word to the left
of the sub-segment to be removed if it is not aligned to
any word in s. For insertions, it inserts in ¢ the new sub-
segment between the two target words aligned with the
matched words in s surrounding the sub-segment in s’
not appearing in s. For substitutions, it translates anchored
mismatched sub-segments in s’, that is, mismatched sub-
segments surrounded by words common to s, one word at
each end. The mismatched sub-segments are translated in-
context by translating the whole segment s’ using statistical
MT and constraining the output of the MT system to use
the sub-segments of ¢ aligned to sub-segments of s common
to s’ in a way similar to that used in [13], [14], [15]. The
main differences between this FMR approach and ours is
that it uses statistical word alignments and treats in a dif-
ferent way substitutions, deletions and insertions, whereas
our approach does not explicitly compute the alignment
between the words in s and ¢ and simply performs string
substitutions in ¢. In addition, this approach is not able to
repair a target segment t if the translation of the mismatched
source sub-segment does not consist of contiguous words in
t; our approach does not have this limitation because it does
not impose any constraint on the amount of anchor words
surrounding a mismatch sub-segment and their location.
Lastly, it can only use MT systems, such as Moses [24],
that allow part of the translation to be fixed beforehand; in
contrast, our approach can benefit from any available SBL.

Finally, it is worth noting that some commercial CAT
tools implement FMR methods. For example, MemoQ?® im-
plements a feature called MatchPatch that uses term bases
and other resources for FMR, while Déja Vu implements a
feature called DeepMiner* that extracts sub-segments from
the very same TM being used for their use for FMR. Un-
fortunately, details about how these methods work are not
available.

3 GENERATION OF CANDIDATE FUZZY-MATCH RE-
PAIRED SEGMENTS

This section describes the algorithm to generate a set of
candidate fuzzy-match repaired segments from a TU (s,)
and the source segment to be translated s’ using any SBL. °

In order to generate as many candidate fuzzy-match
repaired segments as possible, first a list of repair operators
is built (Section 3.1), and then all possible combinations of
repair operators are explored to generate the set of candidate
fuzzy-match repaired segments (Section 3.2).

A repair operator is a 4-tuple (o, 7,0’,7"), where

e 0 is a string-positioned sub-segment of s —that is, a
sub-segment of s together with an indication of word
positions spanned—,

e o' is a string-positioned sub-segment of s’ aligned
with o,

e T is a string-positioned sub-segment of ¢ which is
also one of the possible translations of ¢ according to
the SBI, and

o 7' isone of the translations of ¢’ according to the SBI,
indeed the sub-segment to be used for repairing ¢ by
replacing 7.

Repair operators work locally and fully-repaired segments
can be built by combining them.

3.1 Generation of repair operators

Algorithm 1 describes the procedure for building the list
of repair operators to be applied for the generation of
candidate fuzzy-match repaired segments.

To obtain the set of repair operators to be used, first, the
alignment between the words in s’ and those in s is obtained
as a by-product of the computation of the (word-level)
edit-distance [21] between s’ and s, a component of the
fuzzy-match score. The string-positioned sub-segment pairs
(0,0"), containing unaligned (unmatched) words and their
corresponding positions in s and s, are then obtained by
using the phrase-pair extraction algorithm used in phrase-
based statistical MT to obtain bilingual phrase pairs [22,
section 5.2.3]. These sub-segment pairs are then translated
into the target language to obtain the sets M and M’ of
sub-segment translations p and ' respectively using the
SBI available. Finally, these translations are used to build
repair operators by looking for all the occurrences in ¢ of
each target sub-segment 1 to get the corresponding string-
positioned target sub-segments 7, and then associating to

3. https://www.memoq.com/whats-new-in-memoq-2015

4. https:/ /atril.com/key-features/

5. This section is a copy of a similar section in a conference paper by
the same authors [6] and is included here for the shake of completeness.

3

Algorithm 1 BuildRepairOp(s’, (s,t)) generates the list of
repair operators to use.

Input: SL segment to be translated s’; TU (s,t) to be re-
paired
Output: A list of repair operators P
1: P4+ () > Initially P is an empty list
2: A «+ EditDistanceAligner(s’, s)
3: for (0, 0’) € ExtractPhrasePairs(s’, s, A) do

4: M <« Translate(o) > Set with translations of o
5. M’ <+ Translate(c’) > Set with translations of ¢’
6: forp e M do

7: for i/ € M' do

8: for 7 € FindInSegment(u,t) do

9: 7/ < AttachTranslationToString(r, 1)
10: append (o,0’,7,7') to P

11: end for

12: end for

13: end for

14: end for

15: return P

each 7 the target sub-segment 1’ to get 7/, the sub-segment
to be used for repairing. If © is not found in ¢, no repair
operator can be built. This acts as a quality check that
prevents the algorithm from building low-quality repair
operators.

The example in Figure 1 illustrates how the list of repair
operators is built. It is worth noting that only in those cases
in which g, the translation of o, is found as a contiguous
segment of words in the target segment ¢ of the TU being
repaired a repair operator can be built; this is indicated by
the fifth column in the table. This acts as a quality check
to avoid creating repair operators for sub-segments with
insufficient context that lead to translations that do not
appear in t.

3.2 Generation of fuzzy-match repaired segments

Candidate fuzzy-match repaired segments are built from the
list of repair operators P by combining them in all possible
ways. This is done through a backtracking depth-first ex-
haustive search, depicted in Algorithm 2, that incrementally
builds fuzzy-match repaired segments ¢~.

The algorithm is initialized two
calls, Repair(P, 0,1, (s,t),t, false, ()) and
Repair(P, 0,1, (s,t),t,true, ()), where () stands for an
empty list. At each level of the recursion tree a new
repair operator is considered and tested for applicability
(D = true) or discarded (D = false). For a repair operator
to be applicable it needs to be compatible with the set of
repair operators O applied so far to build t=; two repair
operators are incompatible if they edit the same word in
t or if they work on the same source-side mismatch (see
Section 3.2.1). If it is compatible with the rest of repair
operators in O, the repair operator is applied and added to
O; otherwise the branch of the recursion tree is cut. When
a leaf of the search tree is reached (i.e. n = length(P)) the
corresponding fuzzy-match repaired segment ¢t~ is added
to the list T' of candidate fuzzy-match repaired segments.
The algorithm ApplyRepairOp(o,t~) replaces in ¢~ the

with

!

/!

o o W W win t?
Gina found [1-2] found [2] Gina encontré encontré no
Gina found [1-2] Bill found [1-2] Gina encontré Bill encontré no
Gina found out [1-3] found out [2-3] Gina se enteré se entero yes
Gina found out [1-3] Bill found out [1-3] Gina se enteré Bill se enteré yes
Sfound [2] Bill found [1-2] encontré Bill encontré no
found out [2-3] Bill found out [1-3] se enterd Bill se enteré yes
about the [4-5] about the fraud [4-6] sobre el de la estafa no
about the news [4-6] about the [4-5] de noticias sobre el no
about the news [4-6] about the fraud [4-6] de las noticias de la estafa yes
the [5] the fraud [5-6] el la estafa no
the news [5-6] the [5] las noticias el yes
the news [5-6] the fraud [5-6] las noticias la estafa yes

Figure 1: Example illustrating how the list of repair operators is built. The segment s’ = Bill found out about the fraud is to be
translated into Spanish with the help of the TU (s,t) = (Gina found out about the news, se enterd de las noticias). Unmatched
(unaligned) words in s" are Bill and fraud; unmatched (unaligned) words in s are Gina and news. The string-positioned
sub-segment pairs (0, 0’) shown are those up to length 3 that contain at least an unmatched word. Their translations
(u, ¢') into Spanish are also provided. In this example, we assume that every o and ¢’ has a single translation, that is, that

M and M’ are singletons.

sub-segment 7 by 7’; this can be safely done if repair
operator P, is compatible with the other repair operators
applied so far.

The algorithm takes advantage of the fact that repair
operators that are compatible can be applied in any order
because the repaired segment to be generated would be the
same. Thanks to this assumption, the worst-case complexity
of the algorithm is O(2"), with n = length(P), in which case
2" fuzzy-match repaired segments would be produced.®
However, as many repair operators are incompatible, the
actual complexity of the algorithm is well below the worst
case (see Section 6.4).

For the example in Figure 1, our method would produce
26 = 64 fuzzy-match repaired segments if all 6 repair
operators were compatible. However, most of them are not
compatible because they edit the same words in ¢; as a result,
the algorithm ends up producing only 25 repaired segments.
Some of these 25 fuzzy-match repaired segments are iden-
tical even if they are produced by applying a different set
of repair operators. For instance, the fuzzy-match repaired
segment Bill se enterd de la estafa is produced by applying the
repair operator (Gina found out, Bill found out, Gina se enterd,
Bill se enteré) followed by either the repair operator
(about the news, about the fraud, de las noticias, de la estafa) or
the repair operator (the news, the fraud, las noticias, la estafa).

3.2.1 Compatibility of repair operators

Two repair operators are deemed incompatible, and
therefore cannot be applied to build the same candidate
fuzzy-match repaired segment, if they edit the same word
in t or if they work on the same source-side mismatch,
that is, if they take care of the same change in s. Note
that there may be repair operators that do not edit any
word in t but introduce missing ones. In those cases, if
they were applied to build the same candidate fuzzy-match
repaired segment, they could end up producing candidate

6. If the algorithm had to explore the application of all the repair
operators in P and in all possible orders, its worst-case complexity
would be super-exponential.

Algorithm 2 Repair(P,O,n,(s,t),t~,D,T) generates all
possible fuzzy-match repaired segments by backtracking.

Input: List of repair operators P; set of repair operators O
applied so far; position in P of the repair operator being
considered, n; TU to be repaired (s,t); fuzzy-match
repaired segment being built {=; boolean D indicating
whether the n-th repair operator in P will be attempted
to apply (true) or not (false); list 7' containing fuzzy-
match repaired segments

1: if D then
2: if Compatible(P,, O, (s,t)) then
3: ApplyRepairOp(P,, t)
4: O+ OU{P,}
5 else
6: return > Prune this branch of the recursion tree
7. end if
8: end if
9: if n = length(P) then
10: append t~ to T
11: return > All the operators have been considered
12: else
13: Repair(P,0,n+ 1, (s,t),t=, true, T')
14: Repair(P,0,n + 1, (s,t),t~, false, T')
15: end if

fuzzy-match repaired segments ¢~ with repeated words.
The following example illustrates this situation. Suppose
the segment s’ = the size does not exceed 100 cm to be
translated with the help of the translation unit (s,t) =
(the size does not exceed 100, el tamario no supera los 100) whose
target segment can be repaired with the
two repair operators (01,00, 71,71) =
(exceed 100, exceed 100 cm, supera los 100, supera los 100 cm)

and (09,05, 72,75) = (100,100 cm,los 100, los 100 cm).
Both repair operators do not edit (change) any word
in ¢t but if they are applied one after the other the
result would be the fuzzy-match repaired segment
t= = el tamafio no supera los 100 cm cm, which contains

duplicated words due to the fact that the word cm is to be
inserted by both operators.

To avoid this problem we need to identify when two
repair operators work on the same source-side mismatch,
and to do so, one needs to check the mismatches both in
s and s’ because there may be words in s not appearing
in ' (the mismatch only shows up in s), or words that do
not appear in s but are introduced in s’ (the mismatch only
shows up in &/, as in the example above). Hence two repair
operators o; = (04,0}, 7;,7;) and 0; = (0,07}, 7;,7;) will be
marked as incompatible if they edit the same word in ¢ or
they meet the following condition:

(mismatch(o;, s) N mismatch(o;, s) # 0)V
(mismatch(o7}, s") N mismatch(c’, s") # 0)

where mismatch(z, y) returns the set of mismatched words
covered by sub-segment x in segment y.

It is worth nothing that this last restriction may mark as
incompatible two repair operators that, even though they
work on the same mismatch, do not edit the same words in
t. In those cases it is still advisable to forbid the application
of the two repair operators since it is very likely that they
work on the same region in ¢ and their application interfere
with one another. The following example illustrates this
situation. Suppose the segment s’ = the size is around 100 cm
to be translated with the help of the translation unit
(s,t) = (the size is about 50 cm, el tamafio es de unos 50 cm)
whose target segment can be repaired with the two re-
pair operators o1 = (o1,0%,71,71) = (is about,is around,
es de unos, estd alrededor de) and oy = (09,05, 72,75) =
(about 50, around 100, de unos 50, de unos 100). Both opera-
tors share a mismatch (about) but do not edit the same
words in t: oy edits the word es (which is replaced by
estd), introduces the word alrededor and removes (edits)
the word umnos; o, edits the word 50 and replaces it by
100. The two operators can be applied at the same time if
operator o0y is applied first —the repaired target segment
being t= = el tamaiio estd alrededor de 100 cm— but not the
other way around. Recall that the algorithm described in
Section 3.2 assumes that repair operators can be applied
independently of each other and the order in which they
are applied does not affect the final result.

4 QUALITY ESTIMATION OF CANDIDATE FUZzY-
MATCH REPAIRED SEGMENTS

In the context of MT, sentence-level quality estimation (QE)
methods [9], [10] have been developed during the last two
decades to avoid bothering professional translators with
low-quality translations, to choose among a set of different
translations produced by different MT systems for a given
source segment, or to estimate the effort to post-edit a given
MT output. Quality is usually measured in terms of post-
editing time, in terms of the amount of edit operations
needed to turn the translation into an adequate translation,
or using other related metrics [25], [26].

MT QE techniques can easily be adapted for estimating
the quality of the different candidate fuzzy-match repaired
segments produced for the source segment to be translated
and pick the best one. There are mainly two different
approaches to achieve this: the use of a binary classifiers

5

and the use of a regressor. The former can be used to
select the best translation on a pairwise comparison basis
[27]; the latter can be used to rank the set of candidate
fuzzy-match repaired segments. In this paper we follow
this last approach; in particular, we use, after preliminary
experiments with linear and support-vector regressors [28],
extremely randomised trees [11] for regression.

In the following, we describe the features used by the
regressor. In particular, we describe two sets of features:
one using information readily available to CAT tools (black-
box features, Section 4.1), and a second one that exploits
information from the inner workings or the repair algorithm
used to generate the set of candidate fuzzy-match repaired
segments (glass-box features, Section 4.2).

4.1 Black-box (system-independent) features

The following features, some of which are borrowed from
the set of 17 baseline features used in the shared tasks on MT
QE at the WMT MT contests and implemented in QuEst++
[29]” use only information already present in the source
segment to be translated s', in the candidate fuzzy-match
repaired segment ¢~ or in the translation unit being repaired

(s,t):

BBl Number of tokens in the source segment s’.

BB2 Number of tokens in the candidate fuzzy-match
repaired segment ¢~.

BB3 Ratio of the number of tokens in ¢~ to the
number of tokens in s'.

BB4 Number of punctuation marks in s'.

BB5 Number of punctuation marks in ¢~.

BB6 Ratio of the number of punctuation marks in ¢~
to the number of punctuation marks in s’.

BB7 Number of digits in s'.

BB8 Number of digits in ¢=.

BB9 Ratio of the number of digits in ¢~ to the number
of digits in s'.

BB10 Source fuzzy-match score: FMS(s, s').

BB11 Target fuzzy-match score: FMS(¢,¢~).

BB12 Ratio of the source fuzzy-match score to the
target fuzzy-match score:

FMS(s, s’)
FMS(t,t~)"

BB13 Source sub-segment-level alignment mismatch
score: MMSqeq (s,). It is computed by using the
matching and mismatching sub-segments as the
building blocks when computing the edit dis-
tance; this implies a monotonic segmentation of
(s, s") performed on the basis of the word align-
ments obtained as a by-product of the edit dis-
tance.® It measures the ratio of mismatched sub-
segments to the total number of sub-segments.

BB14 Target sub-segment-level fuzzy-match score:

MMS,eq (£, £5).

7. https:/ / github.com/ghpaetzold /questplusplus

8. This is similar to the n-gram tuples used in n-gram based statistical
MT [30, Sec. 2.1]

BB15 Ratio of the source sub-segment-level fuzzy-
match score to the target sub-segment-level

fuzzy-match score:

MMSgeg (s, 8")
MMSgeq (¢, %)

It is worth noting that features BB1, BB4, BB7, BB10 and
BB13 do not pay attention to the candidate fuzzy-match
repaired segment but to the source segment to be translated
(s") and its relation to the source segment (s) in the TU being
repaired. Nevertheless, the learning algorithm can rely on
them to specialise the trees to be used for regression, that is,
to use different sub-trees for regression depending on their
value.

4.2 Glass-box (system-dependent) features

The features described next make use of information about
the inner workings of the repair algorithm used to generate
candidate fuzzy-match repaired segments; more precisely,
they capture information about the repair operators used
and their form:

GB1 Ratio of word positions in t= covered by at least
one repair operator to the number of words in

{7 : 37" A t5 is part of 7'}
= 7

where ¢5* is the j-th word of t=.
GB2 Sum of the length of the repair operators used to
build ¢t~ divided by the length of ¢~:

N
2z |7
=

where N is the number of repair operators used
to get t=. Notice that a word in ¢~ may be
covered by more than one repair operator and
is counted as many times as it is covered.

GB3 Ratio of word positions common to ¢ and ¢t~ that
are covered by at least one repair operator to the
number of words positions common to ¢ and ¢~;
i.e. average overlap:

[{j : 37 At is part of 7 A j € match(t,t7)}]
|match(t, t~)] ’

where function match(¢,?~) returns a set with
the word positions common to ¢ and ¢~.

GB4 Sum of the length of the overlapping sub-
segments of the repair operators used to build
t= divided by the length of t=:

SN | Jmatch(t, 7))
|t=| '

The overlapping sub-segments of a repair opera-
tor are those containing words common to ¢ and
t=. As above, a word common to ¢ and ¢~ may
be covered by more than one repair operator
and is counted as many times as it is part of
an overlapping sub-segment.

GB5

GB6

GB7

GB8

GB9

GB10

GB11

6

Ratio of words in s’ covered by at least one o’
used to build a repair operator to the number of
words in s':

{7 : 3o’ A8 is part of o'}

' ’

where s, is the j-th word of .

Sum of the length of the ¢’s used to build a
repair operator divided by the length of s':

Similarly to GB2, a word in s’ may be covered by
more than one ¢’ and is counted as many times
as it is covered by a o’.

Ratio of matched source word positions that are
covered by at least one o used to build a repair
operator to the number of matched source words
positions; i.e. average overlap in the source lan-

guage:
[{j : 3o A s; is part of o A j € match(s, s’)}|
|match(s, s')] '

Sum of the length of the overlapping sub-
segments of the (o, 0’) used to build the repair
operators used to get ¢t~ divided by the length
of s’
Y.Ly [mateh(s, o)
Ed

The overlapping sub-segments here are those
containing words common to s and s'. As above,
a word that is part of the matching between s
and s’ may be covered by more than one (o, 0’)
and is counted as many times as it is part of an
overlapping sub-segment.

Mean target context per repair operator:

S, JLCS(ri, 7))
SN min(|r], | 7/])’

where LCS(z,y) is the longest common sub-
sequence to z and y.
Mean source context per repair operator:

ity [LCS(i, o))
3Ly minloil, o)
Measure of how evenly distributed are the mis-
matched target-language sub-segments in the

repair operators used to build the fuzzy-match
repaired segment ¢~

N jl—1
SRy bl Ty il
N
Ek:l ‘Tk‘

where nj is the number of matching sub-
segments in 73, and m; is the i-th matching sub-
string. When computing 7, it must be taken into
account that every matched sub-segment must
consist of contiguous words both in 7 and 7’.
The closer the value of the feature is to 1, the

9

more evenly distributed the mismatched sub-
segments are.

Measure of how evenly distributed are the mis-
matched source-language sub-segments in the
repair operators used to build the fuzzy-match
repaired segment ¢=:

S lowl T ity
Zgﬂ |o%|

where nj is the number of matching sub-
segments in o3, and m; is the i-th matching sub-
string. As above, when computing 7, it must
be taken into account that every matched sub-
segment must consists of contiguous words both
in o and ¢”, as in GB11. The closer the value of
the features is to 1, the more evenly distributed
the mismatched sub-segments are.
Number of repair operators used to get t= di-
vided by the number of mismatched words in
5.
Number of repair operators used to get t~
divided by the number of mismatched sub-
segments in s (sequences of contiguous word
positions).
Number of repair operators used to get t~.
Ratio of grounded repair operators to the number
of repair operators used to get t~. A repair
operator is considered to be grounded if at least
one word at each end of o is matched.
Binary feature to flag whether all the repair
operators used to get ¢~ are grounded or not.

GB12

i

GB13

GB14

GB15
GB16

GB17

5 EXPERIMENTAL SETTINGS

We evaluate our FMR approach on three different lan-
guages pairs, namely English-Spanish (en-es), Spanish—-
Portuguese (es-pt) and Spanish-French (es-fr), using
texts from the DGT translation memory [31] and an MT
system as SBI. We use these language pairs to study how our
FMR approach behaves when translating between closely-
related languages (es-pt and es-fr) and when the lan-
guages involved in the translation are not so closely related
(en-es). Of the two closely-related languages we use, Span-
ish and Portuguese are more alike than Spanish and French:
Spanish and Portuguese are both pro-drop, Ibero-Romance
languages —they permit null-subject sentences— whereas
French is a non-pro-drop Gallo-Romance language. English
is non-pro-drop.

This section describes the resources used, the way the
training samples used to train the QE component of the
method were generated, the regressor used and how it is
trained, and the metrics used to evaluate the performance
of our FMR approach.

5.1 Resources

We use the DGT-TM 2015 parallel corpus’ for the three
language pairs (en-es, es—pt and es-fr). For each fuzzy-
match-score threshold (FMT) ¢ used in our experiments,

9. https:/ /ec.europa.eu/jrc/en/language-technologies/
dgt-translation-memory

7

Language Training Development Test
FMT (#) ™ ir N, N~ N. N~ No N,
en-es 3,249 17.6 238 14.8 460 32.2
60% es-pt 3194 149 220 155 1,084 11.3
es—fr 2930 140 120 146 1,070 16.4
en-es 2,289 98 157 16.6 355 255
70% es-pt 1,981 108 134 18.5 678 117
es-fr 2,376 124 94 17.1 716 17.2
en-es 1,250 6.1 50 8.3 194 5.5
80% es-pt 1,267 7.6 83 9.0 554 9.5
es-fr 1,812 57 122 10.1 588 132
en-es 239 6.9 18 8.3 56 3.3
90% es-pt 483 7.2 33 13.1 229 6.8
es—fr 762 5.4 50 4.2 236 6.6

Table 1: For each fuzzy-match score threshold (FMT; ¢) and
language pair, number of segments to be translated (V)
and average number of candidate fuzzy-match repaired
segments per segment to be translated (V;~) in the training,
development and test sets.

we split the DGT TM 2015 corpus into three sets: one for
training the regressor used for QE (training), another to se-
lect the configuration of the regressor to be finally used (see
next section; development) and a third one for performance
evaluation (testing). This splitting can be formally described
as follows. Let P be the parallel corpus, J; a randomly
drawn subset of P, a translation job, for the FMT ¢, and
Mgy = P — Jy the translation memory to be used. J is built
by randomly selecting parallel segments (s',t') from P so
that the final set meets the following condition:

V(s',t') € Jy,3(s,t) € My : FMS(s,s') > ¢.

After building J4, we remove those segments for which,
with the MT system used as SBI, it is not possible to build
at least one repair operator. The resulting set is then divided
into three disjoint subsets, Jy train, Jg,dev and Jg test, such
that J3 = Jg train U Jp,dev U J4 test- Table 1 shows, for each
FMT used in the experiments and for each language pair,
the amount of segments to be translated and the average
number of candidate repaired segments t~ per segment
to be translated s’. These sets were obtained as explained
above from a parallel corpus P with 196,294 segments
for en-es, 150,567 for es-pt and 149,479 for es—fr. For
convenience, the TM to be used is the same for all FMTs,
Mo, that is the one obtained for ¢ = 60%.

The figures in Table 1 show that, as expected, the number
of segments to be translated decreases as the FMT increases:
the chances of finding a match with a 60% FMT is higher
than that of a 90% FMT. It is also worth noting that the av-
erage number of candidate fuzzy-match repaired segments
per segment to be translated also goes down as the FMT
grows because the percentage of words to be repaired, and
therefore the number of repair operators, is reduced.

For each (s',t') € Jy train @ set of training samples is
generated as follows. First the repair algorithm described in
Section 3 is run to generate the set of candidate fuzzy-match
repaired segments {¢t~} for the translation of s’ using the
TU with the highest FMS, that is, the TU (s,t) € Mggy :
(A(s”,t") € Mgoy, : FMS(s',s) < FMS(s',s”)).1% Then,
from each candidate fuzzy-match repaired segment t~ a

10. If there is more than one TU meeting this condition, one is selected
at random.

Language FMT (¢)
pair 60% 70% 80% 90%
en-es 57,816 22,333 7,663 1,661
es-pt 47,675 21,305 9,589 3,492
es-fr 41,124 29,432 10,351 4,140

Table 2: For the training set, number of samples for the
different fuzzy-match-score thresholds (FMT) used in the
experiments.

training sample is generated by computing the features
described in Section 4 and the error rate to be predicted.
This error rate is defined as:

ED(t~,t)

58 = (= oD

)
where ED(z,y) returns the word-based edit distance [21]
between the segments x and y. This way of computing the
error rate resembles the way in which the fuzzy-match score
is computed.!! Table 2 shows, for the different fuzzy-match
score thresholds used, the amount of training samples used
to train the regressor used for QE.

The corpora used to build the training, development
and test sets may contain parallel segments that are free
translations of one another, and this may be introducing
noise affecting the regressor’s performance. This problem
was already detected in the DGT-TM 2015 parallel corpus
and a simple filtering method to discard this noise was
proposed [32]. This method removes the candidate repaired
segments obtained from a segment to be translated s/,
reference translation ¢’ and TU to be repaired (s, t) for which
|[FMS(s, s") — FMS(¢t,t')| > 0.05. This filtering is based on
the assumption that the number of words that differ in both
pairs of segments should be similar for both languages. In
Section 6, we report results when using both filtered and
non-filtered corpora to study the effect of this noise on
the regressor’s performance. By applying this filtering the
amount of segments that are discarded is around 22%.

Regarding the MT system to be used for FMR,
we have used the Apertium MT platform [33].12
More precisely we have used the following language
pair packages: apertium-en-es, apertium-es-pt and
apertiumffrfes.13

5.2 Regressor

In Section 6, we report the results obtained when using ex-
tremely randomised trees (ERT) [11] because it is the regressor
that performed best when evaluated on the development
corpus on a set of preliminary experiments in which we also
tried with linear regression and support vector regression
(SVR) [28]. In the case of SVR, we performed a 3-fold cross-
validation grid search to find the optimum hyper-parameter
values of the Gaussian radial-basis function kernel we
used and tried with different feature selection methods,
such as recursive feature elimination [34], chi-square, and

11. For instance, OmegaT (http://www.omegat.org) computes the
. / ED(s,5")
fuzzy-matching score between s and s’ as 1 — (5.7
12. https:/ /www.apertium.org

13. SVN revisions 64348, 62539 and 62696,respectively.

8

the Gini importance computed over extremely randomised
trees [35].14

Extremely randomised trees (ERT) is a tree-based ensemble
method for classification and regression [11]. At each inter-
nal tree node the best feature is determined from a subset of
features selected at random from the whole set of features
whereas the cut-off point is selected fully at random. In our
implementation the best feature is selected according to the
Gini importance, also know as mean decrease in impurity [36,
ch. 4] (see Section 6.3 for more information). When ERTs
are used for regression, the prediction is computed as the
average of the output of all the trees in the ensemble.

The main hyper-parameters controlling the learning pro-
cess of ERT are the size of the subset of features randomly
selected (N) and the amount of trees in the ensemble ().
If N = 1, the feature to use in each internal node is
selected fully at random and the method builds completely
randomised trees. If N equals the total amount of features
(F), randomisation only happens in the selection of the
cut-off point. In our experiments we tried with N = \/F,
N = logy(F) and N = F; the best results on the devel-
opment set were obtain with N = F, as reported in [37].
As regards the amount of trees in the ensemble we tried
with 10, 100, 200, 500, 800 and 1,000 and, overall, the best
results on the development set were obtained for M = 100.
The difference between using 100 or more trees is negligible.
With respect to the rest of parameters, we used the default
ones in the ERT implementation of scikit-learn.'

Finally, due to the randomisation of trees, different
training executions give as a results regressors with small
differences in the output they provide. The results we report
in the following section are those obtained with the ERT
performing best on the development set out of ten different
training executions.

5.3 Evaluation

We measure the performance of our FMR guided by QE
approach with the following metrics:

e Error rate over the whole test set, which accounts for
the amount of edit operations needed to carry out a
translation job:

N
Zi:l ED(tP, t;)
N ’
ey max([tg], [¢7])

where t] is the gold standard translation in the test
set for the source segment s, and 7 is the trans-
lation being evaluated; ¢’ may be the (unrepaired)
target segment ¢;, a candidate fuzzy-match repaired
segment ¢;° produced by our repair algorithm or the
translation of s; produced by the MT system.

o Mean absolute error (MAE) of the error rate predicted
by the ERT regressor on each candidate fuzzy-match
repaired segment in the test set. MAE evaluates the

14. SVR implementation used: version 0.19 of scikit-learn, http://
scikit-learn.org/stable/modules/generated /sklearn.svm.SVR.html.

15. Version 0.19, http:/ /scikit-learn.org/stable/modules/
generated /sklearn.ensemble.ExtraTreesRegressor.html.

ability of the regressor to predict error rates at the
segment level. It is computed as

S S (e)
N
Zi:l Mi

where £(-) and £(-) are the predicted error rate (see
Equation (1)) and the error rate to be predicted,
respectively, and M; is the number of candidate
fuzzy-match repaired segments produced for source
segment s;.

e Success rate (SR) of the ERT regressor used to select
the best candidate fuzzy-match repaired segment.
It is computed by comparing the amount of edit
operations that are saved when editing the candidate
fuzzy-match repaired segment t;° with the lowest
predicted error rate, instead of the (unrepaired) tar-
get segment ¢; of the TU being repaired, to the
amount of edit operations saved when editing the
best possible (oracle) fuzzy-match repaired segment
e

— &t 1)

7

SN [ED(tth) ~BD(4|
i=1 ED(t;,1])_ED(t,t))]

N
where t] is the gold standard translation in the test
set for the source segment s;. This metric shows how
good is t;° as compared to the best possible repaired
segment (oracle) produced by the repair algorithm
described in Section 3: the numerator is the actual
change in the edit distance when replacing ¢; with
the repaired version t;° and the denominator is the
change in edit distance that would be produced if ¢;
was replaced with the oracle (best possible) repair ¢

6 RESULTS AND DISCUSSION

We first evaluate the ability of our FMR approach to pro-
duce, for each source segment in the test sets, a candidate
fuzzy-match repaired segment as close as possible to the
desired translation (Section 6.1). We then evaluate how well
our QE approach performs when selecting the best candi-
date fuzzy-match repaired segment among the whole set of
candidates produced (Section 6.2). Finally we discuss on the
informative of the features used for QE (Section 6.3) and the
actual complexity of the Repair algorithm (Section 6.4).

6.1 Oracle evaluation

Table 3 shows the error rate, computed as described above,
when the target segment to be evaluated is the target seg-
ment ¢ in the TU being repaired (TM), when it is produced
by translating the whole source segment s’ using the MT
system being used for FMR, and when it is the best possible
(Oracle) candidate fuzzy-march repaired segment produced
by our algorithm. We provide error rates computed on non-
filtered corpora as well as on the corpora filtered following
the method [32] described in Section 5.1.16

16. It is worthwhile noting that our FMR approach is independent
of the MT system used as SBIL. English-Spanish experiments using
a Transformer neural MT (NMT) system trained on the JRC-Acquis
corpus provided analogous results to those in Table 3; that is, using the
NMT system both to repair and as a baseline, the Oracle is better than
both the unrepaired target segment ¢ and the raw NMT output.

Non-filtered corpora Filtered corpora

FMT |—TM [MT | Oracle | TM | MT | Oradle
English-Spanish
60% 27.16 | 57.61 2324 || 2213 | 56.73 17.91
70% 22.83 | 56.21 19.32 || 18.53 | 56.43 14.73
80% 17.31 | 61.60 14.31 || 13.27 | 56.00 9.71
90% 11.63 | 66.84 585 || 11.21 | 5891 478
Spanish-Portuguese
60% 22.08 | 40.56 15.86 || 17.29 | 36.86 10.07
70% 18.20 | 40.00 13.41 || 13.63 | 36.30 8.03
80% 15.29 | 39.67 11.13 || 10.62 | 35.55 5.52
90% 10.42 | 44.87 7.69 724 | 40.23 3.97
Spanish-French
60% 19.78 | 49.66 15.34 || 15.27 | 48.59 10.81
70% 15.97 | 49.75 12.52 || 1217 | 48.54 8.71
80% 12.48 | 49.56 9.38 9.84 | 48.51 6.56
90% 771 | 51.42 5.36 6.34 | 50.72 3.75

Table 3: For the non-filtered and filtered corpora, error rate
(%) for the target segment ¢ in the TU (s, t) being repaired
(TM), for the translation produced by the MT system for
the whole source segment s’ (MT) and for the best possible
fuzzy-match repaired segment t* (Oracle).

As can be seen for the three language pairs and for all
FMT, our repair algorithm is capable of producing a fuzzy-
match repaired segment with an error rate below that of
the target segment in the TU being repaired and that of the
translation produced by the MT system used for repairing. It
is worthwhile to recall that the test sets used are made up of
segments for which there is at least a match above the given
FMT; this explains why the error rate of the TM proposals
gets lower as the FMT grows. As regards the corpora, the
results show lower error rates for all three approaches across
the table when evaluated on the filtered corpora, which is
consistent with the way in which the corpora are filtered.

The difference between the best candidate fuzzy-match
repaired produced (Oracle) by our algorithm and the MT-
produced translations reveals that our FMR approach is
quite robust to MT errors. This is because for a repair
operator to be successfully built, 7, the translation of the
sub-segment o of s, must appear as a contiguous text sub-
segment in ¢, the translation proposal being repaired. This
acts as a quality filter that makes our FMR approach not
to use for repairing sub-segments for which the SBI does
not match the TM. Obviously, this quality check cannot be
performed on 7/, the translation of the sub-segment ¢’ in
s’ aligned with 0. However, it seems that having a quality
check on 7 helps to ensure that most of the repair operators
built are of good quality.

6.2 Quality estimation evaluation

In order to determine the best configuration to train the
regressor to be used to estimate the quality of fuzzy-match
repaired segments, we have tried with the following setups:
(1) training different ERT regressors for different FMTs and
language pairs, (2) training one regressor per language pair
regardless of the FMT, and (3) training a single regressor for
all language pairs and FMTs. As above, we provide results
when the ERT is trained and evaluated both on filtered and
non-filtered corpora.

10

FMT Non-filtered corpora Filtered corpora
TM | ERT | Oracle [SR | MAE [| TM | ERT | Oracle [SR | MAE
English—-Spanish
60% 27.16 | 25.71 23.24 | 0.37 0.06 || 22.13 | 19.38 1791 | 0.65 0.04
70% 22.83 | 21.58 19.32 | 0.36 0.06 || 18.53 | 15.71 14.73 | 0.74 0.04
80% 17.31 | 16.14 14.31 | 0.39 0.07 || 13.27 | 1091 9.71 | 0.66 0.05
90% 11.63 | 7.55 5.85 | 0.71 0.07 || 11.21 | 5.77 478 | 0.85 0.02
Spanish-Portuguese
60% 22.08 | 17.74 15.86 | 0.70 0.11 || 17.29 | 11.84 10.07 | 0.76 0.06
70% 18.20 | 15.35 13.41 | 0.59 0.09 || 13.63 | 9.77 8.03 | 0.69 0.04
80% 15.29 | 13.54 11.13 | 0.42 0.08 || 10.62 | 6.79 552 | 0.75 0.03
90% 1042 | 8.73 7.69 | 0.62 0.08 724 | 456 3.97 | 0.82 0.03
Spanish-French
60% 19.78 | 17.31 15.34 | 0.56 0.08 || 15.27 | 12.45 10.81 | 0.63 0.05
70% 1597 | 14.44 12.52 | 0.44 0.07 || 12.17 | 10.37 8.71 | 0.52 0.05
80% 12.48 | 10.99 9.38 | 0.48 0.05 984 | 7.44 6.56 | 0.73 0.03
90% 771 | 6.50 536 | 0.52 0.06 6.34 | 457 3.75 | 0.68 0.03

Table 4: For both the non-filtered and filtered corpora, error rate (%) for the target segment in the TU being repaired (TM),
for the fuzzy-match repaired segment with the lowest predicted error rate (ERT) and for the best possible one (Oracle).
Success rates (SR) and mean absolute errors (MAE) are also provided. A different ERT regressor was trained for each FMT

and language pair.

Table 4 shows the error rates obtained for the target
segment in the TU being repaired (TM) —the one with the
highest fuzzy-match above the FMT—, for the fuzzy-match
repaired segment with the lowest predicted error rate (ERT)
and for the best possible fuzzy-match repaired segment
produced by the repair algorithm (Oracle). The table also
provides the success rate (SR) obtained by comparing the
error rate of the oracle and the error rate of the fuzzy-match
repaired segment with the lowest predicted error rate, and
the mean absolute error (MAE) of the ERT regressor. For
each FMT and language pair a different ERT regressor was
trained.

The results show that the use of the ERT regressor to
select, for a given source segment and TU, the candidate
fuzzy-match repaired segment with the lowest predicted
error rate performs better on the filtered corpora, where
noisy translation units have been removed from the training,
development and test sets, than on the non-filtered corpora.
The difference in performance is noteworthy for FMT below
90%, especially in the case of English-Spanish. Additionally,
the success rate, that is the proportion of edit operations
saved when editing the selected candidate fuzzy-match
repaired segment over the number of edit operations saved
when editing the best possible fuzzy-match repaired seg-
ment, increases as the FMT grows; for 60% FMT the success
rates on the filtered corpora are around 0.68, whereas for
90% FMT they scale up to 0.78, surpassing 0.80 for English—
Spanish and Spanish-Portuguese. Our QE method is clearly
better at ranking fuzzy-match repaired segments when the
amount of mismatched sub-segments is small; which is the
typical scenario where TM-based CAT is used.!”

If we pay attention to the performance of the ERT
regressor when evaluated as such, we can see that the
MAE: reported are below 0.10 in all cases but one (es-pt,
60% FMT, non-filtered corpora), and that, for the filtered
corpora they are around 0.05. This accounts for the high
informativeness of the features defined in Section 4. We do
not report the root mean square error because it shows a

17. Fuzzy-matches are seldom used for FMS < 70%.

similar trend. It is worth noting that MAE is computed at
the sample-level and, as a result, all candidate fuzzy-match
repaired segments are equally judged, regardless of length.

The results in Table 4 were obtained when using a dif-
ferent ERT regressor per FMT and language pair. In order to
study how dependent is the ERT regressor on the FMT used
for training, we repeated the experiments reported in Table 4
but using a single regressor per language pair. In particular,
we used the regressor trained on samples obtained from
TUs for which the fuzzy-match is above the 60% FMT; the
results are reported in Table 5.

From the comparison of the results in tables 4 and 5 we
can conclude that using a single ERT regressor per language
pair is the best option. The results obtained with a single
regressor are better than those obtained with a regressor
per FMT, especially for the 80% and 90% FMTs. This is
probably due to the fact that the amount of training samples
for 80% FMT and 90% FMT is an order of magnitude lower
as compared to 60% FMT (see Table 2), and as a result the
ERT regressor was not learning adequately.

None of the features used and listed in Section 4 is
language-dependent, although the distribution of their val-
ues and how informative they are may differ from one
language to another. To ascertain whether or not the ERTs
informed by these features are also language-independent,
we repeated the experiments reported in Table 5 but training
an ERT regressor on the samples obtained from TUs for
which the fuzzy-match is above the 60% FMT for all language
pairs together. Table 6 reports the results obtained; it is worth
noting that the same ERT regressor is used regardless of the
FMT and language pair, and that the amount of training
samples is 146,615.

The results in Table 6 are quite similar to those in Table
5, where a different ERT is used per language pair. For some
language pairs and FMTs results improve slightly, while for
others they worsen slightly. This allow us to conclude that,
given the small difference in the success rates reported in
both tables it is advisable to use a single regressor trained
on 60% EMT for all languages together, at least for languages

11

FMT Non-filtered corpora Filtered corpora
TM | ERT | Oracle [SR | MAE [| TM | ERT | Oracle [SR | MAE
English—-Spanish
60% 27.16 | 25.71 23.24 | 0.37 0.06 || 22.13 | 19.38 1791 | 0.65 0.04
70% 22.83 | 21.30 19.32 | 0.44 0.06 || 18.53 | 15.68 14.73 | 0.75 0.05
80% 17.31 | 16.07 14.31 | 041 0.07 || 13.27 | 10.54 9.71 | 0.77 0.04
90% 11.63 | 6.29 5.85 | 0.92 0.07 || 11.21 | 5.00 4.78 | 0.96 0.02
Spanish-Portuguese
60% 22.08 | 17.74 15.86 | 0.70 0.11 || 17.29 | 11.84 10.07 | 0.76 0.06
70% 18.20 | 15.14 13.41 | 0.64 0.09 || 13.63 | 9.54 8.03 | 0.73 0.04
80% 15.29 | 12.75 11.13 | 0.61 0.09 || 10.62 | 6.61 552 | 0.79 0.04
90% 1042 | 8.66 7.69 | 0.64 0.09 724 | 449 3.97 | 0.84 0.03
Spanish-French
60% 19.78 | 17.31 15.34 | 0.56 0.08 || 15.27 | 12.45 10.81 | 0.63 0.05
70% 15.97 | 14.19 12.52 | 0.52 0.07 || 1217 | 9.90 8.71 | 0.66 0.05
80% 12.48 | 10.82 9.38 | 0.53 0.06 984 | 7.71 6.56 | 0.65 0.03
90% 771 | 643 536 | 0.55 0.06 6.34 | 4.46 3.75 | 0.73 0.02

Table 5: Error rate for the target segment in the TU being repaired (MT), for the fuzzy-match repaired segment with the
lowest predicted error rate (ERT) and for the best possible one (Oracle). Success rates (SR) and mean absolute errors (MAE)
are also reported. A single ERT regressor was trained on 60% FMT for each language pair.

EMT Non-filtered corpora Filtered corpora
TM [ERT | Oracle | SR | MAE || TM | ERT | Oracle | SR | MAE
English—Spanish
60% 27.16 | 25.64 23.24 | 0.39 0.06 || 2213 | 19.72 1791 | 0.57 0.04
70% 22.83 | 21.20 19.32 | 0.47 0.06 || 18.53 | 15.77 14.73 | 0.73 0.04
80% 17.31 | 15.97 14.31 | 0.45 0.08 || 13.27 | 10.40 9.71 | 0.81 0.05
90% 11.63 6.36 5.85 | 0.91 0.10 || 11.21 5.00 478 | 0.96 0.02
Spanish-Portuguese
60% 22.08 | 17.69 15.86 | 0.71 0.11 || 17.29 | 11.42 10.07 | 0.81 0.05
70% 18.20 | 15.23 13.41 | 0.62 0.09 || 13.63 9.11 8.03 | 0.81 0.04
80% 15.29 | 12.70 11.13 | 0.62 0.07 || 10.62 6.34 552 | 0.84 0.04
90% 10.42 8.83 7.69 | 0.58 0.07 7.24 4.55 3.97 | 0.82 0.04
Spanish-French
60% 19.78 | 17.18 15.34 | 0.59 0.08 || 15.27 | 12.02 10.81 | 0.73 0.05
70% 1597 | 14.34 12.52 | 0.47 0.07 || 1217 9.84 8.71 | 0.67 0.04
80% 12.48 | 11.17 9.38 | 042 | 0.05 9.84 | 7.60 6.56 | 0.68 | 0.03
90% 7.71 6.27 5.36 | 0.61 0.06 6.34 4.47 3.75 | 0.72 0.02

Table 6: Error rate for the target segment in the TU being repaired (MT), for the fuzzy-match repaired segment with the
lowest predicted error rate (ERT) and for the best possible one (Oracle). Success rates (SR) and mean absolute errors (MAE)
are also shown. The same ERT regressor trained on 60% FMT is used for all language pairs.

which are related in some sense (such as the four Western
Indo-European languages in these experiments).

Next, we study how fast the learning process converges
to see if the amount of training samples used for training is
enough to learn the best possible ERT models. Figure 2 plots
the learning curve computed when training ERT models for
regression for the English-Spanish language pair and for
all languages together using a 60% FMT, both on filtered
and non-filtered corpora. The learning curves show cross-
validation (dashed line) and training (solid lines) scores of
the ERT models as a function of the number of training
samples. For cross validation we performed 10 iterations
of shuffle split: in each iteration 20% of the training set
was randomly selected as a validation set. These scores
correspond to the coefficient of determination [38, ch. 4]:
the best possible score is 1.0 and it can be negative if the
model gets arbitrarily worse. Our ERT models for 60% FMT
converge to values of the coefficient of determination above
85%, some of them even above 95%, which indicates that our
ERT models are learning and that the amount of samples
used for training is adequate for the task.

6.3 Discussion on the informativeness of features

To better understand how our ERT models work, we present
an analysis of the informativeness of the features used to
create them. As mentioned above, the ERT implementation
we have used uses the Gini importance, also know as mean
decrease in impurity [36, ch. 4], to decide the splitting of
the nodes while building the trees.’® The mean decrease in
impurity is directly related to the purity of a tree node. A
node in a tree is considered to be pure if its probability for
the training samples reaching it is 1; that is, if all samples
reaching the node are in the same class (in the case of
classification) or are close to a single target value (in the
case of regression).

Our analysis is based on the Gini importance computed
as the total decrease in node impurity, weighted by the
probability of reaching that node (which is approximated by
the proportion of samples reaching that node) and averaged

18. This way of deciding on the splitting of nodes differs from that of
the original paper describing ERT [11].

0 10000 20000 30000 40000 50000
Training samples

(a) English-Spanish, non-filtered corpora

0 20000 40000 60000 80000
Training samples

100000 120000

(c) All language pairs, non-filtered corpora

12

Score
&

5000 10000 15000 20000 25000 30000
Training samples

(b) English-Spanish, filtered corpora

Score
S

0.70

0 10000 20000 30000 40000 50000 60000 70000 80000
Training samples

(d) All language pairs, filtered corpora

Figure 2: Learning curve for training ERT models for English-Spanish (((a), (b)) and for all language pairs together ((c),
(d)) when using non-filtered ((a), (c)) and filtered ((b), (d)) corpora. The solid line is the learning curve computed over the
training corpus, whereas the dashed line corresponds to the cross-validation learning curve.

BB10
BB1
BB7
BB2
BB8

BB13
BB4
BBS
BB3
BB6
BB9

BB12

Filtered
m Non-Filtered

CYTEFFFFNE|]

e
Fa

0.2 0.3 0.4 0.5 0.6

Figure 3: Gini importance for the top 12 features computed
over ERT regressors trained for all language pairs with a
60% FMT and on filtered and non-filtered corpora (ordered
according to the Gini importance on non-filtered corpora).

over all trees in the ensemble.!” We used Gini importance
instead of other methods, such as permutation importance,
which has been shown to have “better statistical proper-
ties” [39], because it is less computationally expensive [40]
and is the measure used by the scikit-learn implementation
of ERT we have used.

19. For more information about the computation of the Gini impor-
tance, see [35].

Since the learning curve of the ERT models that use
all language pairs (see Figure 2) is similar and in some
cases better than the ones computed for individual language
pairs, we analyse the informativeness of the features ob-
tained from the ERT models for all language pairs trained on
filtered and non-filtered corpora with a 60% FMT. Figure 3
shows the Gini importance of the top 12 features for the
ERT models aforementioned. The rest of features, although
less relevant, still have a Gini importance above 0.0, which
means that they help the ERT regressor; in fact, removing
any of them degrades the regressor performance.

As Figure 3 shows, the top 12 features are all black-box
features that do not take advantage of the information about
the inner workings of the repair algorithm. Of these top 12
features, BB10 scores unusually high while BB7 and BB1 are
the best performing features which are closer to the median
of the Gini importance. The value of BB10, that is, the fuzzy
match between s and s’, may be working as a means for
specialising the trees to be used for regression so that the
ones used for small values of BB10 are different from those
used for larger ones. In this regard, it is worth noting that the
value of BB10 is the same for all training samples obtained
from the segment to be translated s’ and the TU (s, t) to be
repaired. Other high-scoring features like BB1 and BB7 are
in a similar situation because they count tokens and digits
from the source segment s’ to be translated, and provide a
nice check of the validity of the repair operators used (the
number of digits should be invariant).

1.0
e 60%FMT
e 70%FMT
0.81 o 80%FMT
90% FMT
0.6 1
(=]
=] ® @®
&
0.4+ 5 e e e [}
o
0.2 1 ° o @ .
o .
[] . : ‘ ' ' '
oot % 8% .8
2 4 6 38 10 12 14

of repair operators

Figure 4: For en-es, ratio of fuzzy-match repair segments
produced to those that would be produced in the worst case.

6.4 Actual complexity of the Repair algorithm

The worst-case complexity of Algorithm 2 is O(2"), where
n is the number of repair operators available for a TU
(s,t) and segment to be translated s’. Usually, not all repair
operators are compatible, and cannot therefore be applied
together to produced a fuzzy-match repaired segment (see
Section 3.2.1); as a result, the actual complexity of the
algorithm is drastically reduced. Figure 4 shows, for en-es,
the ratio of fuzzy-match repair segments produced to those
that would be produced in the worst case (2") as a function
of n. As can be seen, this ratio decreases as n increases. This
accounts for the practicality of the approach.

7 CONCLUDING REMARKS

In this paper we have described a fuzzy-match repair (FMR)
approach that, for a source segment to be translated s
and translation unit (s,t) to be repaired, first generates,
using any source of bilingual information, a set of candidate
fuzzy-match repaired segments in the target language, and
then estimates the quality of the repaired segments pro-
duced to select the one to be finally used for translation.
For selecting the best fuzzy-match repaired segment, we
propose a set of features and train a tree-based regres-
sor to predict the amount of edit operations needed to
convert each candidate fuzzy-match repaired segment into
an adequate translation of s’. The candidate fuzzy-match
repaired segment with the lowest predicted amount of edit
operations needed is the one selected as best.

We have extensively evaluated the performance of this
approach on three different language pairs, namely English—
Spanish, Spanish-Portuguese and Spanish-French, with dif-
ferent fuzzy-match score thresholds (FMT), and using raw
(non-filtered) corpora and (filtered) corpora from which
noisy translation units have been removed. The best results
are obtained on the filtered corpora and with regressors
trained on training samples obtained using a 60% FMT. We
have also evaluated the performance when the regressor is
trained on a mix of training samples from all language pairs
and then tested on each different language pair. This last
evaluation showed that not only the features we propose

13

are language-independent, but also the regressor based on
those features is.

The performance of the quality estimation approach
used to select the best candidate fuzzy-match repaired
segment depends on the similarity between the segment
to be translated s’ and the source segment s in the TU
(s,t) being repaired. The more similar they are (the greater
the FMT), the more successful it is. For a 90% FMT, the
QE method selects the best possible candidate fuzzy-match
repair segment generated by the repair algorithm most of
the times, resulting, on average, in a success rate on filtered
corpora above 0.83. This means that the use of the selected
candidate fuzzy-match repaired segment allows to save, on
average, 83% of the edit operations that would have been
saved if the best possible (oracle) candidate segment would
have been chosen. If the candidate repaired segments were
selected at random the saving of edit operations would be,
on average, 44%.

As regards the features used by the regressors, we have
proposed a set of features made up of black-box (system-
independent) and glass-box (system-dependent) features;
black-box features are easier to compute as they do not
exploit any information about the repair operators used
to generate the candidate fuzzy-match repaired segments.
Black-box features are found to be more informative that
glass-box ones, although all of them are useful to some
extent. This result suggests that the QE method used to
select the best fuzzy-match repaired segment could be used
to rank candidate fuzzy-match repaired segments produced
by other FMR approaches.

ACKNOWLEDGMENTS

This work was supported by the Spanish Government
through the EFFORTUNE project [TIN-2015-69632-R].

REFERENCES

[1] L. Bowker, Computer-aided translation technology: a practical intro-
duction. University of Ottawa Press, 2002.

[2] A. G. Schjoldager and T. P. Christensen, “Translation-memory
(TM) research: what do we know and how do we know it?”
Hermes: Journal of Language and Communication in Business, vol. 44,
pp- 89-101, 2010.

[3] L. Kranias and A. Samiotou, “Automatic translation memory
fuzzy match post-editing: a step beyond traditional TM/MT in-
tegration,” in Proceedings of the Fourth International Conference on
Language Resources and Evaluation, Lisbon, Portugal, 2004, pp. 331-
334.

[4] S. Hewavitharana, S. Vogel, and A. Waibel, “Augmenting a statis-
tical translation system with a translation memory,” in Proceedings
of the 10th Annual Conference of the European Association for Machine
Translation, Budapest, Hungary, 2005, pp. 126-132.

[5] S. Dandapat, S. Morrissey, A. Way, and M. L. Forcada, “Using
example-based MT to support statistical MT when translating
homogeneous data in a resource-poor setting,” in Proceedings of
the 15th Annual Conference of the European Association for Machine
Translation, Leuven, Belgium, 2011, pp. 201-208.

[6]]. E. Ortega, F. Sanchez-Martinez, and M. L. Forcada, “Fuzzy-
match repair using black-box machine translation systems: what
can be expected?” in Proceedings of the 12th Biennial Conference of the
Association for Machine Translation in the Americas (AMTA 2016, vol.
1: MT Researchers” Track), Austin, USA, October 2016, pp. 27-39.

[7] B. Bulté, T. Vanallemeersch, and V. Vandeghinste, “M3TRA: inte-
grating TM and MT for professional translators,” in Proceedings of
the 21st Annual Conference of the European Association for Machine
Translation, Alacant, Spain, May 2018, pp. 69-78.

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

M. Espla-Gomis, F. Sdnchez-Martinez, and M. L. Forcada, “Using
machine translation in computer-aided translation to suggest the
target-side words to change,” in Proceedings of the 13th Machine
Translation Summit, Xiamen, China, September 2011, pp. 172-179.
J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte,
A. Kulesza, A. Sanchis, and N. Ueffing, “Confidence estimation
for machine translation,” in Proceedings of the 20th International
Conference on Computational Linguistics, Geneva, Switzerland, 2004,
pp. 315-321.

L. Specia, M. Turchi, N. Cancedda, M. Dymetman, and N. Cristian-
ini, “Estimating the sentence-level quality of machine translation
systems,” in Proceedings of the 13th Annual Conference of the European
Association for Machine Translation, Barcelona, Spain, 2009, pp. 28—
37.

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Machine Learning, vol. 63, no. 1, pp. 3-42, 2006.

E. Bigici and M. Dymetman, “Dynamic translation memory: Using
statistical machine translation to improve translation memory
fuzzy matches,” Computational Linguistics and Intelligent Text Pro-
cessing, pp. 454-465, 2008.

M. Simard and P. Isabelle, “Phrase-based machine translation in
a computer-assisted translation environment,” in Proceeding of
the 12th Machine Translation Summit (MT Summit XII), Quebec,
Canada, 2009, pp. 120-127.

V. Zhechev and J. V. Genabith, “Seeding statistical machine trans-
lation with translation memory output through tree-based struc-
tural alignment,” in Proceedings of SSST-4 - 4th Workshop on Syntax
and Structure in Statistical Translation, Dublin, Ireland, 2010, pp.
43-49.

P. Koehn and]. Senellart, “Convergence of translation memory
and statistical machine translation,” in Proceedings of AMTA Work-
shop on MT Research and the Translation Industry, Denver, USA, 2010,
pp- 21-31.

L. Li, C. Parra Escartin, and Q. Liu, “Combining translation mem-
ories and syntax-based SMT,” Baltic Journal of Modern Computing,
vol. 4, pp. 165-177, 2016.

Y. Liu, K. Wang, C. Zong, and K.-Y. Su, “A unified framework and
models for integrating translation memory into phrase-based sta-
tistical machine translation,” Computer Speech & Language, vol. 54,
pp- 176-206, March 2019.

C. Hokamp and Q. Liu, “Lexically constrained decoding for se-
quence generation using grid beam search,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Vancouver, Canada, July 2017, pp. 1535-
1546.

J. Gu, Y. Wang, K. Cho, and V. O. Li, “Search engine guided neural
machine translation,” in Proceedings of the 32 AAAI Conference on
Artificial Intelligence, New Orleans, USA, February 2018, pp. 5133—
5140.

B. Bulte and A. Tezcan, “Neural fuzzy repair: Integrating fuzzy
matches into neural machine translation,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy, Jul. 2019, pp. 1800-1809.

R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” Journal of the Association for Computing Machinery,
vol. 21, no. 1, pp. 168-173, Jan. 1974. [Online]. Available:
http://doi.acm.org/10.1145/321796.321811
P. Koehn, Statistical Machine Translation.
Press, 2010.

M. Carl and A. Way, Eds., Recent Advances in Example-Based Ma-
chine Translation. Springer, 2003.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, C. Shen, W.and Moran, R. Zens, C. Dyer,
O. Bojar, A. Constantin, and E. Herbst, “Moses: Open source
toolkit for statistical machine translation,” in Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics
Companion Volume, Proceedings of the Demo and Poster Sessions,
Prague, Czech Republic, 2007, pp. 177-180.

L. Specia, “Exploiting objective annotations for measuring transla-
tion post-editing effort,” in Proceedings of the 15th Annual Conference
of the European Association for Machine Translation, Leuven, Belgium,
2011, pp. 73-80.

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,
C. Mongz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia,
and A. Tamchyna, “Findings of the 2014 Workshop on Statistical
Machine Translation,” in Proceedings of the Ninth Workshop on
Statistical Machine Translation, Baltimore, USA, 2014, pp. 12-58.

Cambridge University

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

14

E. Avramidis, “Sentence-level ranking with quality estimation,”
Machine Translation, vol. 27, pp. 239-256, 2013.

D. Basak, S. Pal, and D. C. Patranabis, “Support vector regression,”
Neural Information Processing — Letters and Reviews, vol. 11, no. 10,
pp. 203224, 2007.

L. Specia, G. Paetzold, and C. Scarton, “Multi-level translation
quality prediction with QuEst++,” in Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference of the Asian Federation of Natural
Language Processing - System Demonstrations, Beijing, China, 2015,
pp. 115-120.

J. B. Marino, R. E. Banchs, J. M. Crego, A. de Gispert, P. Lambert,
J. A. Fonollosa, and M. R. Costa-Jussa, “N-gram-based machine
translation,” Computational Linguistics, vol. 32, no. 4, pp. 527-549,
2006.

R. Steinberger, A. Eisele, S. Klocek, S. Pilos, and P. Schliiter, “DGT-
TM: A freely available translation memory in 22 languages,” in
Proceedings of the 8th International Conference on Language Resources
and Evaluation, Istambul, Turkey, 2012, pp. 454-459.

M. Espla-Gomis, F. Sanchez-Martinez, and M. L. Forcada, “Using
machine translation to provide target-language edit hints in com-
puter aided translation based on translation memories,” Journal of
Artificial Intelligence Research, vol. 53, no. 1, pp. 169-222, 2015.

M. L. Forcada, M. Ginesti-Rosell,]. Nordfalk,]. O'Regan, S. Ortiz-
Rojas,]. A. Pérez-Ortiz, F. Sinchez-Martinez, G. Ramirez-Sanchez,
and E. M. Tyers, “Apertium: a free/open-source platform for rule-
based machine translation,” Machine Translation, vol. 25, no. 2, pp.
127-144, 2011.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection
for cancer classification using support vector machines,” Machine
Learning, vol. 46, no. 1-3, pp. 389422, 2002.

G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Pro-
ceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 1, Lake Tahoe, USA, 2013, pp. 431-439.
L. Breiman, J. Friedman, C.]J. Stone, and R. Olshen, Classification
and Regression Trees. Taylor & Francis, 1984.

P. Geurts and G. Louppe, “Learning to rank with extremely ran-
domized trees,” in Proceedings of Machine Learning Research, Volume
14: Proceedings of the Learning to Rank Challenge, Haifa, Israel, June
2011, pp. 49-61.

C. R. Rao, Linear statistical inference and its applications. John Wiley
& Sons, Inc., 1973.

C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis,
“Conditional variable importance for random forests,” BMC bioin-
formatics, vol. 9, no. 1, p. 307, 2008.

L. Breiman and A. Cutler, “randomforest: Breiman and cutler’s
random forests for classification and regression,” https://www.
stat.berkeley.edu/~breiman/RandomForests/, last accessed: 12th
November 2019, 2019.

