
Final izat ion in the  Col lector  Interface 

Barry  Hayes 

b h a y e s * c s . s t a n f o r d ,  edu Stanford University, Department of Computer Science, 
Stanford, CA 94309, USA 

Abstrac t .  When a tracing garbage collector operates, it treats the objects 
and pointers in the system as nodes and edges in a directed graph. Most col- 
lectors simply use the graph to seek out objects that have become unreachable 
from the root objects and recycle the storage associated with them. 
A few collector designers have hit on the idea of using the trace to gather 
other information about the connectivity of the graph, and notify user-level 
code when an object is reachable from the roots, but only in a restricted 
way. The user-level code typically uses this information to perform some 
final action on the object, and then destroys even the restricted access to the 
object, allowing the next pass of the garbage collector to recycle the storage. 
Finalization is useful for appropriating the power of garbage collection to 
manage nonLmemory resources. The resource in question can be embodied 
in a memory object with finalization enabled. When the memory resource 
is reachable only through restricted paths, the non-memory resource can be 
recycled and the restricted access destroyed. The users of the resource need 
not coordinate to manage, nor do they need to know that  the resource is 
precious or needs finalization. 
This paper presents system-level details of five different implementations of 
finalization in five different systems, and language-level details of several 
languages that have defined similar mechanisms. These comparisons highlight 
several areas of concern when designing a system with finalization. 

1 I n t r o d u c t i o n  

G a r b a g e  collect ion is somet imes  t ry ing  to serve two a n t i t he t i c a l  goals.  F i rs t ,  some 

languages  and  sys tems  see collection solely as a way  to make  a finite m e m o r y  resource 

a p p e a r  larger.  The  p r o g r a m m e r  need not  worry  a b o u t  m e m o r y  because  there is a 

large supply,  and  the garbage  collector  helps m a i n t a i n  the  fiction. In this  role, the  

col lector  mus t  be invisible,  lurk ing  in the shadows,  and  no side effects of collection 

should  be a p p a r e n t  to o ther  code in the  language.  

Othe r  languages  and  sys tems see ga rbage  col lect ion as a va luable  o p p o r t u n i t y  

to learn  more  abou t  the connec t iv i ty  of objects ,  and  t ry  to make  the informat ion  

gleaned by the garbage  collector avai lable  to o ther  code. The  mos t  c o m m o n  use of this  

in fo rmat ion  is to  implemen t  weak or soft pointers .  Ano the r  is to  dr ive  finalization. 

Fina l i za t ion  takes  m a n y  var ied forms, but  the  goal  is to c o m m u n i c a t e  in format ion  

a b o u t  the  connec t iv i ty  of ob jec t s  from the ga rbage  col lector  to o the r  e lements  of the  

sys tem.  
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With finalization this connectivity information is used to let a module that  man- 

ages a resource know when no module other than itself has any remaining pointers 

to an object in its resource pool. When it knows this, it can invoke code on the ob- 

ject to do any clean-up that  might be required~ and return the resource to the pool. 

Without this connectivity information, the users of such a resource are required to 

cooperate in the management  of the object, and the code required can be difficult to 

write, verify, and maintain. Making the connectivity information available allows the 

resource to be managed in a simple way, and lends the power of garbage collection 

to the management of other resources. 

2 A Short History 

Finalization seems to have grown from two different roots in computer science: the 

desire to have soft pointers for ease in engineering, and the desire to do correctness 

proofs in the presence of exception handling. 

Soft pointers, also called weak pointers, are pointers that  are not traced or 

counted by the garbage collector. Typically, when the collector notes that  there 

are no hard pointers to an object, it collects the storage associated with the object 

and sets the soft pointers to a known value, often zero or NIL 1. Soft pointers allow 

a process to monitor an object and know if it has been collected without interfering 

with the collection of the object. 

Closely related to soft pointers are populations. A population is a clever kind of 

hash table - -  a "key" can be used to find a '~value'. Often these keys and values 

are simply objects, and the address of the key is hashed to find the location of the 

key/value pair. But when all other references to the key have vanished from the 

system, it will never be used to look up the associated value. A population differs 

from a simple hash table in that  it is in bed with the collection system and does 

not allow this reference to retain the key 2. Populations exist in many modern Lisp 

system. 

The other related concept, error recovery, is particularly relevant to systems 

where the central focus is more on the data  types than on the code, and where 

correctness concerns are ~mportant. Many languages include a facility whereby a 

block of code can have an attached clause that  is executed if the block terminates 

t One of the earliest soft pointer implementations was Interlisp-D's XPOINTERs [Xer85]. 
It did not change the values of soft pointers, but would just deallocate the object. Users 
of soft pointers could have all the problems associated with dangling references that 
garbage collection was supposed to have solved for them. Soft pointers were one of the 
aptly-named "unsafe" features of the language. 

2 If the garbage col]ector is also copying objects, the address of the object will be changing 
from time to time, and that too provides motivation to make the garbage collector and 
the population implementation interconnected. 
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abnormally. This is sometimes called "unwind protection," since it protects the block 

in question from the call stack unwinding that occurs automatical ly when an error 

throws control from the location of the error to a handler for that  error. The unwind 

protection code is expected to take any necessary activity to clean up after the 

error-exit, and maintain any invariants needed in the program. Any program using 

semaphores, for example, benefits from unwind protection, in that  an error between 

the points where the resource is locked and unlocked could otherwise cause the 

resource to remain locked. The unwind protection code can clean up after the error, 

and might be expected to return the resource to a consistent state and unlock it. 

Often, the invariants are more closely associated with the da ta  types than with 

the code, and a correct program would have nearly the same unwind protection 

associated with every block that  declared an instance of that  type. For example, if 

a block declares a file, it might be expected that  when the block is exited, either 

normally or because of an error, the file's buffers will be flushed, and the file will be 

closed. It would be perfectly acceptable to include the code to do this in an unwinding 

clause of every block that  declared a file, but for two things: programmers would 

invariably miss a few, leading to subtle bugs, and the code would be less readable for 

the constant clutter. Instead, the declaration of the type can be extended with what 

is in essence the common unwind clause, and each block containing a declaration 

can be assumed to have such a clause. 

This type-centered formulation of final action extends to dynamically allocated 

objects as well. When an object is about  to be freed, either explicitly or by a garbage 

collector, the same unwind phrase can be run. All instances of the type, allocated 

on the stack or heap, receive the same final t reatment ,  and have a chance to correct 

any invariants before they are returned to storage. C + +  destructors are the best 

known exemplar of this style, but C + +  has no native garbage collection, and only 

experimental exception handling. 

The issues involved for finalization of stack variables center around exceptions 

and error recovery [SMS81], and the issues involved for finalization of heap objects 

center around the topology of the connections between objects. 

3 S u r v e y  o f  F i n a l i z a t i o n  

This section is a survey of systems where finalization is available. Where I have been 

able to find out details about how the collection system works, I have presented as 

complete a description of the system as I can. Previous work [AN88] has identified a 

set of properties that  might be desired from finalization. Some systems I know only 

through language reference manuals and reports, and for these systems the summary  

is often quite brief. I encourage anyone with knowledge of other finalization systems 

or more complete knowledge of any of these systems to contact me. 
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3.1 Lisps 

Almost every Lisp dialect has some form of hash tables, and a few have populations 

that garbage collect inaccessible keys. 

Scheme allows files to be closed automatically provided "it is possible to prove 

that the [file] will never again be used for a read or write operation." [AAB+91, 

Section 6.10,1] The garbage collector can be seen as constructing such a proof. 

T [RAM84], a Lisp variant influenced by Scheme, has finalization for files but 

for no other data types. Files are a highly trusted client of the collector, and the 

collector explicitly calls a file routine to close all inaccessible flies near the end of 

the collection. The files are known to be inaccessible by use of T's extensive weak 

pointer system. 

I have heard rumors that other Lisp implementations have similar finalization 

hooks for trusted clients, but have been unable to track down any definitive sources. 

3.2 Sun  N e W S  

The NeWS package from Sun is a windowing system using a liberally extended 

PostScript, and includes a conceptually parsimonious finalization interface [Sun90]. 

There are two operations on pointer values, soften and harden. By defauit, a pointer 

value is hard, but these operations take a pointer value of either firmness and turn 

it into the firmness desired. A third operator, soft, queries the firmness of a pointer 

without changing it. 

soft: 3 
II III  II III 

.._.._---0 

"o 

Obselete 
event 

Fig. I. NeWS Finalization 



281 

The garbage collector counts references, and maintains both a total  count and 

a count of the soft references for each object 3. Both reference counts are updated 

as needed every time a pointer is changed - -  they are always accurate between 

execution of any two PostScript operators. 

Whenever the counts of total references and soft references become equal and 

are not both zero, the system generates an Obsolete event for that  object. This can 

happen only if a hard reference is deleted or made soft. It is expected that every 

holder of a soft pointer will have expressed interest in the event. 

3.3 E u c l i d  

Euclid allows a module, implementing an abstract data type, to "include an initial 

action which is executed whenever a new variable of the module type is created, and 

a final action which is executed whenever such a variable is destroyed." [LHL+77, 

page 22] If several module variables are declared, they are initialized in order of 

declaration and finalized in reverse order. This is to allow later-declared objects to 

access fully initialized, previously declared objects at initialization, and to guarantee 

that  at finalization no object will a t t empt  to access a finalized object. 

Euclid requires that initialization and finalization also run when an object is 

explicitly allocated and freed. Presumably, the finalization code would also run if 

the object is implicitly deallocated by garbage collection, but the definition does not 

make this clear. 

A sticky point comes up when trying to finalize dynamically allocated objects 

in a sensible order. The system would like to guarantee that no object would have 

any methods invoked on it after it has been finalized, but two or more objects may  

cyclicly reference one another. If the collector finalizes one of the objects in the cycle, 

it may still be reachable from another that  requires access to the now finalized object. 

There is no information available that  would allow the collector to choose objects 

to finalize wisely under these conditions. Finalization order of cyclic structures is a 

problem in other languages, and will be examined in Section 4.4. 

3.4 C + +  

The C + +  language is not defined to have a garbage collector, but has constructors 

and destructors quite similar to the concepts found in Euclid [ES90]. The destructor 

is a method of an object type, and will be called by the system when the storage for 

an instance of that  type is about  to be returned to the system. It will be called as 

a consequence of explicitly deleting the object, if the object is on the heap, and it 

also will be called when a block declaring the object is exited, either normally when 

3 There is also a third class of references, uncounted, that is not available to the user, but 
is used by the system to break cycles among its structures. 
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the evaluation of the block is finished, or abnormally when the block is exited with 

a break, continue, return, or goto. 

Within a block the order of construction and destruction is defined just as in 

Euclid: in declaration order for construction, and in reverse order for destruction. 

Types in C + +  have multiple inheritance, and so the initializers and finalizers for 

each of the base classes, if any, have to be run at construction and destruction of 

objects. "[To initialize a class object] the base classes are initialized in declaration 

order [. . .] ,  then the members are initialized in declaration order [. . .] ,  then the 

body of [the initializer] is executed. The declaration order is used to ensure that 

sub-objects and members are destroyed in reverse order of initialization." [ES90, 

page 292] 

One problem with C + +  destructors stems from compiler-generated temporaries. 

Compiler-generated temporaries have no obvious scope, and so it is not clear when 

to run the destructor method. Adding multiple threads of control to C + +  in the 

presence of destructors may also prove difficult, since pointers to objects may be 

passed out of the static scope where the object is created. 

There have been several proposals to date for adding garbage collection to C + +  

[Bar89, Edeg0, Det91]. One of these [Det91] explicitly disables destructors due to 

worries about compatibility. This is correct if the only purpose of the destructor is to 

explicitly delete other objects it references - -  the collector will do just that without 

any help - -  but will fail if the destructor has other effects. 

3.5 M o d u l a - 3  

Modnla-3 has garbage collection without finalization, but extensions have been pro- 

posed [Hud91]. This proposal allows destructors similar to C + +  and after each 

collection invokes the destructors for the unreachable objects in order from youngest 

to oldest. This is the same order they would be invoked in if the objects were stack- 

allocated, but the problems in using this order of finalization for heap-allocated 

objects is not addressed by the proposal. 

Most Of these problems occur when the objects form cycles of reference, and 

it seems reasonable that  finalization should take the topological order, rather than 

the chronological order, of the objects into account when ordering finalization. This 

problem will be discussed in more detail in Section 4.4, and is common to almost all 

implementations. 

3.6 A d a  9X 

Ada has no finalization, but the Ada 9X revision does [DoD91b, Section 7.4.6]. Fi- 

nalization is available for limited types, a restricted abstraction where assignment 

is not defined. Ada disallows objects of limited types in contexts where implicit 
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assignment or copy would be needed, and so avoids any problems that arise in fi- 

nalization of temporary  values [DoDgla, Section 3.2.3.1]. Finalization actions occur 

when the scope of the program unit finishes, for static variables, and when objects 

are explicitly deallocated, for allocated variables. 

In addition, packages [DoD91b, Section 7.4.6] have a form of finalization. When 

a generic package has an ezit handler, exiting the scope where the package is instan- 

tiated will cause the handler to run, and the package can take final actions. 

The two methods are similar, but if coordination among objects of the same type 

is required at finalization, the use of limited types seems superior to exit handlers. 

3.7 P a r c P l a c e  S m a l l t a l k  

Finalization in the Smalltalk system available from ParcPlace [Par90] is similar to 

the NeWS finalization, but is a more direct descendant of populations. There is a 

special type of array called a weak array, containing weak pointers; weak pointers 

are not available anywhere in the system except these weak arrays. 

The garbage collection subsystem contains both a generational collector for young 

objects and an incremental collector for old objects. Both are tracing collectors - -  

the generational collector is a copying scavenger and the incremental collector is 

trace and sweep. 

Pointers from weak arrays are traversed last in garbage collection, and when an 

object is found to be inaccessible except through a weak array, the collection system 

frees the storage associated with the object and stores the value zero in any weak 

pointer that  is a reference to a reclaimed object. The object is truly collected, and 

the zeroing guarantees that  there will be no dangling references. 

To give finalization information back to the user, this simple weak pointer scheme 

has been combined with a notification step much like the Obsolete event in NEWS. 

After each garbage collection, any weak array that  has had a pointer zeroed is sent 

a "changed" message. The zeros in the array give the indices of elements that  have 

been collected; it is the responsibility of the user's code to make sure that  any data 

needed after the element is collected are present elsewhere, and that  the "changed" 

message is propagated to the collected object 's ezecutor, which is expected to take 

the action needed to maintain the invariants. 

Figure 2 shows an object held by a weak array, as well as other pointers. When 

the other pointers are deleted, the object does not go away immediately. When the 

garbage collector discovers that the object is reachable only via the weak array, the 

object is collected and the array notified. 

The usual programming idiom is to make the executor a shallow copy of the 

object. This is a distinct object with identical values for all of its variables - -  it points 

to the same objects that the finalized object points to, and any information needed 
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to preserve invariants should be designed into the shared parts of the structure, not 
the finalized object. By the time the executor gets control, the memory allocated to 
the finalized object has been freed, and the object is unavailable to the executor. 

object Weak 
Array 

IIII I I I I I P 

F i n a l i z ~  
object Weak 

Array 

Garbage Collection ,,, III II 

Weak 
Array 

Fig. 2. Objectworks Finalization 

3.8 A M L / X  

The object-oriented design language AML/X [NLT+86] included a reference-counting 
garbage collection system and finalization package. One of the driving goals in the 
system was to study the interfacing between object-oriented systems and procedural 
systems. Procedural protocols involving return of resources were enforced by using 
finalization methods of objects JAN88, Atk89], but natural cycles in the objects 
prevented some of the finalizations from occurring. 
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In order to get more reliable finalization of cycles, the design was carried from 

the reference-counting collector to a tracing collector tAN88]. Each object has three 

bits, "mark," "destroy," and "colour." The mark bit is the usual tracing collection 

mark. The destroy bit shows if an object's finalization method must be or has been 

called. The colour bit is used to ensure that only one object in a cycle is finalized. 

All objects ha, e the colour and mark bit initially set to zero, and collection is a 

five-phase process: 

M a r k  Mark all objects reachable from the system roots, and reset the "destroy" bit 

on all reachable objects. Unreachable objects that were finalizaed by a previous 

collection may have the destroy bit still set. 

I d e n t i f y  C a n d i d a t e s  Examine each finalizable object in turn, setting the "de- 

stroy" bit in all unmarked, uncoloured, finalizable objects that do not have their 

destroy bit set, and setting the "colour" bit in them and all unmarked objects 

reachable from them. This phase colours objects that cannot be reached from 

the roots, but that are reachable from finalizable objects. 

P r u n e  If there are unreachable cycles of finalizable objects, at most one in each 

cycle should be selected. To do this, every finalizable object is visited in turn, 

and if it is coloured and its destroy bit is set, the destroy bit is cleared in all 

unmarked objects coloured in the previous phase. The destroy bit in the first 

object encountered in each cycle will not be reset unless the entire cycle is 

reachable from another finalizable object. 

Scan  Each allocated object that is neither marked not coloured is deallocated, and 

the mark and colour bits are cleared. 

F ina l i ze  For every object with the "destroy" bit set, call its finalization method. 

The designers of this system noticed a few flaws in it. First, the system's arbitrary 

choice of one object in a cycle can easily be wrong. It is difficult for users to predict 

the effects of finalization when cycles are involved. This is a problem inherent in 

cyclic finalizations, not a problem with this specific system. 

Second, if an object's finalization method causes the object to become reachable 

from the roots, the "destroy" bit is still set and the finalization method will be called 

again on the next garbage collection. While an object from a resource pool may need 

to have its finalization called many times through its lifetime, it seems as if some 

kind of explicit "enable" call for finalization is needed to tell the difference between 

the return of an object to a pool, and the return of an object to a client. 

The complexity of finalization in the tracing system, including the retracing of 

objects 4, drove one of the authors to consider other finalization techniques [Atk89]. 

The new proposal relies on weak pointers, much as the Objectworks system does. 

4 The P-Cedar system, outlined in Section 3.10 uses a different marking strategy and only 
a single mark bit to get almost exactly the same effect with none of the retracing. 
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Each finalizable object is paired with a forwarding object. All clients needing 

access to the finalizable resource are given pointers to the forwarding object instead, 

and all method calls to the forwarding object are passed to ' the client object - -  the 

forwarding object is invisible to the clients. The system maintains a weak pointer to 

each forwarding object, and so when the last client pointer is deleted the forwarding 

object is collected. The garbage collector then notifies a list of client~ that a collection 

has occurred, and any finalizable object that  has had its forwarding object collected 

can be finalized. 

This system and the Objectworks system differ in the level that forwarding ob- 

jects are defined - -  this system make them primitive, and Objectworks requires the 

users to roll their own or create variants. In addition, the propagation of the in- 

formation that  indicates that an object has been freed is more clearly defined in 

Objectworks. There does not seem to be an implementation of Atkins's system, and 

that  allows many issues to remain unaddressdd. 

3.9 C e d a r  - -  T h e  E a r l y  Y e a r s  

D-Cedar s, as implemented on the Xerox D-machines, uses a concurrent reference 

counting collector and a secondary trace and sweep collector [Rov85]. The reference 

counts are not always accurate for two reasons: references from the stacks are not 

counted, and the stacks are scanned conservatively. When an object 's reference count 

goes to zero, it is placed in a special zero count table but not deallocated, since 

there may still be pointers to it from the stacks. Occasionally the garbage collector 

conservatively scans the stacks looking for bit patterns that,  if they are pointers, 

point to objects with reference counts of zero s. In the end, any object that  has a 

reference count of zero and is not pointed to from a stack is collected or finalized. 

There is no finalization available for objects declared statically in Cedar, but 

typical programming practice is to explicitly create any objects needed in the  block 

and assign them to local reference variables. Some time after the block exits, the 

collector will discover that  the objects are no longer reachable, and they will be re- 

claimed. The order of initialization is under user control, and the order of finalization 

is determined by the topology of the interconnections among the objects. 

s The Cedar system, inc!uding the Cedar language, has been implemented twice: the first 
implementation ran on Xerox's family of machines, the Dorado, the Dandelion, the Dol- 
phin and the Daybreak. The second implementation was designed for portability, and 
currently runs on a number of standard platforms ir~cluding Unix and Posix. The stor- 
age management has changed almost completely between the two implementations. To 
keep the discussion on an even keel, the first implementation will be called D-Cedar, for 
Dorado-Cedar, and the second P-Cedar, for portable Cedar. 

s The implementation is more complex, in that all processes are halted just long enough for 
the stacks to be copied, and the conservative search for pointers occurs in these copies. 
The collector runs concurrently with all other active processes. 
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The model for finalization in D-Cedar is that a package will manage objects of a 

certain type, and will be responsible for maintaining any invariants associated with 

those objects. New objects of that  type will only be created by calls to the package, 

and when the package returns an object it may still have several private pointers 

to that  object. The clients need not do anything specific to manage the object, but 

when the clients destroy the last pointer to the object, the package, which still holds 

pointers to the object, should be notified that  the clients can no longer use the 

object. 

Cedar is a typed language, and finalization in D-Cedar is strongly linked to types. 

Associated with any finalizable type are a finalization queue and a positive number 

indicating the count of package references. Any particular object of a finalizable type 

can be explicitly enabled for finalization by a call to the storage manager. This call 

sets a bit in the object 's header, and decrements the object 's reference count by the 

package reference count. From that  point, the object is reference counted normally. 

When an object has a zero reference count and there is no pointer to it from 

the stack, it is freed if the finalization bit in that  object is not set. If  the bit is set, 

the collector clears the bit, sets the reference count for the object to be the package 

count, determined from the object 's type, and adds the object to the finalization 

queue for that  type, allowing the package to do whatever is required with the object 

to maintain its invariants 7. 

In practice, the use of a type-wide count of package references proves to be fragile. 

The package must  ensure that  it has the same number of pointers to every object 

enabled for finalization, and the writing of packages where finalization is used is a 

delicate affair. Catastrophic failures occurs when a dropped package pointer makes 

a reference count negative. 

Notice also that  the object is changed from finalizable to not finalizable when 

the finalization is run. The object may be explicitly set finalizable again, setting the 

bit and reducing the reference count, but it is not automatic.  This helps prevent 

errors where the finalization code runs for each garbage collection without making 

progress on finalizing the object. Instead, the code will be run once, and if the object 

is neither made reachable nor re-enabled for finalization, it will be collected. 

z When the package count is zero, this is what is sometimes called resurrection semantics, 
since the object has no pointer to it, and yet the collector creates one to enqueue the 
object. If you feel uncomfortable with the idea that thecollector is creating a pointer to 
an object after the user has discarded all the pointers to it, recall that the call to the 
collector to enable finalization allows the system to squirrel away a pointer to the object, 
and that it is this pointer that is used to enqueue the object. In fact, that pointer exists 
- -  it is simply compressed into a single bit in the header of the object. 
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Fig.  3. D-Cedar Finalization 

3 .10  C e d a r  I I  - -  T h e  R e v e n g e  

Some of the weaknesses in the s torage managem en t  in D-Cedar  were addressed in P- 

Cedar  [ADH+89]. Ti le  reference count ing collector was replaced with a conservat ive,  

generat ional ,  mark-and-sweep collector. This  freed the p rogrammer  from the burden 

of breaking reference cycles in complex  da t a  s tructures s. 

s One of the common uses of finalization in D-Cedar was to break these cycles. For example, 
a tree where every leaf points back to the root will never be collected by simple reference 
counting - -  when the last reference to the root other than the leaves is deleted, the root 
will still have a non-zero count. A package count for the root would not make sense, since 
the count at the root is the number of leaves, and that is variable, rather than structural. 
But if a node is added above the root and all access takes place through that node, that 
extra node can be enabled for finalization. When all references to it are gone, the leaves 
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Most of the work of finalization has been put into a package distinct from the 

garbage collector. The finalization package is still tightly coupled to garbage collec- 

tion, but the split seems valuable to insulate the two functions - -  collection and 

finalization - -  from each other. 

To enable an object for finalization, a client calls a routine in the finalization 

package with a pointer to an object and a finalization queue. The package returns a 

pointer called a finalization handle. Strictly speaking, it is the handle itself, not the 

object, that is enabled for finalization. The only important operations available on 

a finalization handle are disable finalization, re-enable finalization, and dereference. 

The disable/re-enable calls do the obvious, and the dereference cail returns a pointer 

to the object that was a parameter to the enable call that returned that handle. A 

disabled finalization handle functions simply as an indirect pointer to the object. 

The finalizer keeps the state needed to finalize objects; this is not the responsibility 

of its clients, and they often ignore the finalization handle returned, knowing that 

the finalization will occur nonetheless. 

The collector traces from the roots, but does not trace through the finalization 

package's state to objects that are enabled for finalization 9. At this point, any final- 

izable object that has been seen by the trace is accessible from the roots, and should 

not be finalized. 

Only some of the objects unreachable from the roots are put on their finalization 

queues. The intent is to mimic the effects of the reference counting finalization of 

D-Cedar by only finalizing those objects that are not reachable from other finalizable 

objects. If P points to Q, and both are finalizable and unreachable from the roots, 

the system would like to finalize P. When P is put on its finalization queue, Q is 

now reachable from the roots via the queue, and should not be finalized. 

The objects to be queued are found by another marking phase of the collector. 

It traces all of the pointers from unmarked finalizable objects, but does this without 

initially marking the finalizable objects themselves. After this marking is finished, 

any marked finalizable object was either marked by the first phase, and so is reach- 

able from the roots, or was marked in the second phase, and so was reachable from 

a finalizable object 1~ Any unmarked finalizable object is reachable through neither 

still point to the root, but there are no pointers to the uber-root. The finalization for the 
uber-root can walk the tree down to the roots and NIL the backpointers, allowing the 
reference counter to discover that the tree's storage can be reclaimed. 

9 The finafization package does not, in fact, keep pointers to the objects. The object pointed 
to by a handle contains a field that is a disguised copy of the pointer to the object, and 
the finalization package keeps a list of the currently enabled finalization handles. The 
collector does not recognize the disguised pointers as pointers when doing the' trace. 

10 At the moment, a finalizable object that is reachable from itself but no other finalizable 
object is n o t  finalized. This is considered to be a bug and will be changed. This might 
present a danger to an object that has access to an object of the same type as itself, 
since it might have to check the identity of the object against itself. For example, we 
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Fig. 4. P-Cedar Finalization 

method.  The f inal izat ion package can safely enqueue each unmarked  finalizable ob- 

ject, and  change its state to indicate that  it has discharged its du ty  - -  the enqueued 

objects are no longer enabled. 

might have a system that writes a record to a log file for each file finalized. Imagine the 
problems that might occur when the log file is closed. 
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4 Finalization Issues 

As should be apparent, there is no consensus of opinion on how to design the interface 

between the collector and its clients to allow for finalization. There are at least four 

major decisions that a designer should consider in specifying a finalization interface: 

decoupling, promptness, locking, and cycles. 

4.1 D e e o u p l i n g  

Aside from the Lisps that have a restricted group of cli_e,:s for finalization, systems 

must be careful in how the results of tracing are communicated to the clients. If a 

collector were to directly call some kind of finalization routine for a client, it would 

risk aborting or looping the collection thread. Event and message systems have a 

natural way of dealing with this problem, since the messages provide a decoupling 

between the collector and its clients. Likewise, the Cedar queues let the collector 

enqueue an object without worrying about the consequences of calling general client 

code. Another option would be to fork a process from the collector for each client 

needing to be finalized. 

4.2 P r o m p t n e s s  

When a resource is recovered soon after it is no longer reachable from its clients, we 

say that it is promptly reclaimed. This measure is often applied to garbage collection, 

and it is also a useful measure of finalization. The range of promptness in the systems 

in Section 3 is broad. 

The NeWS system recovers memory as soon as an object's reference count drops 

to zero, and sends Obsolete events as soon as the last hard pointer is deleted. Prompt- 

ness is a benefit of being a refe, rence counting collector. But objects that are unreach- 

able from the roots and involved in cycles will never be recovered or finalized, and 

so these objects can hardly be said to be promptly reclaimed. Reference counting is 

both a boon and a b a n e  for promptness. 

Inexact collection, such as is found in generational collectors, has a similar effect. 

An object may be considered reachable because there is a pointer to it from an old 

object that is unreachable, but hasn't  been collected yet. No object can guarantee 

that it will be promptly collected or finalized. 

Conservative collection confounds the issue even more [BW88]. Not only can an 

object remain uncollected or unfinalized because of genuine pointers to it, but bit 

patterns that the collector treats as pointers are enough to keep objects uncollected. 

An application may earnestly exercise great care to NIL all of the pointers to an 

object to make finalization or collection occur, only to have an errant integer prohibit 

it. 
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Current collectors do not offer clients any options to help regulate the prompt-  

ness of the service they get, and as object bases get larger and larger, generational 

collectors will make this problem worse and worse. It seems as if a good rule of 

thumb for fir, alization clients is to consider finalization to be a frill, and not to rely 

on it for promptness or correctness. 

4.3 L o c k i n g  

All too often, the garbage collector and finalization routines are overlooked as a 

source of parallelism in code, and parts of an aggregate structure will be finalized 

even when other clients might still be using it. For example, consider a tree with 

back-pointers from the leaves to the root, and an extra finalizable node at the top 

that  will break all the cycles to aid a reference counting collector. Great  care must  

be taken to ensure that  this finalization does not occur while there is still a pointer 

to an internal node. The process holding that  pointer might be surprised to find that  

the back-pointer is NIL. 

Unfortunately, the .simple ways of locking out the finalization are not guaranteed 

to work. For example, it might be thought that  any process holding a pointer to 

the finalizable uber-root node while examining the other nodes would be safe, but 

compilers would look on the reference to the uber-root as dead, since it is not used, 

and might optimize away the load of the pointer. This is just another manifestation 

of collector/optimizer interactions, but lifted into the domain of finalization [Cha87, 

Boe91]. 

Neither of the obvious solutions to this problem are attractive. The optimizer can 

be prevented from performing some useful optimizations, but that ' s  a performance 

cost many might blanch to pay. Modules could supply client calls to ensure that  

structures are not finalized when there is an active client, but this seems a violation 

of modularity, since it reveals to clients of the package that  objects are finalized. 

4.4 Cyc l e s  

When two or more finalizable resources are clients of one another in a cyclic order, 

finalization becomes much more complex. The system might decide to take a conser- 

vative view and finalize no object in the system. This guaranteed lack of promptness 

leads to resource leaks similar to memory  leaks from cycles in a reference counting 

collector. 

The system may try to guess an object in the cycle to finalize first, but if it 

chooses incorrectly, another object may try to make client calls to the first finalized 

object. The client of the finalized object may be unable to do anything reasonable 

now that  the resource embodied in the first object has been rescinded [AP87]. 
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Any system that  chooses to finalize all the objects in a cycle in an unpredictable 

order dooms the programmer  to adjudicating the correct order by use of mutual  

exclusion primitives. But this violates modularity, since each object must be aware 

of the cycles it might be involved in. 

To break the symmetry  of the cycle, some objects might use soft pointers to 

point to other objects to indicate that  they do not require the softly-held resource 

at finalization, and would be willing to be finalized after the other resource. But this 

means that  the softly-held resource might be finalized while its client is still firmly- 

held and active if the holder of the soft pointer is its sole client. It must be ready to 

have the resource finalized at any point, not only just prior to its own finalization. 

Finalization of cyclic structures is a problem that  the garbage collector cannot 

solve without further development on the interface between the languages and the 

finalization package. The current interfaces seem to be too narrow to address all of 

the situations that  arise. 

5 Conc lus ions  

In many  new systems and languages, garbage collection is considered indispensable. 

Programs can be crafted without worrying about memory leaks or dangling pointer 

bugs - -  the memory  will be recycled when it is no longer needed and not before 

because the collector can guarantee when a memory object is no longer reachable 

from the roots. 

If other system elements are allowed access to the information gathered by the 

garbage collector, they can make decisions about non-memory resource recycling, 

and allow these resources to be managed in much the same way as garbage collected 

memory. 

Several recent researchers have tried to marry  C + +  destructors and garbage 

collection to get finalization, but previous efforts in finalization and the problems 

that have been encountered by users of finalization does not seem to be well known. 

At least four systems, Objectworks, NEWS, D-Cedar, and P-Cectar, have been 

built with a garbage collector that  allows user code some access to the information 

gathered by the collector. All four of these systems are in current use, but the 

finalization features seem to be little-known in the systems community, and even 

the memory  management  community. 

6 T h a n k s  
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work for citations was done by Frank Jackson, who also checked that  my description 
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Cedar information. 
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A A G a r d e n  o f  D e l i g h t s  

Many people have been active in the discussion of changes to finalization at Xerox 

PARC. The most active of these are Hans Boehm, Alan Demers, Carl Hauser, Chris- 

tian Jacobi 11, and myself. There is a set of canonical examples we have been using in 

discussion of problems with and extensions to finalization. Much of the text of this 

section was provided by Carl Hauser; otherwise, it is hard to credit any particular 

example to any particular person. 

A.1 Fi le  D e s c r i p t o r s  

This example involves collection of non-memory, low level resources, and shows a 

simple case where finalization is valuable. 

Fig. 5. Simple Finalization 

""•• 
File 

\ 
~Descr ip tor :  42 

Unix file descriptors are a resource that  should be garbage-collected: to first 

approximation, if there are no copies of a file-descriptor in a program, then that  

file descriptor should be closed and freed. By allocating a memory object for each 

opened file descriptor, and uniformly passing the memory object around as the 

representative of the open file descriptor (instead of the file descriptor), we know to 

close the file descriptor when the memory object becomes unreachable. 

A.2 Buffered File  

In this example, two objects, each of which should logically be enabled for finaliza- 

tion, point to each other and form a cycle. 

1~ Christian has shown the patience of a saint in letting us discuss the issues to death before 
we actually do anything that will let him fix the problem with his code. 
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Suppose we have an OpenFile abstraction, a BufferedFile abstraction and a Buffer 

abstraction. OpenFile objects contain file descriptors and hence need finalization 

enabled. They also refer to a Buffer object - -  the next buffer to be filled, for exam- 

ple. BufferedFile is one of perhaps many abstractions built on OpenFile, and each 

BufferedFile supplies the buffers used by its underlying OpenFile. BufferedFile's ob- 

jects need finalization enabled to allow write buffers to be flushed prior to closing the 

underlying OpenFile object. The Buffer abstraction provides a field in each object 

for recording the owner of that buffer object so that low-level system interrupts that 

refer to memory locations in the buffer can be correctly forwarded to the proper 

OpenFile. 

Since the Buffers are owned by BufferedFiles, this gives us a cycle containing two 

finalizable objects: a BufferedFile points to an OpenFile, which points to a Buffer, 

which points back to the BufferedFile. 

Fig. 6. Cyclic Finalization 

\ ~ OpenF'fle / Buffere~f lc  

! / \  
~Buffe r  ODescriP tot: 42 

A.3 Courier Handles  

This example deals with "resurrection," when the finalization code for an object 

makes the object accessible rather than letting it become garbage. In this exam- 

ple, objects that are difficult to recreate are kept in a cache. Rather than being 

deallocated, they are recycled. 

In D-Cedar, handles for open Courier connections were serially reusable: a client 

could use a connection for awhile, then give it back to the Courier package which 

might eventually hand it to some other client. This was useful because opening a 

connection is a heavyweight operation, so clients talking in rapid succession to the 

same machine got a performance boost by reusing an already-established connec- 

tion. To return connections to the pool when clients dropped them, finalization was 

enabled for each CourierHandle. The Courier package gave out a handle to a single 

client. When the client finished, it either gave the handle back or dropped it. In the 
latter case, finalizing the object provided the missing giveback call. 
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Fig. 7. Caching Finalizable Objects 

O~ 

Courier package 

A.4  Log Fi les  

Examples of this kind were not mentioned in the main body of the article, but 

constitute another interesting problem with finalization. In this example, two differ- 

ent finalization actions need to be attached to a single object, since it needs to be 

finalized at two levels of abstraction. 

Given an OpenFile abstraction, we might want to build a LogFile - -  a file to 

which clients could log records text records. When a LogFile is no longer accessible, 

we would like to write one last record to it saying that  the log file has now been 

closed. The finalization for the LogFile, which writes the record, must be run before 

the finalization for the OpenFile, which closes the file. 

A.5 P o p u l a t i o n  o f  F i n a l i z a b l e  O b j e c t s  

This is another example where multiple finalizers exist for the same object, one 

of which may resurrect the object. The order of finalization is important ,  but not 

apparent  to the system. 

We may waat  to build a cache of OpenFiles, to ensure that  two clients requesting 

the same file share the same OpenFile. If the cache's finalizer is run first, it cannot 

know when the file's finalizer has finished, and risks having two OpenFiles for the 

same file - -  one newly opened and one not quite yet finalized. If  on the other hand 

the OpenFile's finalizer is run first, it cannot know if any pointers to the file remain, 

and a call might occur after finalization. 
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