Why Wassenaar Arrangement’s Definitions of Intrusion Software
and Controlled Items Put Security Research and Defense At
Risk—And How To Fix It

Sergey Bratus, D J Capelis, Michael Locasto, Anna Shubina
October 9, 2014

Abstract

In this article we argue that Wassenaar Arrangement, as currently formulated, will have extensive
harmful effects on computer security research and defensive software. We propose an alternative formu-
lation that will achieve Wassenaar Arrangement’s goal of protecting activists and dissidents in oppressive
regimes without causing these chilling effects.

1 The intent of the Wassenaar Arrangement

The Wassenaar Arrangement’s intrusion software clauses are intended to protect the activists and dissi-
dents whose lives are endangered by government surveillance. The body of evidence that links persecution
and computer surveillance is growing. The usual pattern of computing technology commoditization im-
plies that this surveillance will grow in footprint and capacity while costs fall. The regulations of the
Wassenaar Arrangement are intended to reverse or abate this trend, limiting the availability of computer
surveillance to repressive regimes.

Unfortunately, as we demonstrate in this article, the Wassenaar definitions of intrusion software
are overbroad, applying almost universally to elementary building blocks of security research. Among
the unintended effects of the Arrangement’s definitions are chilling effects on the development of anti-
surveillance measures and on the discovery of existing vulnerabilities—and thus on fixing vulnerable
systems. The Arrangement’s definitions will impose a prior restraint on the publication of security
research, analogous to the export controls on strong encryption software that were in effect in the 1990s.

The language of the Arrangement’s definitions attempts to avoid these unintended effects by using
explicit exemptions as well as a two-tiered structure of controls. This article demonstrates that these
methods fail to cover the majority of technological artifacts and processes that are crucial to security
research and defense, and are therefore insufficient to meet the intent of the Arrangement.

The anti-surveillance intent of Wassenaar will, however, be fully fulfilled if surveillance-enabling soft-
ware and hardware were to be addressed directly. We propose such a direct approach: targeting ezfiltra-
tion, which is a key part of surveillance, rather than the vague and overbroad intrusion.

In addition to the advantage of simplicity, this approach eliminates the potential ambiguity between
the singled-out but not directly controlled class of intrusion software and its related classes of controlled
items in the current Wassenaar language.

This document has the following structure:

1. The conceptual structure of the chilling elements in the current Wassenaar language is discussed in
section 2.

2. The overbreadth of these elements is discussed in section 3 and appendices A, B, and C.

3. Section 4 proposes replacing the key concept of intrusion software with ezfiltration software. This
proposed replacement addresses the Arrangement’s stated intent and avoids the unintended chilling
effects.

4. The article concludes with a forward perspective on the regulation of independent security research,
and an argument that such regulation must exercise caution in order to preserve the citizens’ science
nature of such activity.

2 Definitions of intrusion software and controlled items in
Wassenaar Arrangement

The Wassenaar Arrangement (WA) uses a two-step conceptual structure to define the surveillance-related
software it purports to control. First, the WA introduces the concept of intrusion software, defined as

Software specially designed or modified to avoid detection by ‘monitoring tools’, or to defeat
‘protective countermeasures’, of a computer or network capable device, and performing any
of the following:

a. The extraction of data or information, from a computer or network capable device, or the
modification of system or user data; or

b. The modification of the standard execution path of a program or process in order to allow
the execution of externally provided instructions.

The class of software defined by the previous quote is both broad and fundamental. As demonstrated
later in this article, the class covers not only software known in computer security jargon as exploits and
rootkits, but all elementary means of software instrumentation, construction, and deconstruction beyond
the interfaces provided by the software’s pre-defined interfaces—despite explicitly excepting “hypervisors,
debuggers or Software Reverse Engineering (SRE) tools” in the note to the above definition.

After defining intrusion software, the WA does not directly control this new class. Instead, the WA
defines a second, controlled class of software and systems derived from the intrusion software class, namely
those associated with generation, operation or delivery of, or communication with, intrusion software and
those for its development and production.’

The following elements are subjected to particular control:

4. A. 5. Systems, equipment, and components therefor, specially designed or modified for the
generation, operation or delivery of, or communication with, “intrusion software”.

4. D. 4. “Software” specially designed or modified for the generation, operation or delivery
of, or communication with, “intrusion software”.

4. E. 1. ¢ “Technology” for the “development” of “intrusion software”.

“Software” specially designed or modified for the “development” or “production” of equipment
or “software” specified by 4.A. or 4.D.

“Technology” according to the General Technology Note, for the “development”, “production”
or “use” of equipment or “software” specified by 4.A. or 4.D.

The apparent rationale for this two-step definition is that attempting to control elements of malware
per se would inhibit communication between malware researchers and discovery of new vulnerabilities,
a concern the authors of this article agree with. Controlling the second class, derived from the first,
purports to limit the scope of the WA controls to the means of developing and delivering malware.?
Unfortunately, this definition is still overbroad and will chill both basic and applied security research, as
we explain below.

3 The problems with the Wassenaar Arrangement approach

Unfortunately, this two-class structure creates more problems than it solves. The so-called intrusion
software class covers common and essential software techniques used throughout software engineering,
not just potentially nefarious ones unique to malware and attack tools. In fact, these techniques are
used by computer security products, remote management software, antivirus, enterprise reliability and
monitoring, and operating systems.

Although this class of software is not directly controlled by WA, the software used to develop, generate,
automate, and deploy it is controlled. This creates a huge potential for unintended consequences, since
automation of development, analysis, and deployment is the primary way of making progress in software
engineering, including but not limited to improving software reliability and security. Any non-nefarious
software kinds and techniques deemed intrusion software under WA will have tools to improve their
reliability and security controlled—and chilled.

IFurther details can be found in http://dymaxion.org/essays/wa-items.html by Eleanor Saitta. We would like to thank
the author for helping us understand the WA'’s structure of controls.

2We take this explanation from
https://www.privacyinternational.org/blog/export-controls-and-the-implications-for-security-research-tools#
update

The WA-defined intrusion software class is extremely broad. Centerpiece of the WA
definition of intrusion software is “modification of the standard execution path of a program or process
in order to allow the execution of externally provided instructions.” WA construes this behavior as a
sign of nefarious intent, intrusion. However, such modification, is, in fact, common and essential for
many software engineering techniques. Far from being unique to malware or to attack tools, the same
techniques are used by remote management software, antivirus, enterprise reliability and monitoring, and
operating systems. There techniques are to software engineering what saws, hammers, and planes are to
carpentry; they are ubiquitous and indispensable.

Simply put, WA definition makes the mistake of equating techniques embodied in software with just
one of its potential uses. This leads to a quagmire of unintended consequences.

Exceptions written into WA for this class do not help, because they exempt only a few kinds of tools
among many kinds that are critical to security research and development. WA’s definition of intrusion
software covers not only potentially nefarious software but also all elementary means and techniques
of software instrumentation, construction, and deconstruction outside of the software’s own pre-defined
interfaces. Since modern security software embodies complex combination of many techniques, a short
list of exempted products will not be adequate to stop unintended consequences.

One strong unintended consequence will be complicating the development of defensive software tech-
niques and products.

For example, the purpose of the popular Detours software library from Microsoft is to intercept and
modify standard execution paths of software. Thus Detours squarely fits the WA’s definitions of both
intrusion software and controlled items for developing such software. Yet Detours is a key industry tool
for dynamic security patching of software, for monitoring software, and for debugging it. Many similar
libraries exist for other operating systems and platforms, and others are currently being developed for
new platforms such as smart phones.

As another example, the first personal firewall for Windows, the pioneering security product Black-
Ice, installed itself by modifying the standard execution path of the Windows operating system. This
technique made its installation easy, and contributed to the success of the product; it also allowed many
users to secure their machines with the 3rd-party software when no solution from Microsoft was available.
Outpacing vendor support is common for 3rd party software solutions.

In Appendix A we explain these technical cases in detail.

Controlling technologies of software development and automation is extremely broad
and contrary to principles of software engineering. By starting with an overbroad definition
of the intrusion software, the Wassenaar Arrangement subjects an even broader class of software tools
to unwarranted control. Namely, WA’s control lists, as per items 4.A.5, 4.D.4, and 4.E.1, cover the
automation of development, generation, and operation of software elements defined as intrusion software.

Yet automation is the primary means of software engineering and research. The absolute majority of
modern software is generated with automation tools like compilers and linkers, which use development
technologies such as templating and scripting. Modern software is also operated by means of automation
tools. For example, the Detours library we mentioned above fits both definitions.

Moreover, the most promising modern Computer Science approach to analyzing vulnerabilities in
software and to prioritizing them to be fixed by their potential input relies on techniques for Automatic
Exploit Generation (AEG), which we cover in Appendix B. Yet all software tools and techniques involved
would fall under the WA controls.

Keeping actual malware samples or exploit payloads off the controlled lists may seem like a way
to allow security researchers and defensive software developers to communicate unimpeded. However,
nowadays effective communication requires exchanging recipes, tools, and frameworks that automate
finding of vulnerabilities and generation of exploits—exactly the items controlled by WA. Thus WA fails
in its apparent intent to prevent chilling security research. We discuss this in detail in Appendix C.

Once we recognize that the class of software that forms the base of WA definitions is overbroad and
must not be chilled for the sake of research and deepening our understanding of software flaws, then
we must also recognize that the very means by which this understanding is advanced—automation of
generation and operation—must likewise not be chilled.

We note that slowing or halting the progress of software engineering favors existing powers in the field,
protecting them from the disruption of smaller private parties. This ultimately defeats the 3rd-party
providers and the citizen’s science of security solutions to protect the dissidents and activists that WA
seeks to protect.

4 Fixing Wassenaar: How to control surveillance without
chilling security research

In this section, we outline our proposed approach to fixing the Wassenaar language, fully implementing
its intent, and avoiding the chilling of computer security research.

Surveillance is exfiltration. Simply put, intrusive surveillance targeted by WA requires the surveilling
party to receive sensitive data from the compromised computer. Without such receipt, surveillance can-
not be said to have occurred. In nearly all of surveillance scenarios, surveillance software sends sensitive
data to a command-and-control center operated by the government. The sending and the collection of
sensitive data occur without the users’ knowledge or permission. In other words, surveillance software
critically depends on its ability to secretly exfiltrate data from the computer, without user permission or
knowledge. Without this ability, surveillance effectively cannot exist. 3

Exfiltration is thus key to surveillance. Controlling exfiltration functionality will therefore effectively
control surveillance software. Hence we propose replacing the overbroad concept of intrusion software
with ezfiltration software, which we define as follows.

Ezfiltration software is:

1) Software designed to transmit data it did not create, or derived from data it did not create,
except when any of the following conditions are met:

a) The creator of the data provides informed permission to the software to transmit the data.

b) A user or administrator of the computing system provides informed permission to the soft-
ware to transmit the data.

c) Systems software set up by a user or administrator of the computing system provides the
data to the software under the design of the computing system as part of routine and expected
behavior.

2) Software designed to transmit data from the network in which it is contained to an exter-
nal network, when installed or operated without direction of a user or administrator of that
network.

In the above definition, informed permission is permission explicitly given by a user or admin-
istrator through an interface that clearly communicates the intention and scope of the access,
as well as all recipients of the transmitted data.

In the above definition, data includes but is not limited to messages, images, files, video and
audio recordings, as well as data streams from the computer peripherals such as camera, mi-
crophone, and various sensors such as GPS, accelerometer, etc.

Since programs continually transmit data and create data, care must be taken that this definition
is not overbroad like the definition of the intrusion software. In particular, this definition should not
interfere with or burden legitimate advertising activities, legitimate software or hardware fingerprinting
activities, and other legitimate data gathering activities. In the following sections, we show that these
legitimate applications are not in danger.

4.1 E-commerce sites not in danger

E-commerce has long relied on cookies as a mechanism for maintaining web sessions. Cookies were
introduced as early as 1994 in the Mosaic Netscape browser as a mechanism to support the concept of
a session, that is to say, to allow the server-operating vendors to connect together all requests from the
same web user, and to create the user experience of a continuous history of interactions, even though
each web request was completed on its own and separately from others.* Flash and HTMLS5 introduced

3The only remaining surveillance option would be to secretly accumulate surveillance data on the device itself, which is
impractical for large amounts of data, prone to detection by the user, and requires physical retrieval of the user’s device. Most
importantly, this option fails to select targets out of the general population, which is the predominant use of surveillance by
repressive regimes, and will remain so.

4From http://en.wikipedia.org/wiki/HTTP_cookie:

The term cookie was derived from magic cookie, which is the packet of data a program receives and sends again
unchanged. Magic cookies were already used in computing when computer programmer Lou Montulli had the idea of
using them in web communications in June 1994.[8] At the time, he was an employee of Netscape Communications,
which was developing an e-commerce application for MCI. Vint Cerf and John Klensin represented MCI in technical

analogous mechanisms. These cookie and local storage data are created by the e-commerce vendor server
software from the data transmitted to them by the client browser software.

The intent of these mechanisms is to maintain the identity of an e-commerce customer across a series
of transactions between the customer and the e-commerce vendor, pursuant to the customer’s intent of
completing the e-commerce transaction, and to the customer’s intent of maintaining a record of such
transactions. Notably, the customer’s identity tied to the payment method is explicitly provided to
the vendor at customer sign-in time, since payment and disbursement of goods is only possible via a
confirmation of customer identity.

Importantly, the decisions on what data to transmit and what data to store reside exclusively with
the client-side software. Thus vendors of client software such as browsers bear the onus of protecting
the users from inadvertently disclosing their protected private data. Indeed, these vendors responded to
the user demands for protecting such data with introduction of such features as private browsing that
explicitly disassociates users from the stored records of their previous transactions.

In summary, e-commerce software that acts within the scope of information explicitly provided by
the users will not be chilled by the above controls.

4.2 Web ads not in danger

Web advertisement industry has long relied on collecting information pertaining to user visits to com-
mercially operated websites, even though those visits have not resulted in an actual purchase—such as
user searches for particular merchandise.

However, the data transmitted by the browser programs in the course of these visits is derived solely
from the explicit user inputs, and from the program’s inherent properties such as its version and supported
communication formats, which are not protected private data according to the above definitions.

Thus targeted advertising based on user inputs is not chilled by the above controls.

4.3 Android, iPhone apps not in danger

Many applications of modern smart phones such as Android or iPhone depend on accessing potentially
sensitive data such as the phone’s location. However, both iPhone and Android apps request the user
to explicitly approve their permissions to access such sensitive data throughout the app’s lifetime. The
user must grant these explicitly enumerated permissions before an app can install.

Thus development and profit models of Android and iPhone apps are explicitly exempt from the
above controls.

4.4 Advanced browser fingerprinting not in danger

Recent research demonstrated that different versions of browsers implementing the HTML5 specification
can be distinguished by how they process certain crafted drawing requests from the server. ® In particular,
researchers from University of California, San Diego discovered that the differences in rendering of certain
curves and patterns defined by the same mathematical formulas are enough for a server to distinguish
between browser versions. ° Such research is important for preserving user privacy in the world of
ever-increasing software complexity, since it anticipates how such complexity can be used or abused on
the Internet.

However, all such observable differences stem entirely from computations performed by the browser
programs themselves, without accessing any of the user-entered data whatsoever. Thus research into
enumerating these differences will not be chilled.

discussions with Netscape Communications. Not wanting the MCI servers to have to retain partial transaction states
led to MCTI’s request to Netscape to find a way to store that state in each user’s computer. Cookies provided a
solution to the problem of reliably implementing a virtual shopping cart.[9][10] Together with John Giannandrea,
Montulli wrote the initial Netscape cookie specification the same year.

5“The Web never forgets: Persistent tracking mechanisms in the wild”, Acar et. al. https://securehomes.esat.kuleuven.
be/~gacar/persistent/

6 “Pixel Perfect: Fingerprinting Canvas in HTML5”, by Keaton Mowery and Hovav Shacham, http://cseweb.ucsd.edu/
~hovav/papers/ms12.html

5 Protecting whistle-blowers

Whistle-blowers inform the public of abuses they encounter in the course of their employment by or
business relation to the abusing organizations. To succeed, these whistle-blowers must provide credible
evidence of abuses. Since the workflow of most organizations has by now been heavily computerized,
there is a legitimate concern that abusers will use technological means as obstacles to whistle-blowing.
Although so far the balance of power has favored the whistle-blowers, concerns remain that future
technological developments will tip this balance. Consequently, software that might help whistle-blowers
to expose evidence of abuses that they become privy to in the course of their business relationships
should not be chilled.

We note that the proposed language preempts these concerns, since any data access in the course of a
computerized business process is by definition approved by both the user and the owner of the involved
computer device. While laws and contracts outside of the technology realms might govern disclosure of
the data that is accessible to employees in the course of their employment, explicit access permissions
must be set by administrators on behalf of employers, and are exercised and affirmed every time data is
accessed.

Thus whistle-blowers are explicitly protected by the proposed definition.

6 Looking back to the 1990s “Crypto Wars”

The 1990s were a formative decade for the commercial Internet in the US. Unfortunately, during this
same time the US government policy was to treat strong encryption as a threat and to control imple-
mentations of certain cryptographic algorithms as munitions, subject to vigorous enforcement of export
regulations. In 1993 the author of the original PGP software, Phil Zimmerman became the target of an
FBI investigation for munitions export without a license. This investigation lasted till 1996. At the same
time a series of failed technological “solutions” and mandates, such as the backdoored-by-design Clipper
chip” and third-party key escrow were promoted as a legally safe way for telecommunications industry
to implement compliant encryption—which would have essentially amounted to pretend security.

Export restrictions on artifacts of cryptography have doubtlessly harmed its practical progress. Not
only Johnny Q. Public still can’t encrypt®, but John the Special Agent can’t encrypt either!® No matter
where one stands on whether and how much the latter should be allowed to wiretap the former, John
certainly has things to hide and in fact a duty to hide them—in which he is conspicuously failing.

Could it be that both of these failures are due to the fact that deployment of strong cryptography
was stymied just when today’s dominant communication protocols and infrastructure were rapidly de-
veloping? The fact is, they ended up leaving cryptography behind, and matured without incorporating
cryptography at their core. Superiors of John the Special Agent may have had visions of him using sep-
arate, special technologies vastly stronger than Johnny Q. Public’s and obtained from sources untainted
by the weaknesses of public commodity communications; it appears this vision was wishful thinking.

If having to pretend that poor cryptography was secure because practically exploring stronger cryp-
tography was a legal minefield led us to this point, where would pretending that computers are secure
because of a likely minefield arising in exploitation engineering lead us from here? It will likely be worse,
because the field of cryptography by 1990s already had mature mathematical theory not easily undercut
by the drag created on its engineering practice. Systems security, on the other hand, is only building up
its theoretical foundations, and is in need of much more feedback and generalization of its practice.

If the practice of exploring the programming of programs’ faults becomes subject to regulation as
vigorous as the so-called 1990s Crypto Wars, will this practice develop enough to warn us before unsecur-
able designs come to dominate in critical infrastructure, power management, medicine, or even household
appliances beyond any hope of replacement? Will we be surrounded by an Internet of Untrustworthy
Things just as we are surrounded today by an Internet of Things that Can’t Keep a Secret (or at least
are no help to an ordinary person for doing s0)?

M. Blaze. “Protocol Failure in the Escrowed Encryption Standard.” Proceedings of Second ACM Conference on Computer
and Communications Security, Fairfax, VA, November 1994

8yww.usenix.org/events/sec99/full_papers/whitten/whitten.pdf

9http://wuw.usenix.org/event/secl1/tech/full_papers/Clark.pdf

7 Chilling of innovation, a long-term take

In a long-term perspective, all innovative software is intrusion software, inasmuch as it relies on unforeseen
composition. Composition is what people do with software from its inception to application; it defines
all interesting systems. All unforeseen, unexpected, or unapproved composition—otherwise known as
innovation—is “intrusion” in WA terms.

In the classic realms of expressive works—copyrighted texts, music, and other arts— Fair use is
unapproved compositional intrusion on pre-existing material, and one of the fundamental exceptions to
requiring prior approval. The realm of systems engineering needs a protection equally strong to evolve.

Engineers and researchers being liable for creating “intrusive” tools branded as violating copyright is
seen as a chilling effect on innovation. Similarly, engineers and researchers working on techniques painted
as intrusive should enjoy similar protections, for similar reasons. Construction of “intrusive” unapproved
mash-ups should be no crime, but an ordinary and protected means of gainful employment (being, as it
were, an engineering discipline right on the innovation trajectory).

The nature of engineering is creative reuse and pushing the limits, unexpected applications of existing
products (not just ideas). Unapproved composition is at the heart of innovation.

Innovation is unapproved composition. In software, we know it as exploitation. In software, any
composition for which dedicated interfaces were not foreseen, pre-designed, envisioned, or provided is
ezploitation. It’s impossible for a designer to foresee all uses of a technology, or most productive uses, or
even the primary use a decade from now — who could have predicted the WWW when designing multiuser
machines? Inventors of the telephone envisioned its profit model as receiving information services from
a central office, not as overwhelmingly a means of private conversations. When a monopoly manages to
enforce an envisioned set of uses for an extended period, stagnation results.

In the case of security and privacy, stagnation at the current point would mean the status quo of
ubiquitous insecurity and institutionalized imbalance of power between the state and the citizens, between
well-funded attack and resource-constrained defense.

Even though a Hollywood view of exploitation is that of enabling cinematic attacks, exploitation
enables defense by orders of magnitude stronger.

A Why the WA intrusion software definition has wrong
granularity that exceptions cannot fix

The WA defines intrusion software, and thus by derivation also controlled items for generation, operation
or delivery of, or communication with or development of intrusion software, in terms of fundamental
operations of computer science research and software engineering. Generally speaking, the operations in
the definition are as fundamental as operations such as taking roots, proof-by-contradiction, or variable
substitution are to mathematics. These operations are present in all non-trivial, innovative software (see
Section 7). These operations are critical to the performance of state-of-the-art security research, as well
as to other kinds of technological progress in software engineering. These operations are especially critical
for improving defense. At the same time, the exceptions to these definitions (”Hypervisors, debuggers or
Software Reverse Engineering (SRE) tools; ...”) are at a different, much higher level than whole programs
or products built for a particular purpose.

Complex software is built in multiple levels of aggregation and composition. Innovation entails ag-
gregation and composition in unforeseen combinations, at many levels. The WA definitions whitelist a
particular set of combinations and compositions that are seen as important to software engineering to-
day, but does not and cannot include the set of all such combinations and compositions that will become
equally or more important in the future.

The excepted programs or products contain both components with functionality labeled intrusive
as well other kinds of components. For example, a debugger contains software for modification of the
standard execution path of a program or process in order to allow the execution of externally provided
instructions—such as a module that injects breakpoints to divert control of the debugged program or
device—and a GUI. Without a GUI, the breakpointing software component could be considered “intrusion
software”; a reasonable judge who had even practiced debugging with an integrated production debugger
may be swayed by the argument that software that lacks a GUI is not a debugger and thus not excepted.

Yet it is in these execution-modifying (or ezecution-hijacking) components that progress in debugging
tools, in observability, and in security of software, is made. For example, Microsoft’s release of its Detours
library was a significant step forward. As described by Microsoft, Detours is both intrusion software and
a controlled item by the language of the Wassenaar Arrangement.

Detours intercepts Win32 functions by re-writing the in-memory code for target functions. The
Detours package also contains utilities to attach arbitrary DLLs and data segments (called pay-
loads) to any Win32 binary. —http://research.microsoft.com/en-us/projects/detours/

Detours can be used as a component of a debugger or as a part of malware. For example,

Malware authors like Detours, too, and they use the Detours library to perform import table
modification [standard technique of diverting standard execution paths into new code/commands
supplied by a Detours user], attach DLLs to existing program files, and add function hooks
to running processes.

Malware authors most commonly use Detours to add new DLLs [containing their malicious
code/commands] to existing binaries on disk. [discussion of various malware authors’ tech-
niques follows]

— Practical Malware Analysis, Michael Sikorski and Andrew Honig, No Starch Press, 2012,
page 262, Chapter 12.

Detours implements the pattern of modifying the execution path of other programs known as hooking.
Hooking is a basic pattern that is used ubiquitously for all kinds of software composition. Hooking is used
for debugging, instrumentation, and performance tuning of software. Hooking is also used for patching
vulnerabilities in software, as well as to upgrade software that lacks a dedicated upgrade mechanism.
This latter function is a critical security function for legacy software, including the software that runs
critical physical infrastructure.

Moreover, Detours is popular with developers, because

the Detours library makes it possible for a developer to make application modifications simply.
—Ibid.
The hooking pattern implements the fundamental software engineering operation of composing soft-
ware with other software. For this reason, it is implemented by a great variety of software, with a wide

range of techniques and uses. Often the hooking software is developed and released separately; sometimes
it is released together with management tools and automation tools.

Detours also includes a management component for its means of modifying the execution path, and
for automating the actions that deploy these means. These components fit the WA definition of controlled
items, since they operate, manage, and automate the application of the means by which Detours modifies
the execution path.

A.1 “Standard execution path” contradicts the nature of modern soft-
ware design

WA language depends on the concept of the standard execution path of a piece of software. The implica-
tion is that for every piece of software or at least for most important kinds, a set execution path exists,
and modifications of it are suspect and likely onerous.

However, modern software engineering in fact emphasizes customization of software, which explicitly
modifies the standard, as-shipped execution paths! For example, the popular Firefox web browser includes
a mechanism for modifying most aspects of its functionality (that is, its execution path) with the so-called
Add-ons, which interleave externally provided instructions with the main Firefox code logic. Over ten
thousands of Firefox add-ons are available at the time of this writing from the official Firefox vendor site
alone. Similarly, Google’s featured browser, Chrome, includes an analogous mechanism.

Software customization mechanisms for modifying the standard execution path of the software that
forms the basis of the Internet as we know it are not limited to web browsers. For example, the Apache
web server that, according to Netcraft web surveys, is the leading software behind roughly 40% of all
Internet web sites, ships with a similar customization mechanism.

In fact, the ability to modify the standard execution path of programs is the basis of an entire new
programming paradigm, Aspect-Oriented Programming. Popular programming languages such as Ruby
and its Ruby-on-Rails leading web development environment, implement this paradigm in the form of
miz-ins, a standard language mechanism.

Thus the WA emphasis on standard execution path is misleading, and clashes with the trends of
modern software engineering. One way to reconcile this language with these trends is to assume that
standard in fact has the much narrower meaning of expected by developers. We make this assumption in
the following analysis.

A.2 Bypassing protective countermeasures.

Wassenaar language targets “defeat[ing] protective countermeasures”, explained in a footnote as “tech-
niques designed to ensure the safe execution of code, such as Data Execution Prevention (DEP), Address
Space Layout Randomisation (ASLR) or sandboxing.” But what does defeating mean? This language
appears to include any software composition (such as patching or jailbreaking) that work reliably on
systems with a protective countermeasure enabled.

ASLR. For example, the point of ASLR is to make the location of various software components when
loaded into the memory of a computer less predictable. To patch such software while it’s running (such
patching is known as hot-patching, used for servers and other devices, including mission-critical devices
that are expected to operate 24/7), the patching software typically scans the computer’s memory and
identifies the addresses (locations) that were randomized.

This memory scanning technique is one of the most fundamental research and engineering operations.
Software that performs this non-trivial operation and looks for patterns in memory can be developed
and distributed on its own, or with other components such as pattern-matchers for memory contents or
memory visualizers. In any case, it can be said to defeat ASLR, by making available to its operator the
information obscured by ASLR; a reasonable judge familiar with technology would find this statement
true at face value.

For example, the F.L.ILR.T. technology is used by IDA Pro, a reverse engineering tool to locate
library functions, which are obscured by ASLR. F.L.I.R.T. is identified by the tool’s maker as a separate
technology.!® Since its publication, other software based on the same principles and dedicated to the
task of scanning memory at runtime has been developed by various parties and has aided in a variety of
applications such as forensics and hot-patching.

The operation of scanning memory to locate specific software components is too fundamental and
low-level to ascribe to it any intent or any specific use; yet it “defeats” the obfuscation imposed by ASLR
by definition.

Ohttps://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

Sandboxing. Sandboxing is a key engineering practice of limiting a program or a device in its access to
system resources. However, since the engineering practice is so generic and ubiquitously used, bypassing
the restrictions of a sandbox is also frequently used.

For example, jailbreaking of mobile phones to bypass manufacturer restrictions “defeats” sandboxing.
To make it easy for non-technical users to jailbreak and unlock their iPhones, developers of the jailbreak
delivered the jailbreaking commands through a browser exploit (altering the execution path of the browser
software); the user merely had to navigate to a webpage to get the jailbreak take effect (delivered).

All of these activities, including those allowing users to customize and protect their phones, would be
chilled by WA language.

“Defeating protective countermeasures” is not a meaningful way to characterize
software. Protective countermeasures are no different from any other obstacles to exploitation; it does
not matter in the final security analysis whether, e.g., the attacker cannot control the computation flow
because the memory corruption afforded by a bug is serendipitously not extensive enough or because a
protective measure somehow captures the attempt. In either case, security analysis deals with a system
of constraints; it doesn’t matter where constraints come from, or even whether they are external or
internal to the target system. Separating these constraints by origins would merely confuse and weaken
development of rigorous analysis.

Moreover, the intent to bypass countermeasures is neither obvious nor easy to argue. A piece
of malware—or a defensive 3rd party security product like the pioneering Blacklce product described
below—may use a specific method of altering the target software either because that method is more
reliable or because the original vendor blocks some simpler methods. Intruding equals composing in
every technical sense.

A very good discussion of this topic can be found in Rob Graham’s story of how he built the first
personal firewall Blacklce: http://blog.erratasec.com/2013/03/the-debate-over-evil-code.html
Rob was able to inject his protective code (in WA terms, “intrude”) on the Windows operating system
manually, but today a similar composition effort to harden, say, an iPhone, would notably require
automation, which would fall into controlled lists of WA.

B Automated Exploit Generation

WA control lists specifically target gemeration and development of intrusion software. Thus they apply
directly to generation of exploits, which are means of modifying the execution path of software.

Automatic generation of exploits is a rapidly developing direction of security research. The promise
of this field is to identify and prioritize security-critical software bugs so that they can be eliminated.
Prioritization is important, because modern complex software contains a multitude of bugs, many of which
are not exploitable; demonstrating that a bug is exploitable generates the exploit, which scientifically
and incontrovertibly proves this fact. In the words of the leading academic group that coined the term
AEG,

The generated exploits unambiguously demonstrate a bug is security- critical. Successful AEG
solutions provide concrete, actionable information to help developers decide which bugs to fix
first.

Although the name Automatic Ezploit Generation (AEG) does not suggest it, AEG is in fact a task
closely connected with software verification, a research and engineering methodology that uses formal
methods to secure software. Continuing the above quote:

Our research team and others cast AEG as a program-verification task but with a twist [..].
Traditional verification takes a program and a specification of safety as inputs and verifies the
program satisfies the safety specification. The twist is we replace typical safety properties with
an “exploitability” property, and the “verification” process becomes one of finding a program
path where the exploitability property holds. Casting AEG in a verification framework ensures
AEG techniques are based on a firm theoretic foundation. The verification-based approach
guarantees sound analysis, and automatically generating an exploit provides proof that the
reported bug is security-critical.

—Automatic Exploit Generation, by Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J. Schwartz, Maverick Woo, and David Brumley, Communications of the ACM, Febru-
ary 2014, Vol. 57, No. 2, p. 74

10

In a nutshell, AEG is a promising method of containing vulnerabilities that is based on firm theoretic
foundation of proven computer science.

As with fuzzers, development of industry-strength AEG engines starts with prototypes built by in-
dividual researchers or academic groups, but then moves to commercial startups to accommodate the
scalability, performance, and other engineering challenges that require dedicated effort of professional
developers. Yet this is also the stage in which such research produces its most fundamental results and
proves its ability to handle real-world software. Chilling AEG would severely set back defense.

C Why WA control items will impede progress of software
security

We referred earlier to the apparent rationale for the WA language not controlling so-called exploits or
rootkits, but instead controlling the software that is used to gemerate or operate or deliver exploits, and
to develop all the above.

Several points must be made about this language:

1. It presents fundamental obstacles to engineering progress of security tools, and to vulnerability
research in particular.

2. Its practical application to actual research and engineering artifacts used in vulnerability research
is just as vague as that of intrusion software or potentially even more vague.

This language presumes a clear boundary between programs that implement a particular software
functionality and the programs used to create such implementations. In reality, no such clear boundary
exists.

The structure of classifying software and the way that software progresses is misconstrued in the
underlying concepts of the supposed dichotomy. In fact, all of our technical examples above easily fall
into the controlled category of intrusion software enablers!

Progress in software engineering is being made by abstracting functionality from products first into
libraries and then into domain-specific languages and development tools. Early computers took a single
program (modern low-end microcontrollers still do), later computers required a specialized program to
operate other programs; this program is now known as an operating system. Early programs were written
in the basic commands of the computer, and realized basic conceptual elements of programming such as
loops and conditionals in these basic commands; later programs were written directly in terms of these
conceptual elements, and required specialized programs to generate the actual basic commands or to
emulate them. These specialized generating programs became respectively known as compilers, inter-
preters. A middle ground was taken up by virtual machine (VM) programs, such that run automatically
generated hybrid bytecode commands for Java and .Net programs and at the same time operate them.

Thus parts of functionality continually move from programs to the libraries (which standardize both
operation and programming) and the tools, and specifically by way of tools incorporating the functionality
to automatically generate what used to be manually written code in the main program’s body.

Without this migration of logic from programs to development tools, without thus abstracting away
the complexity, progress in programs is impossible. But under WA logic, this migration would create
controlled items even if the programs themselves are not controlled. Thus abstraction, the key means of
deepening our understanding of both engineering and research issues, will be chilled.

When does code for some functionality stop being a part of an uncontrolled program and becomes a
controlled tool? Does this happen when it moves to a library? A shared library? A piece of environment
that must be present for the main program to operate? When it moves into a tool to be generated
automatically from an abbreviated instruction or statement or code line in the program?

Moreover, not every code that is automatically generated is generated by a compiler. It may be
generated by several levels of scripts from templates, by a Makefile, or a scripted build, by any part
of the build system, and so on. Present day’s build systems are complex and multi-layered, and each
layer creates automatically generated code. There are no clear boundaries where code templates end and
generated code begins.

It is only thanks to this progression of automating operation and generation of programs that we were
able to advance from relatively small and simple programs to the present state of software engineering
and research.

11Such are the Java VMs inside web browsers and inside Android phones.

11

Security research follows the general pattern of software engineering. There is broad
recognition among security researchers that the better, more principled kind of defenses that common
operating systems employ now, commercially known as DEP, ASLR, EMET, and others are a result of
co-evolution of offensive research and defensive systems research.

Advancement of vulnerability research, key to this co-evolution, required substantial engineering
investment—into exactly the kind of generation and operation aspects of offensive software. In full
accord with the general trend described above, so-called exploits and rootkits went from entirely hand-
coded for the occasion to use of libraries, then to specialized compilers, build systems, interpreters, and
remote proxying designs comparable with production virtual machines emulators.

For example, initial defenses against the Return-Oriented Programming techniques (so known since
the academic publications of 2007-8, but known to vulnerability researchers since at least 1999-2000) did
not take into account the fact that finding of the snippets of code in the target that were composed by
the attacker to program the target without introducing any binary code could be automated. While it
was clear to security researchers experienced in offense that automation was possible and likely, and also
that a skilled attacker would need far less than complete automation to bypass existing defenses, the
threat was not so clear to vendors.

It took building actual ROP compilers software to perform these tasks automatically and in a
platform-independent manner to present the defenders with a proper yardstick for testing their actual
and proposed system defenses. Yet ROP compilers clearly fall among the WA controlled items.

Fuzzers: a highly practical approach to discovering vulnerabilities, threatened. A
necessary requirement for software to be considered trustworthy is that the software operates predictably
and as expected no matter what inputs it receives. This requirement is especially important when
the software receives inputs that can be maliciously crafted by attackers (which is, e.g., the case for any
software that receives its inputs from the Internet). Unfortunately, software engineering and development
practices are not yet at the point when this requirement can be assured.

As a result, an effective method of discovering security vulnerabilities in current software is to supply
that software with a series of crafted, invalid inputs and to observe which inputs cause unexpected effects
such as crashes or modifications of the typical execution paths. Such inputs are referred to as fuzzed
inputs by security practitioners, and the process of generating these inputs and observing their effects is
referred to as fuzzing. The software that automates this process is called a fuzzer or a fuzzing framework.

Fuzzing is by now the subject of several industry textbooks,'? a large number of research papers, and
an integral part of the secure software development lifecycle. Major vendors of software and hardware
such as Microsoft and Cisco use fuzzing in their software development and testing processes.

However, fuzzers and fuzzing frameworks fall within the WA definition of the controlled items, because
they automate a crucial step in development of intrusion software: finding the potential points where the
standard execution path of the target software can be modified, and logic external to the target program
purpose can be introduced.

Until new emerging methodologies for engineering input-handling code become a universally accepted
industry standard, fuzzing will remain a key technique for software security testing. Controlling the
development of new fuzzing techniques and of software that implements them will set back the existing
industry practices by years if not decades.

Vulnerability-finding tools must generate “intrusions” to be effective. To fulfill their
business purpose, vulnerability-finding tools such as fuzzers must generate complete recipes and payloads
for “modification of the standard execution path” that would put a target program or process under
attacker’s control. Stopping short of producing and testing such recipes would hinder a necessary business
function of the tool: prioritizing vulnerabilities into those actually exploitable under constraints imposed
by defensive measured such as DEP and ASLR, and those not exploitable. To effectively allocate the
inherently limited specialist labor to fixing the actually exploitable vulnerabilities first, a vendor must
receive evidence of exploitability. Since bugs in complex software systems are plentiful, following this
evidence-based approach is a virtual necessity for software vendors.

Moreover, the ability of fuzzers and other automated security tools to find vulnerabilities depends
on their ability to exercise all code paths possible in the target software, including those not normally
exercised. In other words, this ability depends on finding precisely those execution paths that an intrusion

12F.g., “Fuzzing: Brute Force Vulnerability Discovery”, by Michael Sutton, Adam Greene, Pedram Amini, Addison-Wesley
Professional, 2007; “Fuzzing for Software Security Testing and Quality Assurance”, Ari Takanen, Jared DeMott, Charlie Miller,
Artech House, 2008.

12

software would use. A fuzzer is essentially a tool for automatically generating recipes for triggering these
paths.

Consequently, vulnerability analysis tools developed towards algorithmically automating security
analysis and striving to automate judging of a bug’s exploitability. Modern research tools such as EXE!®
and KLEE™ use sophisticated static and dynamic automated analysis methods; similar proprietary
techniques are used in industry by Microsoft and other major vendors.

Can a fuzzer avoid being controlled by stopping short of producing a complete intrusion or exploit?
Only at the cost of ignoring state-of-the-art research. Early fuzzers indeed stopped at producing recipes
for triggering bugs that led to crashes, and left the rest of the exploitability analysis to costly manual
analysis by experts. As a result, these early fuzzers tended to produce more leads than defenders could
investigate, nor provided defenders with any actionable prioritization between the triggered bugs. Such
levels of performance is currently neither acceptable nor scalable, with few exceptions.

Automating operation and generation of code is the only way of making progress.
Operational automation and generation of code by tools is how software engineering makes progress.
They enable us to write larger programs, but that is less than half of the story—they also enable us to
see what actual challenges and possibilities come to the forefront when we reach each level of scale and
complexity.

It used to be that the job of system administrators was to manually enter commands to operate
systems in their care. Automation of these commands in common operational scenarios was what made
Cloud Computing possible (while dropping costs of hardware made it economically feasible in its present
form). Automation is at the core of every engineering advance; in computing, it is generation of logical
commands or code that gets primarily automated.

Law that creates obstacles to automating operation and generation of software—any software—
impedes the key means by which computing progresses. If the class of software that is broad—as
intrusion software as currently defined is, being essentially unapproved composition—then restricting
automation of operation and generation of this kind of software is going to catch all the practical ways
to make engineering progress in this software.

Essentially, such restrictions seeks to freeze the evolution and understanding of the so-called intrusion
software in its present state. This will create gaps in understanding and ability between actors who can
afford the chill and those who cannot, such as private parties, small companies, startups, and small
groups of research, and individual researchers.

In summary, the current Wassenaar approach will fail to protect both security researchers and the
basic conditions for progress in security engineering.

13«EXE: automatically generating inputs of death”, Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler, 2006, In Proceedings of the 13th ACM conference on Computer and communications security (CCS ’06).
ACM, New York, NY, USA

M «KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs”, Cristian Cadar, Daniel
Dunbar, and Dawson Engler, 2008, In Proceedings of the 8th USENIX conference on Operating systems design and implemen-
tation (OSDI’08). USENIX Association, Berkeley, CA, USA

13

