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Discrete-Time Analysis of Levelled Order Release and Staffing
in Order Picking Systems

Uta Mohring, Marion Baumann, Kai Furmans

ABSTRACT

Order picking systems are confronted with a volatile
demand and short delivery time requirements.
Manufacturing companies face the increasing
variability requirements with Heijunka-levelling, one
method of the Toyota Production System. The objectives
of this publication are to develop a levelling concept for
order picking systems, to analyse its performance based
on a discrete-time analytical model and to develop a
staffing algorithm determining the required workforce
level in an order picking system with levelled order
release. The levelling concept for order picking systems
results from the existing models of Heijunka-levelling
in the literature, which are adopted and expanded
regarding the specific requirements of order picking
systems. The order picking system with levelled order
release is depicted as a discrete-time Markov chain. To
analyse its performance, we derive several performance
measures, such as service level, backlog duration and
system utilisation, from the steady-state distribution
of the Markov chain. The staffing algorithm is a
binary search algorithm based on the Markov chain.
The models developed in this publication enable
a quantitative evaluation of the impact of several
system parameters, such as variability of customer
demand, workforce level and traffic intensity, on the
performance measures of the order picking system.
Furthermore, the staffing algorithm determines the
workforce level which is required to guarantee a certain
system performance, such as a service level of 99%, in
an order picking system with levelled order release. By
comparing levelled order release to FCFS-based order
release strategies in a numerical example, we show the
benefits of levelled order release.

KEYWORDS:discrete-timemodelling·Markovchain·
order picking · levelling · staffing

1. INTRODUCTION

Order picking systems are confronted with constantly
increasing order volumes, volatile customer demand
and permanent cost pressure. Since the order picking
process directly depends on the customer orders,
the variation of customer demand is assigned to the
workload of order picking systems. Furthermore,
customers require high flexibility and short delivery
times (cf. [1]). Order picking systems often differentiate
the customer orders regarding their lead time in express
and standard orders. A typical example are the different
delivery conditions of online retailers in B2C sectors.
However, this differentiation is also common in B2B
sectors: For example in the automotive aftermarket
sector, express orders correspond to unexpected
breakdowns of vehicles, whereas standard orders
refer to planned and regular maintenance measures of
vehicles.
Due to these flexibility requirements, many

warehouses still prefer manual order picking systems
with workers picking the required items from shelves or
pallets while driving or walking through the warehouse
instead of innovative, partly or fully automated order
picking systems. Automated systems ensure higher
picking rates than manual systems, but they require
a high homogeneity of items. Furthermore, especially
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workers, are not necessary. It is also ensured that the
customer orders are processed within the required lead
times.
In this publication,we focus on the proposed approach

of levelled order release. The approach of flexible
workforce planning will not be considered further. The
objectives of this publication are to develop a levelling
concept for order picking systems, to analyse its
performance based on a discrete-time analytical model
and and to develop a staffing algorithm determining
the required workforce level in an order picking system
with levelled order release.
The remainder of this publication is structured

as follows: Section 2 gives a short literature review
on related research topics. In Section 3, we derive a
levelling concept for order picking systems. To analyse
the performance of this concept, we depict the order
picking systemwith levelled order release as a discrete-
time Markov chain and we derive several performance
measures from its steady-state distribution in Section
4. In Section 5, we derive a staffing algorithm for
order picking systems with levelled order release. The
numerical studies in Section 6 give insights into system
behaviour and show the benefits of levelled order release
compared to FCFS-based order release strategies in a
numerical example. Section 7 summarises the insights
and provides directions for future research.

2. LITERATURE REVIEW

Review papers on warehouse operation (cf. [4], [5],
[6]) and order picking systems (cf. [2]) state that past
research focused on specific warehouse configurations
or specific decision problems, e.g. routing, storage and
batching policies. There is a lack of global models

in contract logistics, automated order picking systems
are not profitable, since the contract periods are too
short and the customers’ product ranges are too diverse.
However, manual order picking is cost-intensive,
especially in high-wage countries. According to [2]
and [3], on average 45-55% of total warehousing costs
can be assigned to the order picking process. Therefore,
workforce efficiency is an important lever to reduce
costs and to face the upcoming challenge of skills
shortage.
Flexibleworkforce planning and levelled order release

are two different appropriate solution approaches to
face these partly opposite requirements in manual
order picking systems (cf. Figure 1). The key idea of
flexible workforce planning is to cover the volatile
workload of the order picking system as precisely as
possible with the available workforce capacities of
the system by combining methods of flexible shift
scheduling and flexible work time models. In this way,
customer orders are processed in a timely manner and
the order picking system can guarantee both short lead
times with a high service level and high workforce
efficiency. In contrast, the key idea of levelled order
release is to convert the volatile workload of the order
picking system into a smooth and regular workload per
time interval. For this purpose, the deployed workforce
capacities per time interval are constant and levelled
order release takes advantage of the different lead
times of the customer orders which allow a certain time
flexibility to determine the time of processing of the
orders. By considering the due dates of the customer
orders, levelled order release compensates peaks in the
workload of the order picking system resulting from
peaks of the customer demand. Thus, the required
workforce level is constant and expensive additional
workforce capacities, such as overtime and temporary

Main requirements
of an order picking system

Fulfill a volatile customer demand

Efficient staffing to minimize operational
costs

Guarantee short lead times with a high
service level

Flexible workforce planning

Cover the volatile workload of the order picking
system as precisely as possible with the
available workforce capacities of the system

Combine flexible shift scheduling and flexible
work time models

Levelled order release

Convert the volatile workload of the order
picking system into a smooth and regular
workload per time interval

Use fixed workforce capacities per time interval
and exploit time flexibility of order processing
due to the different lead times of the orders

Fig. 1: Problem statement and possible solution approaches
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[23], [24] and [25] provide comprehensive literature
reviews on personnel scheduling categorizing the
publications according to the solution method, the
application area and several system characteristics.
[25] focuses on staffing and scheduling approaches for
systems with non-stationary demand. There are only
few publications on staffing in warehouses, although
researchers agree on the importance of workforce
planning in warehouses (cf. [6], [26]). [27] develops a
time series forecasting method to predict the workload
in a zone order picking system. Based on the predicted
workload and the productivity of one worker, the
required workforce level is calculated.
To the best of our knowledge, this is the first

publication dealing with levelled order release in order
picking systems, analysing its performance based on
an analytical, stochastic model and determining the
workforce level of this system.

3. LEVELLING CONCEPT FOR ORDER
PICKING SYSTEMS

In this section, we derive a levelling concept for order
picking systems based on the key ideas of Heijunka-
levelling in production systems. We initially describe
the ideas and the procedure of Heijunka-levelling in
production systems. Subsequently, we identify the
differences between production systems and order
picking systems regarding general conditions and
decision problem. Finally, we present the levelling
concept for order picking systems.

3.1. Heijunka-levelling in Production Systems
Heijunka-levelling is a simple and widespread concept
for order release in production systems to manage
the production of several different products on one
common production line. The key idea of Heijunka-
levelling is to convert the volatile customer demand
into a regular, recurring and standardized production
schedule to guarantee an even load of the given
production capacity. Heijunka-levelling smooths both
the volume and the product mix of the production
system (cf. [11]).
The planning procedure of Heijunka-levelling

refers to one planning period of the production system
(e.g. one month), which is subdivided into smaller
scheduling intervals (e.g. one week, one day, one shift).
It consists of the following planning steps: System
parametrisation and operational planning (cf. Figure
2). System parametrisation takes place at the beginning
of each planning period and deals with smoothing both
the production volume and the product mix. Volume
smoothing determines the production capacity per
product per scheduling interval which is reserved
for the production of this product in each scheduling
interval. For this purpose, the total customer demand
of the planning period of each product is evenly
distributed on the scheduling intervals. The reserved

and general procedures for order picking systems.
Furthermore, past research predominantly focused
on deterministic warehouse configurations assuming
that all data is given in advance (cf. [2]). However,
several questions in practice in warehouse operation
include stochastics, e.g. stochastic customer demand
and stochastic processing times, which is not explored
in literature yet (cf. [7]).
An order picking policy describes the principle

according to which orders are processed in the order
picking system. Literature differentiates between strict
order picking, batch picking, wave picking and zone
picking (cf. [5], [8]). In contrast, an order release strategy
describes the principle according to which orders are
released for processing. Order release strategies in
warehouses have hardly been investigated in literature
so far. [9] differentiates between wave-based and
waveless release policies: A wave-based release policy
groups orders into batches by some criteria and these
batches are released in a sequential manner. In case of
waveless order release, individual orders are released
continuously. [9] focuses on waveless order release for
warehouses with an automated sorter and [10] deals
with waved-based order release in order fulfillment
systems with deadlines.
In contrast to warehouse literature, levelling

customer demand and system workload in production
systems is abundantly discussed in literature. The most
known levelling concept in production systems is the
Heijunka-levelling approach of the Toyota Production
System. Past research on Heijunka-levelling can be
classified into the following areas:

• Procedure models,
• Stochastic models and
• Models for level scheduling.

Procedure models of Heijunka-levelling, such as [11],
[12] and [13], qualitatively describe the concept of
Hejunka-levelling. Stochastic models, such as [14],
[15], [16] and [17], focus on buffer sizing of a Heijunka-
levelled Kanban system. [14]–[17] use discrete-time
analytical models including stochastic parameters,
such as production capacity and customer demand,
to depict the Heijunka-levelled Kanban system and
to compute several performance measures, such as
service level and buffer size. The research area of
level scheduling covers static optimization problems
for production sequence planning in Heijunka-levelled
production systems (cf. [18], [19]).
The philosophy and the methods of the Toyota

Production System are transferred to other fields
such as supply and distribution logistics. The so
called “Lean Logistics” and “Lean Warehousing” are
studied in academic literature to a limited extent: [20]
describes the basic concepts of lean warehousing, [21]
develops a lean assessment tool for warehouses and
[22] investigates the impact of lean warehousing on
the warehouse performance. None of these publications
describes the different methods of lean warehousing,
such as levelling, in detail.
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when the customer demand of this product is below its
reserved production capacity (cf. Figure 3, [16], [17]).

3.2. Delimitation from Heijunka-levelling in
Production Systems

The concept of Heijunka-levelling in production
systems cannot be directly applied in order picking
systems because the general conditions and the decision
problem of order picking systems differ from those of
production systems to some extent: First, order picking
systems and production systems differ in terms of lot
size. Since orders are customer-specific concerning
product type and product volume, the order lot size
in order picking systems is usually one, whereas for
reasons of setup times, lot sizes in production systems
are often higher than one (cf. [22]). Second, setup times
between different products are relevant in production
systems, whereas setup times between the order
picking processes of different customer orders are
negligible small (cf. [22]). Third, Heijunka-levelling in
production systems predominantly focuses on Make-
To-Stock processes, which decouple workload and
customer demand by a buffer, whereas the workload of
order picking systems directly depends on the customer
demand. Thus, order picking can be considered as a

production capacity of a product corresponds to the
average customer demand per scheduling interval of
this product. Product mix smoothing determines the
production sequence of the different products within a
scheduling interval. Common objectives for production
sequence planning are minimizing setup times or
maximizing the regularity of the product mix. These
decision problems are covered in detail by the research
area of level scheduling. The reserved production
capacities and the production sequence per scheduling
interval are visualised in the levelling pattern on the
Heijunka-board (cf. Figure 3). Based on the levelling
pattern, the operational planning takes place at the
beginning of each scheduling interval: The incoming
customer orders of the current scheduling interval
are fulfilled by taking the required products from the
finished-goods-supermarket. The associated kanbans
are returned to the Heijunka-board. These kanbans
are assigned to the reserved production capacity of
the corresponding product on the Heijunka-board
according to First-Come-First-Served (FCFS). If the
customer demand of a product exceeds its reserved
production capacity in the current scheduling interval,
the associated kanbans are kept in an overflow box.
They are assigned to future scheduling intervals,

System
Parametrisation

Operational
Planning

Smoothing of
Production Volume

Smoothing of
Product Mix

Time slots Over-
flow1 2 3 4 5 6 7 8

Pr
od

uc
ts

A 2 2 2 1

B 2 2 3

C 3

D 3

Finished-goods
supermarket

Heijunka-board
Levelling pattern: A-A-B-C-A-A-B-D

Machine /
production resource

Customer

Levelled
production sequence

Fig. 2: Planning procedure of Heijunka-levelling

Fig. 3: Model of a Heijunka-levelled kanban system
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is reserved for order processing of this order type in
each scheduling interval (smoothing of volume) and
the processing sequence of the different order types
within a scheduling interval (smoothing of product
mix). The procedure of both steps equals the one of
Heijunka-levelling. The resulting levelling pattern
is visualised on the Heijunka-board (cf. Figure 5),
which is the starting point of the operational planning.
Operational planning takes place at the beginning of
each scheduling interval and allocates the picking
orders of the different order types to the corresponding
reserved picking capacities in the levelling pattern. The
pool of assignable picking orders covers the incoming
picking orders of the current scheduling interval and
the remaining unprocessed picking orders of previous
scheduling intervals stored in the overflow box. To
determine the processing sequence of picking orders
within one order type, their due dates are considered
as follows:

• Picking orders are processed according to
ascending due dates.

• Picking orders with identical due dates are
processed in accordance of FCFS.

• Picking orders become lost sales, when their due
date exceeds the maximum accepted backlog
duration.

If the number of assignable picking orders of an order
type exceeds its reserved picking capacity in the current
scheduling interval, the order backlog in the overflow
box increases by the corresponding number of orders.
Otherwise, the remaining capacity is used for training,
maintenance and continuous improvement measures.
To sum up, the main characteristics of the levelling

concept for order picking systems are the following:
• There is a fixed picking capacity per order type
per scheduling interval which is reserved for
order processing of picking orders of this order
type in each scheduling interval.

• Size and sequence of the reserved picking
capacities within one scheduling interval
are visualised in the levelling pattern on the
Heijunka-board.

Make-To-Order process. Finally, production capacity
in production systems is fixed in the short term,
due to a constant number of machines with a given
performance. In manual order picking systems,
capacity mainly depends on the number of assigned
workers, which is rather flexible in short term. Thus,
capacity can be easily adjusted to the current workload
of the order picking system.
The decision problem of Heijunka-levelling in

production systems focuses on choosing an appropriate
buffer size to guarantee the required service level,
whereby production capacity is constant. On the
contrary, the decision problem of levelling in order
picking systems determines the appropriate workforce
capacity to guarantee the required service level.
Due to these differences between order picking

systems and production systems, some adjustments and
extensions are necessary to derive a levelling concept
for order picking based on the key ideas of Heijunka-
levelling. Furthermore, the above mentioned discrete-
time stochastic models of Heijunka-levelled production
systems focus on a different decision problem and
cannot be used for the performance analysis of order
picking systems with levelled order release.

3.3. Levelling Concept for Order Picking
Systems

The levelling concept for order picking systems
determines the release principles for picking orders.
The picking orders result from the incoming customer
orders depending on the order picking policy of the
considered system. In the simplest case of strict
order picking, each customer order corresponds to
one picking order. For some order picking systems, it
can be reasonable to classify the picking orders into
different order types, e.g. regarding lead time (express
vs. standard picking orders) or regarding used picking
technology (picker-to-parts vs. parts-to-picker). Due
to the Make-To-Order character of order picking, the
levelling concept has to consider the individual due
dates of the picking orders resulting from the due dates
of the corresponding customer orders. Consequently,
picking orders are differentiated regarding their due
date into orders without failed due dates and those
with failed due dates (cf. Figure 4). Picking orders
with failed due dates are furthermore differentiated
into backorders and lost sales: Backorders represent
picking orders with failed due dates which still have to
be fulfilled, whereas lost sales correspond to picking
orders with failed due dates which are removed from
the system without being processed, since their due
date exceeds a certain maximum backlog duration.
Following the principles of Heijunka-levelling, the

planning procedure of levelled order release in order
picking systems consists of the planning steps system
parametrisation and operational planning (cf. Figure
2). System parametrisation takes place at the beginning
of each planning period and determines the picking
capacity per order type per scheduling interval which

Picking orders without
failed due dates

Picking Orders

Backorders Lost Sales

Picking orders with
failed due dates

Fig. 4: Classification of picking orders
regarding due date
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allow a more detailed analysis of the system: The
performance analysis is not limited to expected values,
but complete probability distributions are computed
(cf. [28]).

4.2. System Description
The analytical model depicts order processing of one
order type. An isolated consideration of each order
type is possible, since the analytical model focuses on
operational planning. When operational planning takes
place, the levelling pattern of the order picking system
has already been determined. Thus, the reserved picking
capacity per order type is fixed and order processing of
the different order types is independent of each other.
We assume that there is one order income of picking
orders per scheduling interval which is already known
at the beginning of the scheduling interval.
The general conditions of the order picking system

are described by the following parameters (cf. Table
1): Customer demand is specified by its volume
and its lead time: Random variable A describes the
number of incoming picking orders per scheduling
interval and random variable E specifies the lead time
associated to one picking order when arriving at the
order picking system. We specify the order picking
process by the parameters L and c: The individual
picking performance L depicts the number of picking
orders one worker is able to completely fulfill within
one scheduling interval, whereas c corresponds to
the number of workers assigned to the order picking
system. Furthermore, parameter N specifies the
maximum backlog duration.

• During each scheduling interval, the reserved
picking capacity per order type is used to process
picking orders of this order type according to
ascending due dates.

4. DISCRETE-TIME ANALYSIS OF
LEVELLED ORDER RELEASE

In this section, we depict an order picking system with
levelled order release as a discrete-time, analytical
model to analyse the performance of the developed
levelling concept. We firstly explain the reasons
for choosing a discrete-time Markov chain. After
describing the general conditions of the studied
order picking systems with levelled order release, we
introduce the corresponding Markov chain. Finally,
several performance measures of interest are derived
from the steady-state distribution of the Markov chain.

4.1. Model Choice
We choose a discrete-time Markov chain to analyse
the performance of the levelling concept for order
picking systems due to the following aspects: On the
contrary to static models, Markov chains are able to
depict the stochastic character of several parameters.
Furthermore, performance measures derived from the
steady-state distribution of the Markov chain are exact
in contrast to the approximate results of simulation
models. A discrete-time model is preferred to
continuous-time models, since the relevant parameters
have discrete-time character and discrete-time models

Fig. 5: Model of an order picking system with levelled order release

Further processing steps
in the warehouse

Heijunka-board
Levelling pattern: A-A-B-C-A-A-B-D

Order picking

Customer

Levelled order release
of picking orders

…

Stochastic incoming
customer orders

Processed
customer ordersProcessed

picking orders

Time slots Over-
flow1 2 3 4 5 6 7 8

O
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s
A 2 2 2 1

B 2 2 3

C 3

D 3
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for each lead time k∈ E (second component in
equation (2)) and

• the probability of having gk picking orders with a
lead time of k scheduling intervals for each lead
time k∈E (third component in equation (2)):

(2)

To aggregate all relevant information regarding
the order picking process in a single parameter, we
introduce random variable B. This variable specifies
the total picking performance per scheduling interval
and depends on the number of workers c and their
individual picking performance L. Assuming an
identical and independent distribution of the individual
performance of all workers, the probability distribution
of B is computed as c-fold convolution of the probability
distribution of L.
We assume that the considered order picking system

is stable. A system is stable, if its traffic intensity U is
smaller than one:

(3)

4.3. Discrete-time Markov Chain
The discrete-time Markov chain depicts the temporal
development of the order backlog in an order picking
system with levelled order release. We observe the
number of picking orders at discrete-time points in
time , which correspond to the starting points
of the scheduling intervals of the levelling concept.

To aggregate all relevant information regarding the
customer demand in a single parameter, we introduce
random vector G = (G−N ... Gemax ). It characterises
the incoming picking orders per scheduling interval,
whereby random variable Gk corresponds to the
number of incoming picking orders with a lead time
of k scheduling intervals, k ∈ {−N, ..., emax }. The
value range G of G is defined based on the following
conditions:
• No incoming picking order has a negative lead
time (first component in equation (1)).

• The value range of each vector component gk ,
k ∈ {0,. .., emax }, is defined by zero and the
maximum number of incoming picking orders
amax per scheduling interval (second component
in equation (1)).

• The total number of incoming picking orders

corresponds to a realisation of
the number of incoming picking orders A per
scheduling interval (third component in equation
(1)).

(1)

The probability P (G = g) of realisation
g = (g−N ... gemax ) depends on

• the probability of having incoming
picking orders per scheduling interval (first
component in equation (2)),

• the number of possibilities of having gk picking
orders with a lead time of k scheduling intervals

Tab. 1: Overview of parameters of the discrete-time Markov chain

Parameter Variable Value range

Parameters specifying the customer demand
Number of incoming picking orders A A = {amin, . . . , amax}
per scheduling interval
Lead time of a picking order E E = {emin, . . . , emax}
Incoming picking orders per scheduling interval G =

�
G−N . . . Gemax

� G
Parameters specifying the order picking process

Individual picking performance L L = {lmin, . . . , lmax}
per scheduling interval
Number of workers c N
Total picking performance per scheduling interval B B = {(c · lmin) , . . . , (c · lmax)}

Parameters specifying the levelling concept
Maximum backlog duration N N
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date of emax scheduling intervals at the beginning
of scheduling interval (t + 1) equals the number of
incoming picking orders gemaxwith a lead time of emax
scheduling intervals at the beginning of scheduling
interval (t + 1).
Using the specific structure of the state transition,

we derive an upper bound for the state spaceX : The
number of unprocessed picking orders of a particular
due date is at its maximum,
• if the number of incoming picking orders per
scheduling interval of this due date is at its
maximum,

• if the residual picking performance per scheduling
interval assigned to this due date is at its minimum
and

• if the number of remaining unprocessed picking
orders of the previous scheduling interval assigned
to this due date is at its maximum.

The upper bound O of system state X is defined by

(9)

Consequently, the Markov chain is finite and its state
spaceX is defined by

(10)

Several performance measures of interest can be
derived from the steady-state distribution π with
πx = P (X = x) of the Markov chain. For aperiodic,
finite, irreducible and therefore ergodic discrete-time
Markov chains, the steady-state distribution is obtained
by solving a set of linear equations (cf. [29]).
The Markov chain modelled in this publication is

aperiodic for all considered practical applications.
According to equation (10), its state space is finite.
Furthermore, it is possible to reach every state of
the Markov chain from every other state either by a
direct state transition or by an indirect transition via
a finite number of other states. In case of unreachable
states, these states are excluded from the computations.
Consequently, it is possible to find an irreducible subset
of the state space which is used as starting point for
subsequent computations. The steady-state distribution
π is therefore computed by solving the following set of
linear equations

(11)

Since this set of linear equations is overdetermined
by one equation, one equation of (11) is omitted when
solving the system of equations. To obtain the exact
steady-state distribution, this set of linear equations
is solved by using the Gaussian Elimination (cf. [29]).

System state X of the Markov chain depicts the
number of unprocessed picking orders of the order
picking system:

(4)

whereby Xk corresponds to the number of unprocessed
picking orders with a due date of k scheduling intervals.
The state transition from an arbitrary state Xt = x at

the beginning of scheduling interval t to a stateXt+1 = y
at the beginning of scheduling interval (t + 1) depends
on
• the total picking performance b of scheduling
interval t,

• the incoming picking orders g at the beginning of
scheduling interval (t + 1) and

• the principles of the levelling concept.
Assuming independence of incoming picking orders
G and total picking performance B per scheduling
interval, the transition probability is computed as
follows

(5)

with

(6)

The number of unprocessed picking orders yk with a
due date of k scheduling intervals at the beginning of
scheduling interval (t + 1) is the sum of the number
of incoming picking orders gk with a lead time of k
scheduling intervals at the beginning of scheduling
interval (t + 1) and number of unprocessed picking
orders

(7)

with a due date of (k + 1) scheduling intervals at the end
of scheduling interval t. The number of unprocessed
picking orders with a due date of (k + 1) scheduling
intervals at the end of scheduling interval t is either
zero or it corresponds to the difference of the number
of unprocessed picking orders xk+1 with a due date of
(k + 1) scheduling intervals at the beginning of
scheduling interval t and the residual picking
performance

(8)

of scheduling interval t remaining after all picking
orders with a due date of l < (k + 1) scheduling
intervals have already been processed. The number
of unprocessed picking orders yemax with a due
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(14)

and the corresponding expected value is defined as

(15)

Random variable S specifies the number of
unprocessed backorders which become lost sales per
scheduling interval, since their due date exceeds the
maximum backlog duration N. Lost sales of s picking
orders occur at the beginning of a scheduling interval,
if the number of unprocessed picking orders x−Nwith a
due date of (−N ) scheduling intervals at the beginning
of the previous scheduling interval exceeds the total
picking performance b of the previous scheduling
interval by s picking orders. The corresponding
probability is computed as negative convolution
of the steady-state distribution and the probability
distribution of B as follows

(16)

System utilisation Ũ specifies the proportion of
the available picking performance per scheduling
interval which is used to process picking orders. The
utilisation of a specific scheduling interval equals the
ratio of the total number of unprocessed picking orders

4.4. Performance Measures
Table 2 gives an overview of the performance measures
of the order picking system with levelled order release
derived from the steady-state distribution in the
following subsections.

4.4.1. Performance measures based on unprocessed
orders:

Random variable Q specifies the total number of
unprocessed picking orders in the order picking
system at the beginning of a scheduling interval. The
total number of unprocessed picking orders q at the
beginning of a scheduling interval is the sum of the
number of unprocessed picking orders xk with a due
date of k scheduling intervals, k∈ {−N, ..., emax}. The
probability distribution is derived from the steady-state
distribution as follows

(12)

and the corresponding expected value is defined as

(13)

Random variable M specifies the number of
unprocessed backorders in the order picking system
at the beginning of a scheduling interval. The number
of unprocessed backorders m at the beginning of
a scheduling interval is the sum of the number of
unprocessed picking orders xk with a negative due
date of k scheduling intervals, k ∈ {−N, ..., −1}. The
probability distribution is derived from the steady-state
distribution as follows

Performance measure Variable Value range

Performance measures based on unprocessed orders
Number of unprocessed picking orders Q Q =

�
0, . . . ,

�	emax

k=−N Ok

��
Number of unprocessed backorders M M =

�
0, . . . ,

�	−1
k=−N Ok

��
Number of lost sales S S = {0, . . . , O−N}
System utilisation Ũ [0, 1]

Performance measures based on processed orders
Processed picking orders per scheduling interval H H
Number of processed picking orders per scheduling interval F F = {(c · lmin) , . . . , (c · lmax)}
Number of processed backorders per scheduling interval F backlog F = {(c · lmin) , . . . , (c · lmax)}
Number of processed picking orders without failed due date F buffer F = {(c · lmin) , . . . , (c · lmax)}
per scheduling interval
Time difference to order deadline of a processed picking order D D = {−N, . . . , emax}
Backlog duration of a processed backorder Dbacklog Dbacklog = {1, . . . , N}
Time buffer of a processed picking order Dbuffer Dbuffer = {0, . . . , emax}

Service levels
β-service level SLβ [0, 1]
γ-service level SLγ [0, 1]

Tab. 2: Overview of performance measures of the discrete-time Markov chain
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(21)

Random variable F specifies the total number of
processed picking orders per scheduling interval. The
total numberofprocessedpickingorders fper scheduling
interval is the sum of the number of processed picking
orders hk with a due date of k scheduling intervals,
k ∈ {−N, ..., emax}. The probability distribution is
derived from the probability distribution of H as
follows

(22)

and the expected value is defined as

(23)

In the same manner, we determine the probability
distribution of the number of processed backorders
Fbacklog per scheduling interval and the probability
distribution of the number of processed picking orders
without failed due date Fbu f fer per scheduling interval:

(24)

(25)

The expected values of Fbacklog and Fbu f fer are defined
as follows:

(26)

(27)

Random variable D quantifies the time difference
to deadline of a processed picking order at its time of
processing. The probability P (D = d ) that a processed
picking order has a time difference of d scheduling
intervals to its deadline at its time of processing is
proportional to the sum of the number of processed
picking orders hd with a due date of d scheduling
intervals at their time of processing for all realisations
h ∈ H, whereby each summand is weighted by the
corresponding probability P (H = h). By normalizing
this weighted sum, the probability distribution of D
is defined as follows

at the beginning of this scheduling
interval to the total picking performance b of this
scheduling interval. To compute the system utilisation
Ũ, we sum this ratio for all tupels (x, b) ∈ X × B,
whereby each summand is weighted by the product of
the corresponding probabilities πx and P (B = b):

(17)

4.4.2. Performance measures based on processed
orders:

Random vector H = (H−N ... Hemax) specifies the
number of processed picking orders per scheduling
interval considering their due dates at the time of
processing, whereby random variable Hk corresponds
to the number of picking orders having a due date of
k scheduling intervals, k ∈ {−N, ..., emax}, at their
time of processing. The value rangeH of H is defined
based on the following conditions:
• The value range of each vector component hk,
k ∈ {−N, ..., emax}, is defined by zero and the
maximum total picking performance bmax per
scheduling interval (first component in equation
(18)).

• The total number of processed picking orders

corresponds to a realisation of
the total picking performance B per scheduling
interval (second component in equation (18)).

(18)

The number of processed picking orders hk with a due
date of k scheduling intervals at a specific scheduling
interval equals either the number of unprocessed
picking orders xk with a due date of k scheduling
intervals at the beginning of this scheduling interval
or the residual picking performance

(19)

of this scheduling interval remaining after all picking
orders with due date of j < k scheduling intervals have
already been processed. The probability P (H = h) of
the realisation h = (h−N ... hemax) is defined as

(20)

with
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orders E(F ) and the expected value of the number of
lost sales E(S ):

(34)

The γ-service level is computed as the complement of
the following quotient: The numerator of the quotient
covers the sum of the total number of processed

backorders , weighted by their
backlog duration, for all realisations h ∈ H, whereby
each summand is weighted by the corresponding
probability P (H = h), and the expected value of the
number of lost salesE(S)weighted by a backlog duration
of (N + 1) scheduling intervals. The denominator of the
quotient considers the expected value of the number
of processed picking orders E(F ) weighted by the
maximum backlog duration of N scheduling intervals
and the expected value of the number of lost sales E(S)
weighted by a backlog duration of (N + 1) scheduling
intervals:

(35)

5. STAFFING IN ORDER PICKING
SYSTEMSWITH LEVELLED ORDER
RELEASE

In this section, we develop a staffing algorithm for order
picking systemswith levelled order release determining
the required workforce level to guarantee a certain
system performance. First, we choose an appropriate
model to implement the staffing algorithm based on
the existing Markov chain. Second, we introduce the
staffing algorithm for order picking systems with
levelled order release. Finally, we analyse the impact
of the workforce level on the performance measures of
the order picking system.

5.1. Model Choice
The workforce level of a system corresponds to the
number of workers assigned to this system. The
workforce level of an order picking system with
levelled order release is already captured in parameter
c of the discrete-timeMarkov chain (cf. Table 1). Thus,
the Markov chain determines the performance of an
order picking system with levelled order release for a
given workforce level. On the contrary, the question
of staffing deals with determining the minimum
workforce level to guarantee the required performance
of the order picking system (cf. Figure 6). Therefore, we
supplement the Markov chain by an appropriate search
algorithm.

(28)

The expected value of D is computed as

(29)

The backlog duration of a processed backorder is
equal to the number of scheduling intervals which
have already been passed since its deadline at its
time of processing. The probability P (Dbacklog = d)
that a processed picking order has a backlog duration
of d scheduling intervals at its time of processing
is proportional to the probability P (D = −d) that a
processed picking order has a time difference to
deadline of (−d) scheduling intervals. By normalizing
the probabilities P (D = d), d ∈ {−N, ..., −1}, the
probability distribution of Dbacklog is computed as
follows

(30)

The corresponding expected value is defined as

(31)

The time buffer of a processed picking order
corresponds to the number of scheduling intervals
which still remain at its time of processing until
reaching its deadline. The probability P (Dbu f fer = d)
that a processed picking order has a time buffer of
d scheduling intervals at its time of processing is
proportional to the probabilityP (D= d) that a processed
picking order has a time difference to deadline of d
scheduling intervals. By normalizing the probabilities
P (D = d), d∈ {0, ..., emax}, the probability distribution
of Dbuf fer is computed as follows

(32)

The corresponding expected value is defined as

(33)

4.4.3 Service Levels:
The service level of an order picking system specifies
the proportion of on time processed picking orders of
the total number of picking orders. Depending on the
considered level of detail, we differentiate two different
types of service level: The β-service level considers
the number of on time processed orders, whereas the
γ-service level additionally takes into account the
backlog duration of processed backorders.
We define the β-service level as quotient of the

expected value of the number of processed picking
orders without failed due date E (Fbu f fer) and the sum of
the expected value of the number of processed picking
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to be either positivemonotonic or negativemonotonic to
correctly implement the procedure of the binary search
in the staffing algorithm. In subsection 5.3, we show
that this requirement is held. To ensure minimality of
the identified workforce level, the staffing algorithm
continues searching in the lower half of the search
range until it fails.
If multiple performance measures determine the

required performance of the order picking system,
the staffing algorithm is implemented separately for
each of these performance measures. The minimum
required workforce level of the order picking system
equals the maximum value of the different workforce
levels identified in the separate implementations of the
staffing algorithm.

5.3. Impact of the workforce level on the
performance measures of the order picking
system

Since the staffing algorithm requires a monotonic
relationship between the workforce level and each
performance measure of the order picking system,
we analyse the relationship between the workforce
level and the performance measures. The analysis
exclusively considers the impact of an increasing
workforce level on the performance measures. The
impact of a decreasing workforce level is exactly
opposite to the effects described in the following.
An increase of the workforce level c leads to an

increase of the expected value of the total picking
performance E(B) per scheduling interval, since the
total picking performance B per scheduling interval
is computed as c-fold convolution of the individual
picking performance L per scheduling interval. Several
performance measures of the order picking system

Search algorithms identify the element within a given
search range whose value of a predefined key parameter
equals the target value. We choose the binary search
algorithm as appropriate algorithm for staffing, due to
its applicability to our decision problem, its intuitive
procedure and its computing time performance. The
binary search algorithm halves the search range in
each iteration. [30] provides a detailed description of
its procedure.

5.2. Staffing Algorithm
The search range of the staffing algorithm corresponds
to the set of possible workforce levels C. It is derived
from the value ranges of the number of incoming
picking orders A per scheduling interval and the
individual picking performance L per scheduling
interval as follows

(36)

There is an individual data set assigned to each
workforce level c ∈ C which contains the values of
the performance measures of the order picking system
with levelled order release, if c workers are assigned
to the system. It results from the computation of the
associated Markov chain. Each performance measure
can be chosen as key parameter of the staffing
algorithm. The corresponding target value specifies the
required performance of the order picking system. It is
an input parameter of the staffing algorithm.
The decision of the staffing algorithm whether the

lower or the upper half of the search range is chosen
to continue the search depends on the relationship
between the workforce level and the performance
measure chosen as key parameter: The relationship has

Fig. 6: Decision problem of Markov chain and staffing algorithm

Number of incoming picking orders
per scheduling interval 𝐴𝐴

Lead time of a picking order 𝐸𝐸
Individual picking performance

per scheduling interval 𝐿𝐿
Maximum backorder duration 𝑁𝑁

Number of workers 𝑐𝑐

Number of unprocessed picking orders 𝑄𝑄
Number of unprocessed backorders 𝑀𝑀

Number of lost sales 𝑆𝑆
System utilization ෩𝑈𝑈

Number of processed picking orders 𝐹𝐹

𝛽𝛽-service level 𝑆𝑆𝐿𝐿𝛽𝛽
𝛾𝛾-service level 𝑆𝑆𝐿𝐿𝛾𝛾

Markov chain

System description System performance

System workforce level

Input

Output

Time difference to order deadline 𝐷𝐷
Staffing algorithm



13Discrete-Time Analysis of Levelled Order Release and Staffing in Order Picking Systems

k scheduling intervals either decreases or remains
constant with increasing E(B), since the expected
value of the number of unprocessed picking orders
E(Xk ) of this due date either decreases or remains
constant. For due dates k ≥ k∗, the expected value of
the number of processed picking orders E(Hk ) with
a due date of k scheduling intervals either increases
or remains constant with increasing E(B), since the
expected value of the residual picking performance

per scheduling interval either increases or
remains constant. Furthermore, k∗x either increases or
remains constant with increasing E(B). Consequently,
there is a positive time shift in the time of processing of
a picking order: There are fewer picking orders having
a short due date at their time of processing, whereas
more picking orders have a long due date at their time
of processing.
Regarding the time difference to deadline D of a

processed picking order, the probability P (D = d) of
having a time difference of d < k∗ scheduling intervals
either decreases or remains constant with increasing
E(B), since the expected value of the number of
processed picking orders E(Hd) with a due date of
d scheduling intervals either decreases or remains
constant for due dates d < k∗. On the contrary, the
probability P (D = d) of having a time difference of
d≥ k∗ scheduling intervals either increases or remains
constant with increasing E(B), since the expected value
of the number of processed picking orders E(Hd) with
a due date of d scheduling intervals either increases or
remains constant for due dates d≥ k∗ (cf. equation 28).
Consequently, the expected value of the time difference
to deadline E(D) of a processed picking order either
increases or remains constant (cf. equation (29)).
The range of possible due dates k ∈ {−N, ...,

emax} of a picking order is independent of the total
picking performance per scheduling interval. Due to
the constant range of due dates and the positive time
shift in the time of processing of a picking order,
we conclude the following: The expected value of
the number of processed backorders E (F backlog)
per scheduling interval either decreases or remains
constant with increasing E(B) and the expected value
of the number of processed picking orders E (Fbu f fer )
without failed due date per scheduling interval either
increases or remains constant (cf. equations (26),
(27)). For the same reasons, the probability P (Dbacklog
= d) that a processed picking order has a negative
time difference to deadline d ∈ {−N, ..., −1} either
decreases or remains constant with increasing E(B),
whereas the probability P (Dbu f fer= d) that a processed
order has a non-negative time difference to deadline
d∈ {0,. .., emax} either increases or remains constant.
Consequently, the expected value of the backlog
duration E (Dbacklog) of a processed backorder either
decreases or remains constant and the expected value
of the time buffer E (Dbu f fer ) of a processed picking
order increases or remains constant (cf. equations (31),
(33)).

directly depend on the total picking performance per
scheduling interval. Thus, the analysis focuses on the
impact of an increasing expected value of the total
picking performance E(B) per scheduling interval.
The expected value of the number of unprocessed

picking orders E(Xk) with a due date of k scheduling
intervals, k ∈ {−N, ..., emax}, either decreases or
remains constant with increasing E(B), since the
expected value of the residual picking performance

per scheduling interval for picking
orders with a due date of k scheduling intervals,

(37)

either increases or remains constant (cf. equation (6)).
Consequently, both the expected value of the number
of unprocessed picking orders E(Q) and the expected
value of the number of unprocessed backorders E(M )
either decrease or remain constant with increasing E(B)
(cf. equations (13), (14)). System utilisationŨ considers
the ratio of the total number of unprocessed picking

orders to the total picking performance
B (cf. equation (17)). Due to the increase of the expected
value of the total picking performance E(B) per
scheduling interval and the decrease of the expected
value of the total number of unprocessed picking
orders E(Q), system utilisation Ũ either decreases or
remains constant. The expected value of the number
of lost sales E(S) either decreases or remains constant
with increasing E(B), since the expected value of the
number of unprocessed picking orders E(X−N ) with a
due date of (−N ) scheduling intervals either decreases
or remains constant and the expected value of the total
picking performance E(B) per scheduling interval
increases (cf. equation (16)).
For short due dates k, k∈ {−N, ..., emax}, the number

of processed picking orders hk with a due date of k
scheduling intervals corresponds to the number of
unprocessed picking orders xk with a due date of k
scheduling intervals. Whereas for long due dates k,
k ∈ {−N, ..., emax}, the number of processed picking
orders hk with a due date of k scheduling intervals is
determined by the residual picking performance (cf.
equation (21)).We define the state-dependent parameter
k∗x as shortest due date k for which the residual picking
performance determines the number of processed
picking orders:

(38)

For due dates k < k∗, the expected value of the number
of processed picking orders E(Hk) with a due date of



14

the numerator, E(S ) is weighted by (N + 1), whereas
E(S ) is unweighted in the denominator. Consequently,
γ-service level SLγ increases or remains constant with
increasing E(B) (cf. equation (35)).
In this analysis, we show that the relationship between

the workforce level and each performance measure is
either positive monotonic or negative monotonic:
• The performance measures Q, M, S, Ũ, Fbacklog
and Dbacklog are negatively correlated with the
workforce level.

• The performance measures F, Fbu f fer, D, Dbu f fer,
SLβ and SLγ are positively correlated with the
workforce level.

A E(A) ∈ {1.0, 1.5, 2.0} c2(A) ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
E E(E) = 0.6 c2(E) = 0.667
L E(L) = 1.05 c2(L) = 0.315
c 2
N 2

Tab. 3: Parameter setting for numerical
performance analysis for different variabilities

of incoming picking orders

6. NUMERICAL STUDIES

In this section, we investigate the impact of several
variations of system parameters on different
performance measures of the order picking system and
we compare levelled order release with FCFS-based
order release strategies in a numerical example.

6.1. Numerical Performance Analysis for
Different Variabilities of Incoming Picking
Orders

To investigate the impact of the variability of incoming
picking orders on the performance measures of the
order picking system with levelled order release,
we examine several variabilities of the number of
incoming picking orders per scheduling interval in the
range between c2(A) = 0 and c2(A) = 1 for different
traffic intensities of the system U ∈ {0.4762, 0.7143,
0.9524} (cf. Table 3). A typical example for an order
picking system with c2(A) = 0 is a just-in-time material
supply of a production line, whereas c2(A) = 1 refer to
order picking systems with a high number of different
customers.
Figure 7 shows that β-service level SLβ and γ-service

level SLγ decrease with increasing variability of
incoming picking orders c2(A). The variability of the
incoming picking orders reflects the volatility of the
workload of the order picking system. Higher and
more frequent peaks of the customer demand result in
an increasing volatility of the workload of the order
picking system which is generally compensated using
additional picking performance. However, an order
picking system with a given picking performance can
compensate an increasing volatility of its workload
only to some extent. Thus, an increasing volatility of

The expected value of the total number of processed
picking orders E(F ) per scheduling interval either
increases or remains constant with increasing E(B).
Based on these findings, we are able to analyse the

impact of the workforce level on the service levels
SLβ and SLγ: Since the total number of outgoing picking
orders corresponds on average to the total number of
incoming picking orders, the sum of the expected
value of the number of processed picking orders E(F )
per scheduling interval and the expected value of the
number of lost sales E(S) per scheduling interval is
equal to the expected value of the number of incoming
picking orders E(A) per scheduling interval. This sum
is constant, since the expected value of the number of
incoming picking orders E(A) is independent of the
workforce level. As a result, β-service level SLβ either
increases or remains constant with increasing E(B),
since the expected value of the number of processed
picking orders E (Fbu f fer) without failed due date
increases or remains constant (cf. equation (34)).
Regarding the analysis of the γ-service level, we

consider the numerator and the denominator of the
quotient in equation (35) separately: The denominator
can be rewritten as

(39)

The first summand remains constant with increasing
E(B), since the sum (E(F )+ E(S)) is independent of
the total picking performance per scheduling interval.
The second summand E(S) either decreases or remains
constant with increasing E(B). Consequently, the
denominator of the quotient in equation (35) either
decreases or remains constant with increasing E(B).
Using equation (31), the first summand of the numerator
can be rewritten as follows

(40)

Since E (Dbacklog ) and E (F backlog ) both decrease
or remain constant with increasing E(B), the first
summand of the numerator decreases or remains
constant. The second summand of the numerator
((N +1)·E(S )) either decreases or remains constant
with increasing E(B), since the expected value of the
number of lost sales E(S) either decreases or remains
constant. Consequently, the numerator of the quotient
in equation (35) either decreases or remains constant
with increasing E(B). The decrease of the numerator
is at least equal to the decrease of the denominator,
since the first summand of the numerator decreases
or remains constant and the decrease of the second
summand of the numerator is greater than the decrease
of the denominator due to its greater coefficient: In
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6.2. Numerical Performance Analysis for
Different Lead Times

To investigate the impact of the lead time of a picking
order on the performance measures of the order picking
system with levelled order release, we examine several
expected values of the lead time of a picking order in
the range between E(E) = 0 and E(E) = 3 for different
traffic intensities of the system U ∈ {0.4762, 0.7143,
0.9524} (cf. Table 4). Express orders have to be
processed within the same day (E(E) = 0), whereas for
replenishment orders, the lead time is typically greater
than one day.
Figure 9 shows an increase in β-service level SLβ and

γ-service level SLγ with increasing expected value of
the lead time E(E) of a picking order. The lead time of
a picking order affects the time flexibility of the order
picking system to determine the time of processing of
this picking order: The time flexibility to determine the
time of processing of a picking order with a long lead
time is higher than the one of a picking order with a
short lead time. In an order picking systemwith a given
picking performance and a given number of incoming
picking orders, an increasing time flexibility increases
the number of on time processed picking orders and
thus results in an increase of the performance of the
order picking system (cf. Figure 9).
Furthermore, Figure 9 shows a disproportionate

increase in β-service level SLβ and γ-service level SLγ
with increasing traffic intensity U. In order picking
systemswith a low traffic intensity, the average available
picking performance E(B) exceeds the average needed
picking performance E(A) to a remarkable extent, so
that there is enough picking performance to process
almost every picking order on time independent of its
lead time. In order picking systems with a high traffic
intensity, the average available picking performance
E(B) is only slightly greater than the average needed
picking performance E(A), so that a higher time
flexibility has a remarkable positive effect on the

the workload has a negative impact on the performance
of the order picking system (cf. Figure 7).
Furthermore, Figure 7 shows a disproportionate

decrease in β-service level SLβ and γ-service level
SLγ with increasing traffic intensity U. In order
picking systems with a low traffic intensity, the
average available picking performance E(B) exceeds
the average needed picking performance E(A) to a
remarkable extent. This performance excess is used to
compensate occurring peaks of the workload. On the
contrary, in order picking systems with a high traffic
intensity, the average available picking performance
E(B) is only slightly higher than the average needed
picking performance E(A), so that there is less picking
performance to compensate occurring peaks of the
workload. Consequently, the negative impact of an
increasing volatility of theworkload on the performance
of the order picking system increases with increasing
traffic intensity of the system (cf. Figure 7).
Figure 8 shows a positive correlation between the

variability of processed picking orders c2(F ) and
the variability of incoming picking orders c2(A). For
c2(A) > 0, the value of the variability of processed
picking orders is smaller than the corresponding
value of the variability of incoming picking orders,
especially for medium and high traffic intensities.
Thus, the levelled order release succeeds in reducing
the volatility of the workload of the order picking
system. The smoothing effect of levelled order release
increases with increasing traffic intensity.
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A E(A) ∈ {1.0, 1.5, 2.0} c2(A) = 0.5
E E(E) ∈ {0.0, 1.0, 2.0, 3.0} c2(E) = 0
L E(L) = 1.05 c2(L) = 0.315
c 2
N 2

Tab. 4: Parameter setting for numerical
performance analysis for different lead times
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For this order picking system, we aim to quantify the
benefits of levelled order release compared to FCFS-
based reference order release strategies. Therefore, we
compare levelled order release with the order release
strategies FCFS-DD and FCFS-RAND:
• FCFS-DD: Orders arriving at different points in
time are released according to FCFS and orders
arriving at the same point in time are released
according to ascending due dates.

• FCFS-RAND: Orders arriving at different points
in time are released according to FCFS, whereas
the release sequence of orders arriving at the same
point in time is determined randomly.

We initially have to derive the parameters of the
Markov chain (cf. Table 1) from the given data. There
are two possibilities to model the different order types
of the numerical example: On the one hand, we can
consider each order type separately modelling one
Markov chain for each order type. On the other hand,
the order types only differ regarding their lead time in
this example. We can depict these differences in the
probability distribution of the lead time and thus the
differentiation of two order types is not necessary any
further. For reasons of simplicity, we choose the latter

number of on time processed picking orders. Thus,
the positive impact of an increasing lead time of the
picking orders on the performance of the order picking
system increases with increasing traffic intensity of the
system (cf. Figure 9).
These interaction effects between the lead time of a

picking order, the traffic intensity of the system and its
performance could be relevant for practitioners when
negotiating their supply agreements with customers:
To guarantee a high service level, either the customers
have to transmit their orders with a sufficiently long
lead time, or the system has to be run at a sufficiently
small traffic intensity. The models developed in
this publication enable a quantitative evaluation of
these interaction effects: For instance, for a given
probability distribution of the lead time of a picking
order, we are able to determine the maximum possible
traffic intensity of the order picking system while
guaranteeing the required service level of the customer
at the same time.

6.3. Comparison of Order Release Strategies in
a Numerical Example

We investigate a manual order picking system of a
German company of the automotive aftermarket sector.
The observation period lasts from 2 January 2015 to
31 December 2015. The time series of the order data
within this period consists of 260 data sets (cf. Figure
10). Each data set represents the order data of one
working day and includes the daily order volume as
well as the lead times of the customer orders. The daily
order volume fluctuates between its minimum of 1144
orders per day and its maximum of 14193 orders per
day. The average order volume is 7842 orders per day.
The customer orders are subdivided into the following
order types: express orders with an average lead time
of 0.84 days and standard orders with an average lead
time of 4.04 days. Regarding the picking performance,
it is known that one worker picks on average 14 orders
per hour and has a daily working time of 8 hours. The
required performance of this order picking system is
measured by β-service level and its target value is 98%.
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when using levelled order release instead of FCFS-DD
order release or by six workers (6.29%) when using
levelled order release instead of FCFS-RAND order
release respectively.
Furthermore, we compare the different order

release strategies regarding β-service level for a given
workforce level. For a workforce level of 84 workers,
the β-service level of the order picking system is
99.09% in case of levelled order release, 96.30% in case
of FCFS-DD order release and 93.87% in case of FCFS-
RAND order release. This corresponds to an increase
in β-service level by 2.79% when using levelled order

and model the order picking system of the numerical
example based on a single Markov chain. The
scheduling interval of the levelling concept is one day,
in particular oneworking day, due to the time interval of
the order data. Furthermore, the data of the daily order
volume is classified into 14 equally-sized classes in the
range from 1000 to 15000 orders per day, whereby the
mean of each class is chosen as class representative.
The resulting probability distribution of the number
of incoming picking orders per scheduling interval
is shown in Figure 11. The probability distribution of
the lead time of a picking order is derived from the
absolute frequency distribution of the order lead time.
The peaks of the probability distribution for a lead time
of one day and a lead time of four days indicate the
two different order types (cf. Figure 12). Regarding
the individual picking performance per scheduling
interval, the mean value is given by 112 picking orders
per scheduling interval. Based on our experiences on
common probability distributions of processing times
in order picking systems, we assume a discrete log-
normal distribution with a variability of c2(L) = 0.4 as
appropriate probability distribution for the individual
picking performance per scheduling interval (cf.
Figure 13). Since there is no information regarding the
maximum backlog duration, we assume that it equals
the maximum lead time of an order, which is 8 days.
Based on these parameters, the state space of the

corresponding Markov chain consists of 8.65 ·1083
states. For reasons of computing time and memory,
it is not possible to analyse levelled order release in
the order picking system of the numerical example
by means of the Markov chain. Instead, we exploit a
simulation model which has been validated based on
a comparison with the Markov chain for numerous
example scenarios. The results of a Chi-Square
Goodness-of-Fit Test with a 5% level of significance
show that the empirical steady-state distribution
resulting from the simulation model deviates from the
exact one to a negligible small extent. Both FCFS-based
order release strategies FCFS-DD and FCFS-RAND
are also each implemented in a simulation model.
To obtain robust results, we perform ten replications
each and compute the required workforce level and
the performance measures as average values of these
replicates.
Initially, we compare the different order release

strategies regarding the workforce level which is
required to guarantee a β-service level of 98% in the
order picking system of the numerical example. When
using levelled order release, at least 84 workers have
to be assigned to the order picking system. In contrast,
in case of FCFS-DD order release, at least 87 workers
and in case of FCFS-RAND order release, at least
90 workers have to be assigned to the order picking
system. The respective values of the performance
measures are summarized in Table 5. Thus, in the order
picking system of the numerical example, the required
workforce level decreases by three workers (3.13%)
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release, system utilisation decreases with increasing
number of assigned workers. Thus, by assigning more
than the required minimum number of workers to the
order picking system, system utilisation of the order
picking system decreases. However, including this
additional requirement regarding a maximum possible
system utilisation raises a conflict of interests: Since
system utilisation is independent of the selected order
release strategy, assigning additional workers to the
order picking system reduces the benefits of levelled
order release compared to FCFS-based order release
strategies.

7. CONCLUSION AND FUTURE
DIRECTIONS

In this publication, we investigate the approach of
levelled order release in order picking systems. Based
on the concept of Heijunka-levelling in production
systems, we derive a levelling concept for order picking
systems: There is a fixed picking capacity per order
type per scheduling interval which is reserved for
order processing of picking orders of this order type
in each scheduling interval. Size and sequence of the
reserved picking capacities within one scheduling
interval are visualised in the levelling pattern. During
each scheduling interval, the reserved picking capacity
per order type is used to process picking orders of
this order type according to ascending due dates. To
analyse the performance of the levelling concept, we
depict the order picking system with levelled order
release as a discrete-time Markov chain and we derive
several performance measures from its steady-state

release instead of FCFS-DD order release or by 5.22%
when using levelled order release instead of FCFS-
RAND order release respectively.
In conclusion, for the numerical example, we find

that the order picking system benefits from levelled
order release: Compared to FCFS-based order release
strategies, levelled order release enables either a
decrease in the workforce level required to guarantee
a certain system performance or it enables an increase
in system performance for a given workforce level.
For operational planning and control of order

picking systems, further performance measures
besides service levels are relevant. For instance, the
system utilisation of the order picking system may not
exceed 90%. As shown in Figure 14 for levelled order

LEVELLING FCFS-DD FCFS-RAND

Workforce level
Number of workers c 83.5000 86.2000 89.1000

Performance measures based on unprocessed orders
Number of unprocessed picking orders Q 12206.8671 10338.0943 9606.7460
Number of unprocessed backorders M 127.5067 113.7588 121.2315
Number of lost sales S 0 0 0

System utilisation Ũ 0.9426 0.9130 0.8845

Performance measures based on processed orders
Number of processed picking orders F 7879.7851 7892.9886 7893.6698
Number of processed backorders F backlog 102.9403 103.0287 113.7604
Number of processed picking orders without failed due date F buffer 7776.8447 7789.9599 7779.9094
Time difference to order deadline of a processed picking order D 1.7239 1.9634 2.0560
Backlog duration of a processed backorder Dbacklog 1.2045 1.0989 1.0486
Time buffer of a processed picking order Dbuffer 2.0430 2.0039 2.1012

Service level
β-service level SLβ 98.77% 98.81% 98.70%
γ-service level SLγ 99.81% 99.84% 99.83%
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Tab. 5: Workforce level and performance measures of the order picking system of the numerical example
for different order release strategies: levelled order release strategy LEVELLING and FCFS-based
reference order release strategies FCFS-DD and FCFS-RAND (average values of ten replications)

Fig. 14: Impact of workforce level c on several
performance measures SLβ, SLγ, Ũ of the order
picking system with levelled order release

in the numerical example
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study. Other future directions concern the extension
of the levelling concept to the whole warehouse.
Levelling the global workload of a warehouse can
be a meaningful approach, if workers can be flexibly
assigned to different processes of the warehouse and
switches between different processes within one
shift are possible. We mentioned flexible workforce
planning and levelled order release as two appropriate
solution approaches to face the current requirements in
manual order picking systems (cf. Figure 1) and only
focused on levelled order release in this publication.
The combination of these two approaches would be a
meaningful further potential future field of research.
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