The metal and its alloys

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Cemented carbides

In the production of a so-called cemented carbide, such as tungsten carbide, a briquetted mixture of tungsten carbide and cobalt powder is heated at a temperature above the melting point of cobalt. The latter melts and binds the hard carbides, giving them the toughness and shock resistance needed to make carbides of practical value for machine tools, drill bits, dies, and saws. Cobalt is the most satisfactory matrix metal for this purpose and may be present in amounts from 3 to 25 percent by weight.

Cobalt-60

A radioactive form of cobalt, cobalt-60, prepared by exposing cobalt to the radiations of an atomic pile, is useful in industry and medical science. Cobalt-60 is used in place of X-rays or radium in the inspection of materials to reveal internal structure, flaws, or foreign objects. It is used in cancer therapy and as a radioactive tracer in biology and industry. The advantages of cobalt-60 over radium lie in lower cost, more homogeneous gamma radiation and softer beta radiation, which can be easily filtered out in the absence of contamination, and its ability to be machined or shaped in any form before irradiation to fit special requirements.

Magnetic alloys

About 25 percent of the world’s cobalt output goes into magnets. The best permanent magnets contain a substantial quantity of cobalt.

Cobalt steels, containing 2–40 percent cobalt, are used extensively as magnets. Iron-cobalt-vanadium alloys, such as the so-called Vicalloys, are employed for ductile permanent magnets, as are the Cunicos—i.e., alloys of copper, nickel, and cobalt. Another magnet alloy is iron-cobalt-molybdenum, typified by Remalloy or Comol.

Since 1930 it has been known that a series of alloys, the Alnicos, containing 6–12 percent aluminum, 14–30 percent nickel, 5–35 percent cobalt, and the balance largely iron, with small quantities of copper and titanium, make the best permanent magnets. Cobalt is also used in some soft magnetic alloys such as the Perminvar alloys of nickel-iron-cobalt, the Permendur alloys of iron-cobalt, and the cobalt ferrites. Nearly all these alloys are used in electrical equipment and electronic devices.

The alloying of rare-earth metals, in particular samarium and praseodymium, with 60–65 percent cobalt results in a range of high-coercivity, fine-powder magnets. These alloys are particularly suited for applications, such as electronics, that require small magnets with precise dimensions and characteristics.

High-temperature alloys

An important use for cobalt is in the field of high-temperature steel alloys. Required in gas turbines, jet engines, and similar applications, such alloys retain their strength above 650 °C (1,200 °F); these alloys contain from 5 to 65 percent cobalt.

Even higher operating temperatures in turbines have resulted in an increased use of cobalt-containing and cobalt-based alloys known generally as superalloys. These can withstand severe operating conditions and temperatures up to 1,150 °C (2,100 °F). Nimonic 90, for example, is a nickel-based alloy containing 18 percent cobalt, a similar amount of chromium, and some titanium. Waspaloy is another alloy of this type.

Cutting and wear-resistant alloys

The addition of 2–12 percent cobalt to tool steels enables them to be used more effectively on hard materials for which deep cuts and high speeds are required.

Cobalt improves the wear resistance of many alloys. Hard-facing materials contain 10–65 percent cobalt, and abrasion-resistant die steels usually have 0.4–4 percent cobalt.

Glass-to-metal sealing alloys

Alloys, such as Kovar and Fernico, containing 15–25 percent cobalt, are used extensively in glass-to-metal seals because they have expansion characteristics similar to those of certain glasses.

Dental and surgical alloys

Materials containing 28–68 percent cobalt, with chromium, nickel, and molybdenum, are used in dentistry and bone surgery. They have excellent resistance to tarnish and abrasion, compatibility with mouth tissues and body fluids, high strength and stiffness, good casting properties, and low cost in comparison with precious metals.

Electroplating

For certain applications requiring smooth, bright films that are hard but relatively ductile, an alloy of cobalt-nickel is deposited instead of the conventional nickel-plating. The plating alloy may contain 1–18 percent cobalt, and the electrolyte contains both cobalt and nickel salts.

Other alloys

Cobalt-based alloys having 40–50 percent cobalt are often used as springs. Beryllium copper, used for a multitude of applications besides springs, generally contains 0.1–2 percent cobalt.

An alloy of 54 percent cobalt, 9.5 percent chromium, and 36.5 percent iron changes dimensions very little with changes in temperature. Cobalt-based alloys of 56–63 percent cobalt, with iron and chromium or vanadium, have the advantage in certain applications of very little variation in elasticity regardless of temperature.

Another alloy, a stainless steel containing 18 percent nickel and 8 percent cobalt, also has some industrial applications.