Chapter 01 LangChain環境準備篇
1.1 使用Poetry來安裝與管理虛擬環境
1.2 使用Python-dotenv來管理環境變數
1.3 LangChain 0.2 版介紹與0.3版更新策略
Chapter 02 LangChain 初試身手
2.1 認識LangChain
2.2 建立一個簡單的生成式AI應用 - 語言翻譯器
2.3 運用Prompt Template 打造多國語言翻譯器
2.4 PromptTemplate應用練習 - 單字情境造句機
Chapter 03 PromptTemplate 設計
3.1 多筆問答範例樣板 - 來啊!戰南北
3.2 範例選擇器 - 先生,你依據哪一條判斷我是南部人?
3.3 省話一哥 - 利用範例選擇器來簡化提示
Chapter 04 Chain 的基本概念與使用
4.1 Chain 的基本概念與使用
4.2 認識 LLMChain
4.3 認識 SimpleSequentialChain
4.4 認識 SequentialChain
4.5 認識MultiPromptChain
4.6 實作Conditional Chain機制
Chapter 05 認識 LCEL 表達式
5.1 認識LCEL表達式
5.2 認識RunnableSequence
5.3 認識RunnableParallel
5.4 認識RunnableBranch
5.5 認識RunnableLambda
5.6 認識RunnableWithFallbacks
5.7 認識RunnablePassthrough
Chapter 06 LangChain Memory機制
6.1 常見的Memory機制介紹
6.2 RunnableWithMessageHistory介紹
6.3 實作 RAG 流程整合歷史訊息
Chapter 07 LangChain與Azure OpenAI GPT-4o
7.1 申請Azure OpenAI GPT-4o資源
7.2 開始使用Azure OpenAI GPT-4o - 多愁善感的詩人
7.3 LangChain與GPT-4o
7.4 我的Azure OpenAI英文老師:Whisper + GPT-4o + TTS .-10
Chapter 08 LangChain與Google Gemini
8.1 申請 Google Gemini API
8.2 Hello Gemini
8.3 LangChain與Gemini
8.4 圖片理解
8.5 聲音理解 - Podcast 重點摘要
8.6 影片理解 – Ryan在哪裡
Chapter 09 LangChain與Hugging Face
9.1 Hugging Face 介紹
9.2 Hugging Face 帳號註冊
9.3 LangChain Hugging Face全新套件
Chapter 10 設計RAG應用
10.1 認識RAG
10.2 認識 Embeeding與向量資料
10.3 實作 RAG應用
10.4 關於知識文件切割的探討
Chapter 11 本地模型RAG應用
11.1 認識Ollama
11.2 使用llama.cpp量化與轉換模型格式
11.3 實作混合雲RAG應用
Chapter 12 Qdrant進階使用技巧
12.1 Qdrant多租戶的設計
12.2 Qdrant索引設計
12.3 Qdrant分散式部署
12.4 Qdrant與LangChain的整合
12.5 Qdrant與LangChain在 0.3 版將會有的改變
Chapter 13 設計Chatbot應用
13.1 Hello Line Bot 建立
13.2 Line Bot + GPT-4o
13.3 Line Bot + Gemini
13.4 LangChain + GPT-4o + Gemini
Chapter 14 AI Agent
14.1 AI Agent 概念
14.2 AI Agent架構設計:從單體到複雜系統
14.3 基本 ReAct AI Agent 應用
14.4 為ReAct AI Agent加上短期記憶應用
14.5 為 ReAct AI Agent 加入 system prompt
14.6 AI Agent的工具也可以是個 Chain
Chapter 15 LangServe與部署上雲
15.1 LangServe介紹
15.2 RAG Chain的搭建
15.3 LangServe 建立與整合
15.4 容器化LangServe與地端部署
15.5 LangServe 容器映像登錄
15.6 部署LangServe到Azure