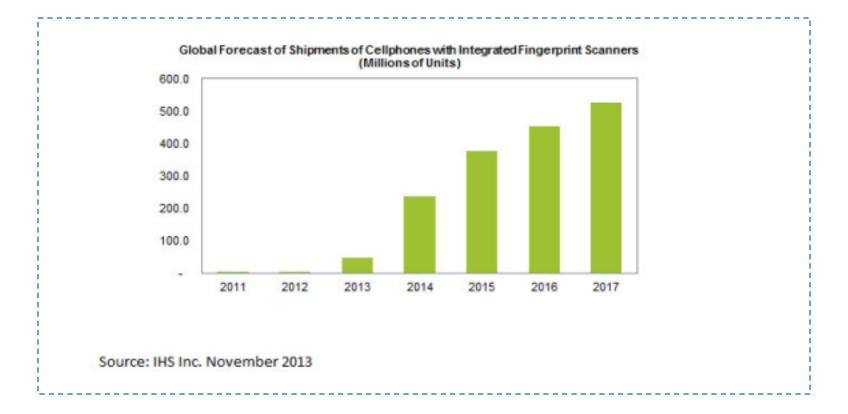


Fingerprints On Mobile Devices: Abusing And Leaking

Tao Wei and Yulong Zhang

More And More Mobile Vendors Equip Fingerprint Scanners


Saygus

Apple

Samsung

HTC

Huawei

50% of smartphone shipments will have a fingerprint sensor by 2019
-- Research Capsule

Functionalities Associated with Fingerprints

- Authentication
 - System screen unlock
 - Authentications in FIDO Alliance services
- Authorization
 - iTunes/App store pay
 - Apple Pay
 - Transaction authentication using FIDO

Risks: Leaking Fingerprint Is A Disaster

Password leaked? Fine, you can easily replace it with a new one.

Risks: Leaking Fingerprint Is A Disaster

- Fingerprint leaked? Well, it is leaked for the rest of your life.
- Moreover, it is associated with your identity record, criminal history, immigration history, banking credential, etc.

http://www.cnn.com/2010/WORLD/europe/07/05/first.biometric.atm.europe/

https://en.wikipedia.org/wiki/Office_of_Biometric_Identity_Management

It would be even worse if the attacker can remotely harvest fingerprints in a large scale.

Existing Optical Attacks

- Fingerprints can be stolen from its owner if a person touched any object with a polished surface like glass or a smartphone screen.
- Fingerprints can even be extracted from a waving hands photo.

Attackers can spoof fingerprints accordingly using electrically conductive materials.

Figures from C. Shoude et al. Fingerprint Spool Detection By NIR Optical Analysis. July 2011.

System Attacks against Fingerprints?!

- This talk will rather focus on:
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - ➤ Backdoor of Pre-embedding Fingerprints

To our knowledge, we are the first to discuss system attacks against fingerprint auth frameworks

Outline

Design of Android Fingerprint Frameworks

- Fingerprint Recognition
- Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Discussion

Outline

- Design of Android Fingerprint Frameworks
 - > Fingerprint Recognition
 - Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Discussion

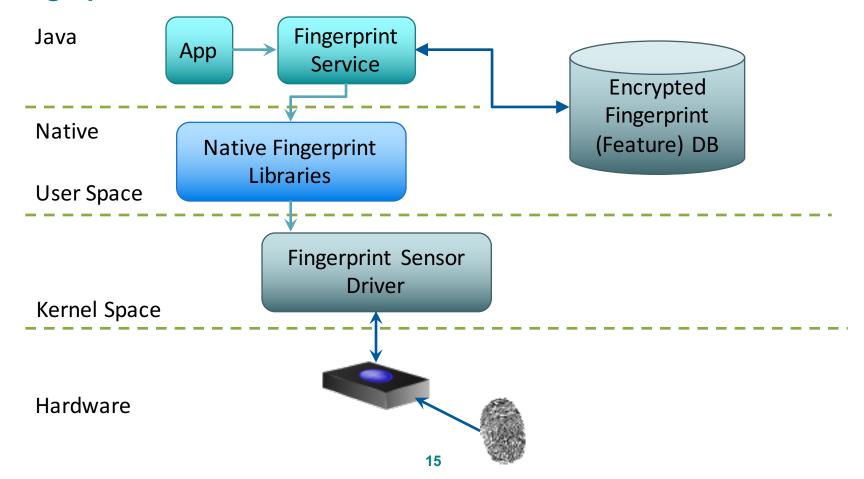
Fingerprint Minutiae Extraction

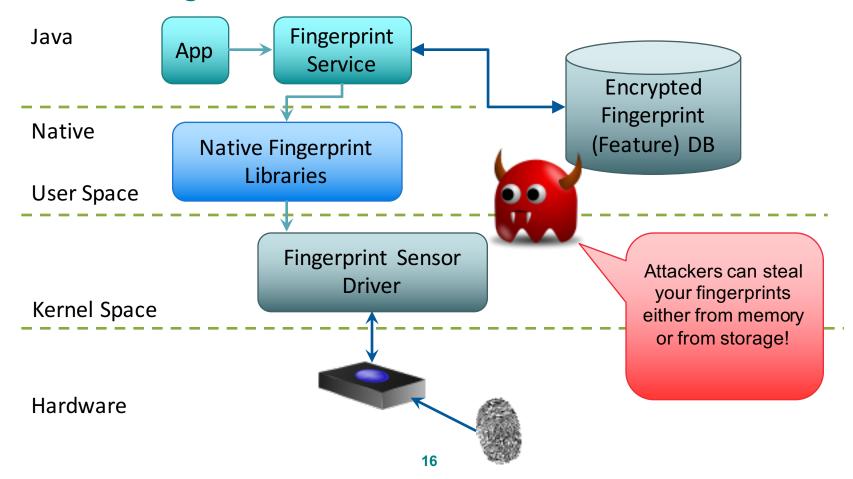

Grayscale Image

Phase Image

Skeleton Image Minutiae

Figures from J. Feng and A. Jain, Fingerprint Reconstruction: From Minutiae to Phase IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 2, FEBRUARY 2011

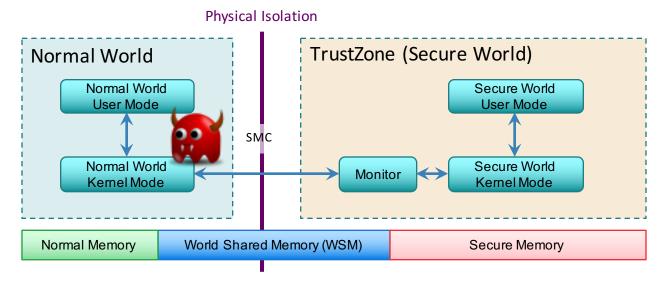

Fingerprint Minutiae Matching


Outline

- Design of Android Fingerprint Frameworks
 - Fingerprint Recognition
 - Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Discussion

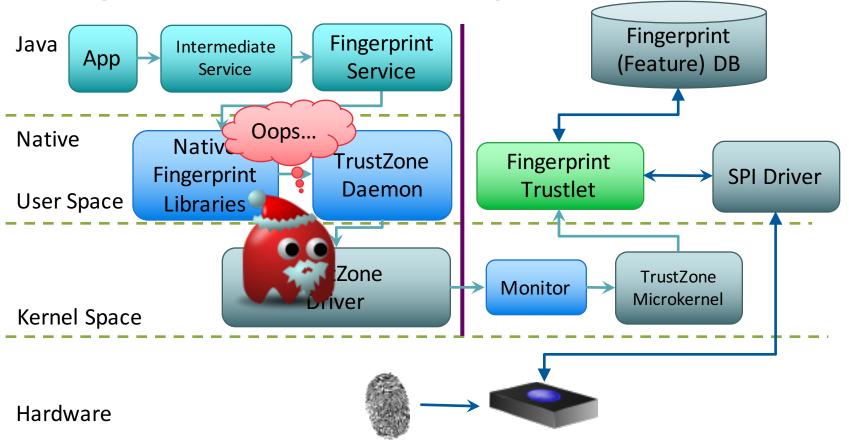
Fingerprint Framework without TrustZone

Threat: Rooting Attacks

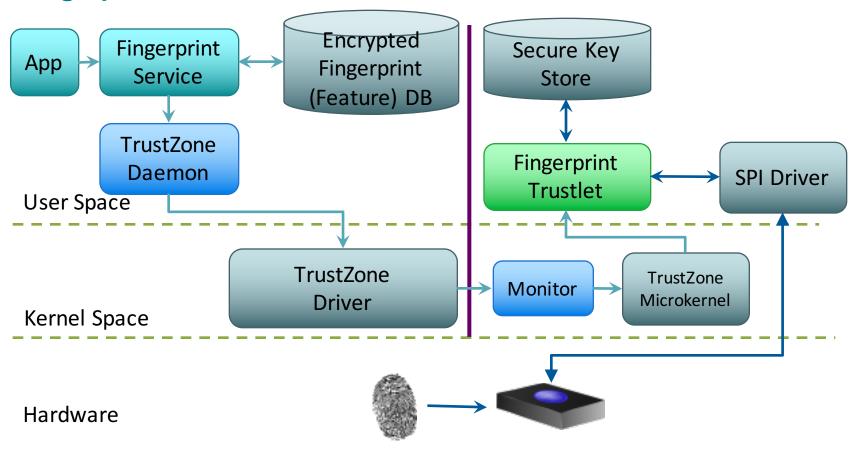


How to Defend against Rooting Attacks? TrustZone

ARM'TRUSTZONE'


System Security

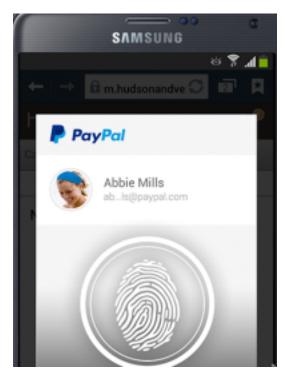
- Separate the system to the Normal World, and the Secure World
- Contain potential compromises in the Normal World



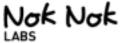
Fingerprint Framework with TrustZone **Fingerprint** Fingerprint Java Intermediate App (Feature) DB Service Service **Native Native** Fingerprint TrustZone **Fingerprint SPI** Driver Trustlet Daemon User Space Libraries TrustZone TrustZone **Monitor** Microkernel Driver Kernel Space Hardware

Rooting Attackers Cannot Access Fingerprints in TrustZone

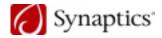
Fingerprint Authorization Framework with TrustZone



We Are Secure! Let's Ally: FIDO Alliance



Samsung Galaxy S5 (octa-core) **Fingerprint Framework**


Money Transaction Service

Nok Nok ➤ Auth Protocol Implementation

Phone Framework

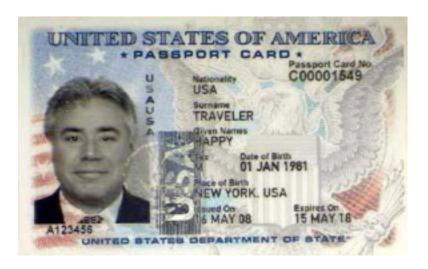
Synaptics ➤ Fingerprint Sensor

> TrustZone Isolation of Exynos 5

Outline

- Design of Android Fingerprint Frameworks
 - Fingerprint Recognition
 - Mobile Fingerprint Frameworks

System Attacks against Fingerprints


- Confused Authorization Attack
- Unsecure Fingerprint Data Storage
- Fingerprint Sensor Spying Attack
- Backdoor of Pre-embedding Fingerprints
- Discussion

Outline

- Design of Android Fingerprint Frameworks
 - Fingerprint Recognition
 - Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Discussion

Authentication

Who you are (Passport)

Authorization

What you can do (Visa)

Authenticating

Figures from fcssllc.com

Authorizing

Figures from dailytech.com

Authorizing: Context!

Figures from dailytech.com

To Swipe or Not To Swipe, without A Context?

Figures from dailytech.com

What are your fingerprints?

OR

Demo!

Do you ever have a second thought when you swipe to unlock the device?

It can enable background attacker to steal your money from your mobile payment account!!!

Questions

How can I testify what's happening behind the finger swiping?

You can't tell...

What's the difference of swiping to unlock the device with swiping to authorize a mobile payment transaction?

You can't tell...

- Applications often mistakenly treat authorization as authentication, and fail to provide context proofs for authorization.
- Without proper context proof, the attacker can mislead the victim to authorize a malicious transaction by disguising it as an authentication or another transaction.
- In the demo
 - The attacker fakes a lock screen to fool the victim to think that he/she is "swiping finger to unlock the device", but the fingerprint is actually used to authorize a money transfer in the background.

FIDO Alliance's Specification

- → Basically if a FIDO UAF Authenticator has a transaction confirmation display capability, FIDO UAF architecture makes sure that the system supports What You See is What You Sign mode (WYSIWYS). A number of different use cases can derive from this capability -- mainly related to authorization of transactions (send money, perform a context specific privileged action, confirmation of email/address, etc).
- → The transaction confirmation display component implementing WYSIWYS needs to be trusted

However...

- ◆ The original fingerprint auth framework (without TrustZone) has no reliable way to provide the authorization context proof.
- The framework with TrustZone can be improved to achieve this goal (the Trustlet modules in TrustZone can be modified to provide the context proof), but so far (June 2015) we haven't seen any major vendor that implemented this feature.

Outline

- Design of Android Fingerprint Frameworks
 - Fingerprint Recognition
 - Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Discussion

What you thought your fingerprint should be...

What the reality is...

```
shell@t6wl:/ $ ls -l /data/dbgraw.bmp
-rw-rw-rw- root val_fp 383306 2015-06-16 11:27 dbgraw.bmp

Any unprivileged processes or apps can steal user's
fingerprints by reading this file.
File format is distorted -- but easy to recover.
```

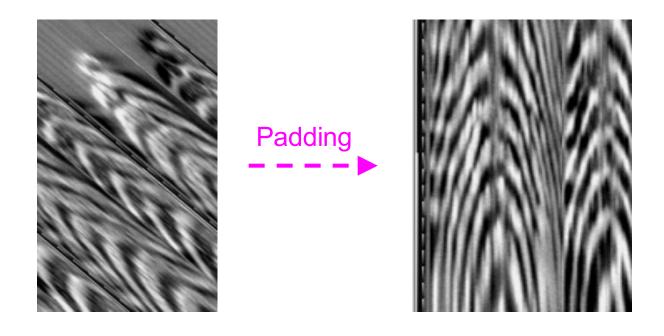
Problem found on HTC One Max. HTC has patched it by working with its vendor after our notification.

Fingerprint Image Format

```
      01 FE
      02 00 09 09 14 20 60 50 70 70 70 40 60 50

      70 70 70 70 70 70 70 70 60 70 60 70 70 80 70 80

      80 70 70 70 70 80 90 A0 A0 A0 A0 A0 A0 A0 B0 A0 80


      [...]

      B0 B0 B0 A0 B0 A0 B0 A0 A0 A0 A0 A0 A0 A0 A0 A0 90 A0 A0 90

      90 90 90 90 90 90 80 80 70 B0 70
```

- ➤ It's a bitmap image
- Each line starts with 0xFE01
- ➤ Each line is not properly 4-byte aligned (can be fixed by padding)

Fingerprint Bitmap Recovery

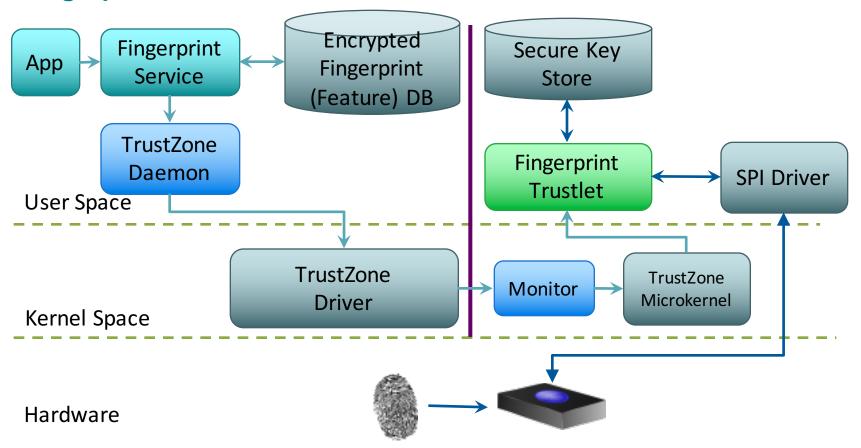
Then... how about fingerprints stored in TrustZone?

TrustZone is NOT unbreakable, if vendor's code is buggy

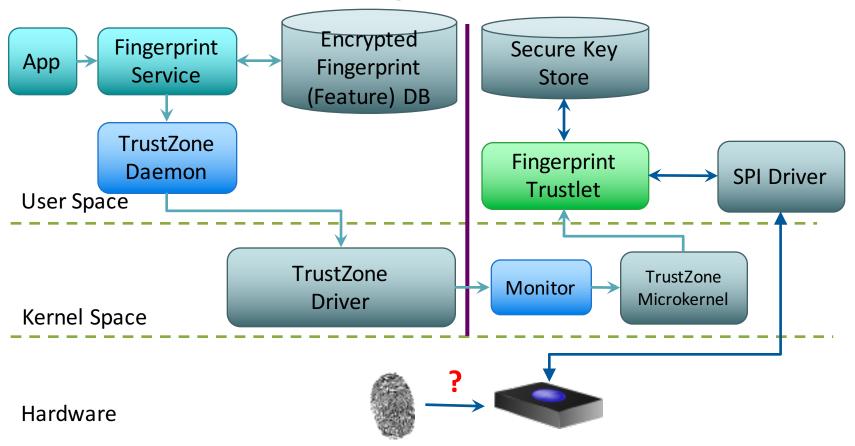
Dan Rosenberg, QSEE TrustZone Kernel Integer Overflow, BlackHat USA 2014

Josh Thomas and Nathan Keltner, Here be Dragons, RECON Canada 2014

Di Shen, Attacking Your Trusted Core: Exploiting TrustZone on Android, BlackHat USA 2015

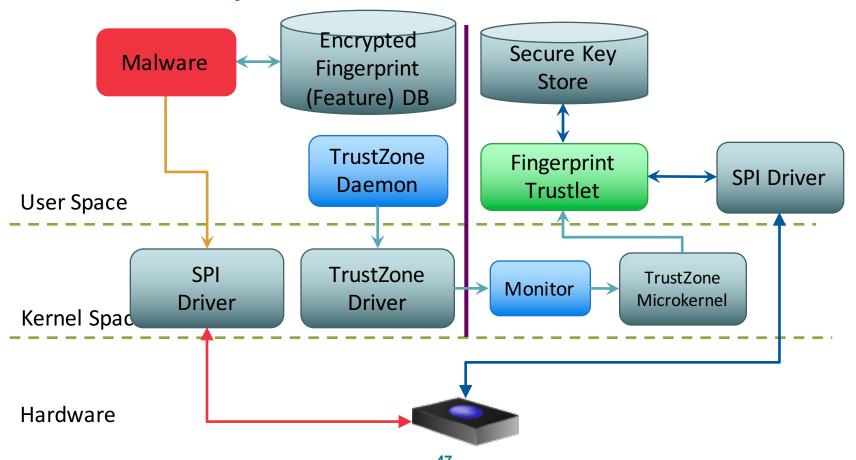


Arbitrary code execution in TrustZone

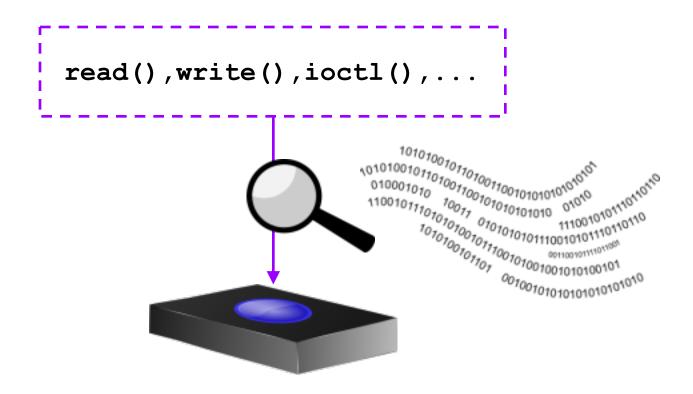

Outline

- Design of Android Fingerprint Frameworks
 - Fingerprint Recognition
 - Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Discussion

Fingerprint Authorization Framework with TrustZone


How about the isolation of fingerprint sensor devices?

Fingerprint Framework on Some Devices

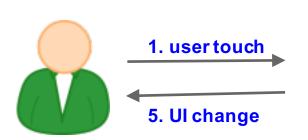

No isolation & depend on access from the normal world

Fingerprint Sensor Operations (Can Be Obtained from Vendors' Open-source Kernel Code)

IOCTL_POWER_ON	IOCTL_POWER_OFF
IOCTL_DEVICE_RESET	IOCTL_SET_CLK
IOCTL_CHECK_DRDY	IOCTL_SET_DRDY_INT
IOCTL_REGISTER_DRDY_SIGNAL	IOCTL_SET_USER_DATA
IOCTL_GET_USER_DATA	IOCTL_DEVICE_SUSPEND
IOCTL_STREAM_READ_START	IOCTL_STREAM_READ_STOP
IOCTL_RW_SPI_MESSAGE	IOCTL_GET_FREQ_TABLE
IOCTL_DISABLE_SPI_CLOCK	IOCTL_SET_SPI_CONFIGURATION
IOCTL_RESET_SPI_CONFIGURATION	IOCTL_GET_SENSOR_ORIENT

Sensor Communication Protocol Can Be Reversed by Hooking R/W/RW Methods

Fingerprint Sensor Spying Attack


Demo!

Fingerprint Sensor Spying Attack

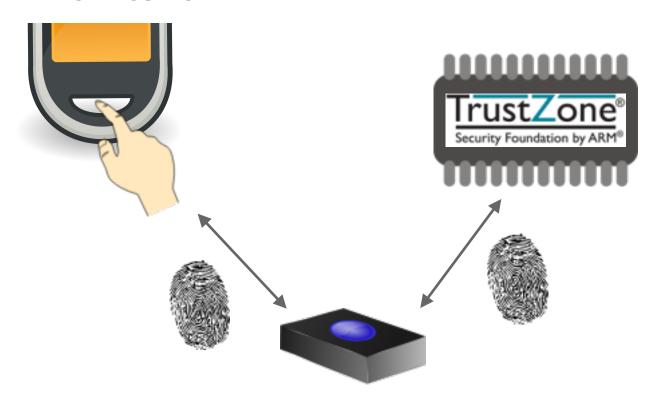
- ➤ We have confirmed this vulnerability on devices including HTC One Max and Samsung Galaxy S5, etc. On Samsung devices the attacker has to root the device and load it with a carefully crafted custom ROM before leveraging the vulnerability for anything malicious.
- > Both vendors have provided patches per our notification.
- > It should be a general problem shared by most vendors though.

Why?

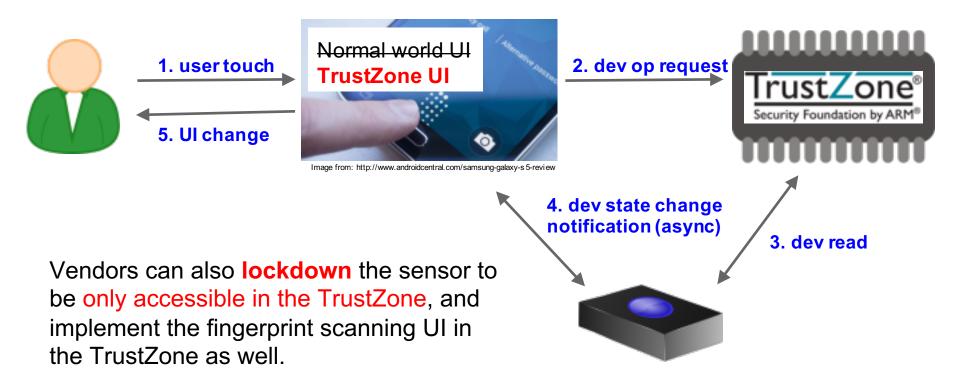
Normal world UI

2. dev op request

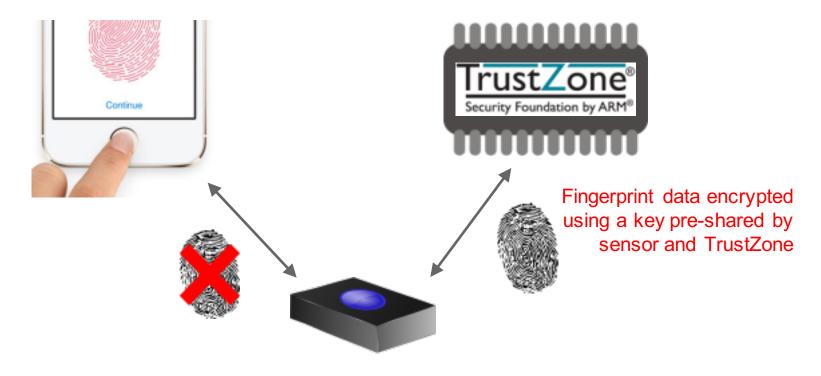
TrustZone®


Security Foundation by ARM®

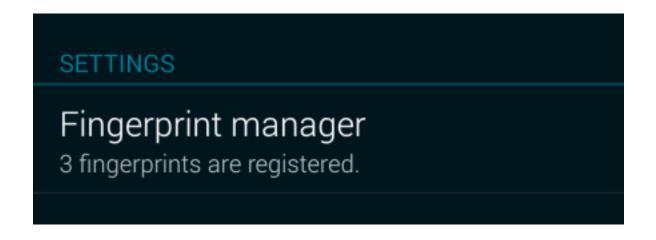
4. dev state change notification (async)


3. dev read

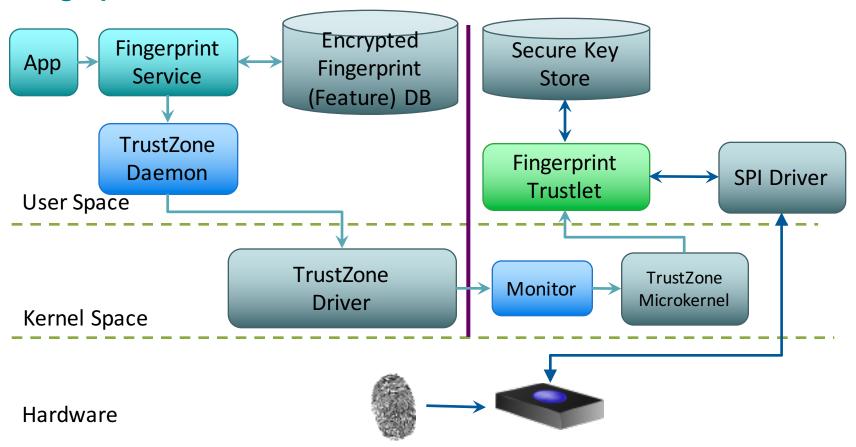
- Normal world UI needs to reflect scanning state change in real time
- So it will be easier to let it directly control the device (reset/enable/disable/set frequency/etc.) and receive signals from the device.


This Is Insecure If Fingerprint Sensor Serves Data in Plaintext

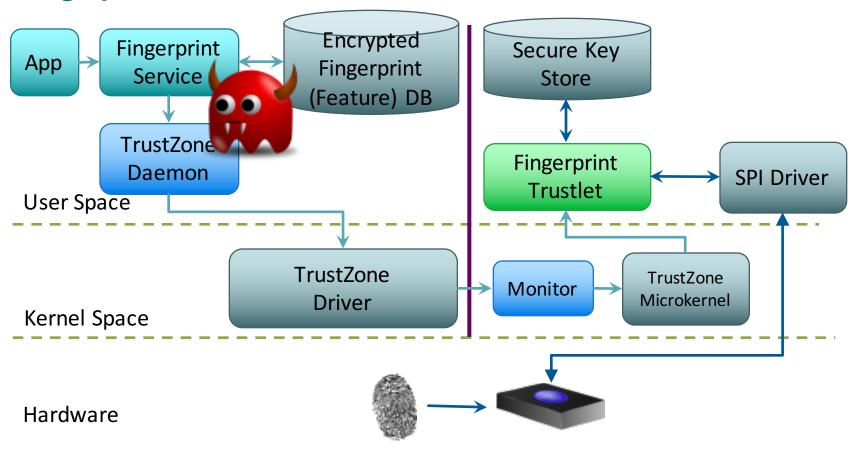
How Samsung Solves It? -- Trusted UI

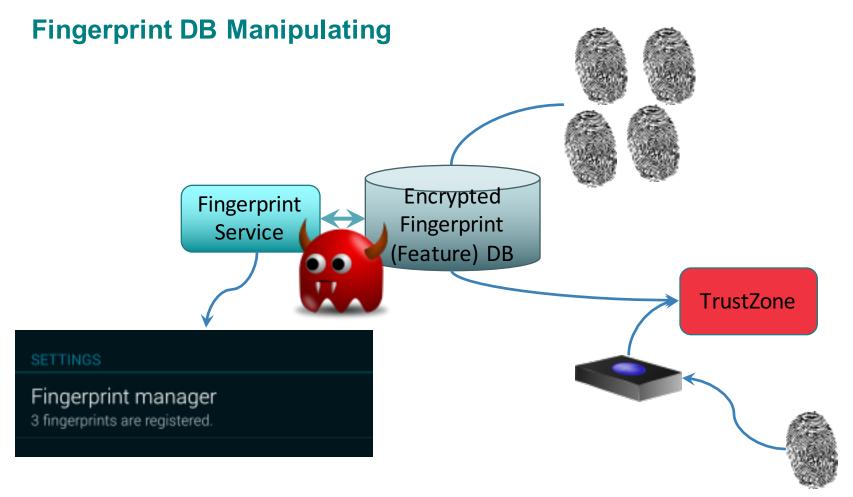

How Apple Solves It

Outline


- Design of Android Fingerprint Frameworks
 - Fingerprint Recognition
 - Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Discussion

Fingerprint Settings




How can you attest that only 3 fingerprints were registered?

Fingerprint Authorization Framework with TrustZone

Fingerprint Authorization Framework with TrustZone

- TrustZone just scans a fingerprint and matches it against encrypted fingerprints fed from the normal world
 - It knows nothing about the number of fingerprints stored by the normal world
- An attacker can tamper the normal world framework to stealthily pre-embed special fingerprint blob (maybe fake)
 - So he/she can unlock the device or authorize other operations
 - Leave no explicit traces

It is usually the Settings app that displays the registered fingerprint number to the users.

- ◆ For example, on some devices, attacker with root privilege can modify the enrolledFingerprintNum method of the class com/android/settings/fingerprint/FingerprintSettings in SecSettings.apk.
- ♦ He/she can change the return value of **getEnrolledFingers** to be n-m, where n is the actual registered fingerprint number and m is the number of fingerprints pre-embedded by the attacker.

- Note that replacement of the Settings app (a system app) requires disabling the system signature checking.
- Most devices enforce the system signature checking based on the compareSignatures method in the class com/android/server/pm/PackageManagerService implemented in /system/framework/services.jar. It will return zero if signature match, and non-zero otherwise.
- Therefore, one can modify this method to always return zero, so that the system signature checking will always success.

Demo!

Outline

- Design of Android Fingerprint Frameworks
 - Fingerprint Recognition
 - Mobile Fingerprint Frameworks
- System Attacks against Fingerprints
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints

Discussion

Key Takeaways

- Mobile devices with fingerprint sensors are more and more popular
- But they still have severe security challenges, such as
 - Confused Authorization Attack
 - Unsecure Fingerprint Data Storage
 - Fingerprint Sensor Spying Attack
 - Backdoor of Pre-embedding Fingerprints
- Such security flaws can lead fingerprint leakages
- Industry should pay more attention to audit existing design and implementations of fingerprint frameworks

Suggestions to Mobile Users

- Stick to mobile device vendors with timely patching/upgrading to the latest version (e.g. Android Lollipop), and always keep your device up to date
- Always install popular apps from reliable sources
- Enterprise/government users should seek for professional services to get protections against advanced targeted attacks
- To provide a better level of protection the end-user should NOT root their device if unnecessary, rooting a device will exploit a device to unknown risks

Suggestions to Mobile Vendors

- Mobile device vendors should improve the security design of the fingerprint auth framework
 - Improved recognition algorithm against fake fingerprint attacks
 - Better protection of both fingerprint data and the devices
 - Differentiating authorization with authentication
- The existing fingerprint auth standard should be further improved to provide more detailed and secured guidelines for developers to follow
- Given a security standard, vendors still need professional security vetting/audits to enforce secure implementations

Further Suggestions

- Actually all the four vulnerabilities/attacks described here are commonly applicable to ALL the fingerprint based authentication/authorization platforms.
- For example, many high-end laptops equip fingerprint scanners to authenticate and authorize user login.

Image from: http://www.bootic.com/lenovo/electronics/computers/laptops/Ienovo-3000-n200

Further Suggestions (Cont.)

- For external fingerprint scanners used for identity recognition (e.g. in the custom house, immigration office, and the DMV), door access control, or money transaction in banks, the situation is similar.
- So we suggest that the fingerprint auth framework for ALL platforms should also be improved to better protect fingerprint data and sensor (and provide defense of any other attacks described in this paper if applicable).

Q & A

For more details, please refer to our whitepaper:

Fingerprints On Mobile Devices: Abusing And Leaking Y. Zhang, Z. Chen, H. Xue, and T. Wei