Breaking Access Controls with BLEKey
by Mark Baseggio and Eric Evenchick

Abstract

RFID based access controls are ubiquitous in the enterprise today. Across manufacturing
facilities, industrial sites and offices of all types if you look towards a door, chances are, in the
vicinity you’ll see a familiar grey or beige plastic box with a glowing LED. On the surface these
systems feel secure but in reality most are not.

In fact, the most popular access control system in use today (HID Prox™) has absolutely no
security. The cards, communication between the card and reader, and finally the transmission of
data upstream are all unprotected by encryption. While recent generation HID hardware
includes additional security features, one common thread has remained: unencrypted data
transmission to the backend.

This paper will focus on the upstream communication protocol used by RFID readers, called
Wiegand. We’'ll discuss the potential for and practical abuse of this protocol using a piece of
hardware we developed called the BLEKey.

BLEKey is a tiny device that is designed to be embedded into an RFID reader or the wall behind
one, and attached to the lines carrying Wiegand data. Once attached the BLEKey monitors the
lines for data and stores any cards it reads. Since the device is directly attached to the Wiegand
lines, it's also possible to control them, enabling replay attacks and writing of arbitrary data.
Control of the BLEKey is achieved wirelessly using Bluetooth Low Energy (BLE), or via specially
programmed RFID cards.

The intention of BLEKey is to provide an easy to use device designed to exploit the unencrypted
nature of Wiegand. A penetration tester can use this device to illustrate the triviality of abusing
the Wiegand protocol to defeat access controls, with the ultimate goal exposing the severity of
the issue to card users, encouraging manufacturers to adopt a secure alternative.

Introduction

Some may be surprised to discover that the protocol used to send data from an RFID reader to
the backend door controller started life in the early 1970s [1]. John R Wiegand discovered a
special wire that would eventually be embedded in a plastic card, which when pulled through a
reader, creates a bitstream of ones and zeros based on the presence or lack of wire in the card
[2]. The protocol used to transmit this information in early access control devices became known
as the Wiegand protocol. Today, the Wiegand protocol remains the predominant method by
which RFID access control card readers communicate with upstream devices [3].

Wiegand uses three data lines to transmit binary data to an upstream device (e.g. a door
network controller), which handles the authentication and door control function in an access
control system. The protocol is relatively simple, using one line to indicate a 0 (DATAO), another
for 1 (DATA1) and the remaining line for ground. The data lines are typically coloured green to
indicate the 0 line and white for the 1 line, making them easy to distinguish and locate. Data
transmission on the lines is similarly simple, with each line normally being held high (at 5v), a
single bit on either line is indicated by pulling the appropriate line to ground; see figure 1 for a
graphic depiction of two bits being transmitted using the Wiegand protocol.

— 5v
DATA®

h Qv

|

T 5v
DATAL |

|

[X Qv

! :

0 1

Figure 1: The transmission of two bits (0, 1) using the Wiegand protocol captured using a logic
analyzer.

Thanks to the Wiegand protocol’s simplicity, and the proliferation of affordable electronics
prototyping platforms such as the Arduino, today the protocol is remarkably simple to capture
and decode. A quick Google search for “wiegand arduino” returns a wealth of resources
including a complete Wiegand protocol library for the Arduino [4], as well as example code from
PageMac [5] which the authors used to understand the Wiegand protocol.

The initial motivation for building BLEKey came after one of its creators built another RFID
security tool, a long range RFID thief (largely influenced by the Tastic RFID Thief [6]). The long
range thief can capture card data from a distance of approximately 3 feet, it works by recording
Wiegand data from an RFID reader designed for parking garage applications. While this attack
is very effective, it requires a different RFID reader for each unique card technology--and it isn’t
always practical to bring along three or four different hardware configurations while conducting a
physical penetration test. While it's possible to circumvent protections on newer encrypted card
technologies such as HID’s iClass™ [7] it's much easier to read and store Wiegand data, like
the Tastic RFID thief does. With this in mind, it was clear that taking advantage of the Wiegand
output on readers already installed on a wall somewhere, protected by only a few screws, could
yield convincing results.

The idea for the BLEKey was born. A few key parameters were laid out for the device during the
planning phase: it needed to be small, easy to install (no soldering or cutting wires), must have

2

the ability to read and write the Weigand protocol and to be controlled wirelessly. A device with
these characteristics could be used in several attack scenarios; it could be surreptitiously
installed in an RFID reader during a physical penetration test, or used inside the assessor's own
RFID reader to create a Bluetooth Low Energy enabled portable RFID skimmer. Either attack
would yield the desired result, impressing upon a client not only that their RFID systems are
insecure, but that the attack is very real and relatively easy to accomplish.

Background

After some research it was discovered that a device called the Gecko was presented at
Blackhat USA in 2008 by Zac Franken. The Gecko device also connects to Wiegand lines in
order to collect card data and perform replay attacks—however lacking wireless, it used
command cards for control functions [8]. It is unclear if the device was ever released as open
source hardware, or made available through other means. Gecko however did not go unnoticed,
being mentioned in marketing materials published by 3M [3] and Borer [9], US patent 8358783
B2 filed in 2009 [10], and even in a DoD paper [11].

Despite the previously mentioned attack vectors against the Wiegand protocol, it seems that its
use in the enterprise hasn’t significantly changed since Franken’s release of Gecko. Through
this author's own experience during physical penetration tests, the vast majority of systems
encountered across North America, Europe and Asia were using the protocol. Moreover,
modern readers such as HID’s iClass and iClass SE lines continue to support the insecure
Wiegand protocol-negating the use of the systems’ encrypted RFID cards. To make matters
worse, legacy HID Prox compatible devices are still being sold for new installations; to put this in
terms of the personal computer, if software lasted this long we’d all still be using DOS 1.0.

It seems that either organizations are unaware of the inherent security risk of using Wiegand, or
that they have simply chosen to accept the risk. Based on anecdotal evidence gathered during
the course of physical testing, the authors believe that most vulnerable organizations are under
the impression that their access control system are secure. The BLEKey is designed to be an
affordable turnkey device intended to provide these businesses a real world example of the
potential implications of using insecure access controls. The choice to release both the
hardware and firmware as open source helps to make the device accessible, and allows
security professionals to build upon its current functionality to include new features and support
for other systems that utilize the Wiegand protocol.

BLEKey Hardware and Firmware

The BLEKey design and layout was dpone using the open source EDA tool KiCad
(http://www.kicad-pcb.org/). It uses a pre-built Bluetooth Low-Energy module from Raytac, which
uses the Nordic nRF51822 SoC (nRF51). The nRF51822 soC has 2.4GHz radio, with a 32-bit
ARM Cortex MO CPU core along with 256kB of flash memory and 16kB of RAM.

Nordic Semiconductor provides an SDK that is largely compatible with ARM GCC, however
some code examples are only easily usable in the Keil uVision IDE. BLEKey’s firmware was
written for and compiled with the ARM GCC compiler, which is available for Microsoft Windows,
Linux and Mac [13]—with the exception of its bootloader, which due to compatibility issues [14]
was built using Keil uVision.

The BLEKey code can be programmed on to the nRF51 via P1 on the BLEKey with a Serial
Wire Debug (SWD) adapter such as the Segger J-Link, or by doing a Firmware Over the Air
(FOTA) flash. In order to provide an easy and accessible method to update the firmware on
BLEKey, a FOTA compatible bootloader is pre-programmed on the device. This allows the
BLEKey to be updated with Nordic’s Firmware update applications, available for most major
mobile platforms [15]. When new features are added to the firmware it can be updated by simply
downloading or compiling a firmware file from source, shorting two pins on the device, and
loading the new firmware with a mobile phone.

In 2008 the Gecko’s stated cost was approximately $10USD [8], today the BLEKey can be
produced and assembled in small quantities at the same cost. While keeping the cost to $10,
the BLEKey design removes barriers to use found in the Gecko—primarily thanks to the rapid
advancement of technology. BLEKey’s design eliminates the need to physically cut wires,
introducing an insulation displacement connector which allows for a quick and relatively easy
installation. Thanks to its wireless technology, the use of command cards is no longer
necessary—data can now be extracted wirelessly, rather than having to remove the device and
risk being caught during penetration testing.

For a complete bill of materials and schematic of the BLEKey version 1.1 refer to Appendix A.

Installation

In order to operate, the BLEKey must be physically attached to the Wiegand transmission lines
of an RFID reader. Most RFID readers are attached to a mounting surface first and then have a
cover attached to them using between 1-4 Phillips screws. Upon removing a reader’s plastic
cover, its connection terminals are typically well labelled; or in the case of a “pigtail” type wire
connection from the rear of the reader, the Wiegand lines can be located by their colours: green
(DATADO), white (DATA1) and black (GND).

4 ™
RFID reader
To upstream
I e
—
BLEKey))
\ y /-ﬁr
BLE device

Figure 2: A diagram illustrating the typical BLEKey deployment.

The BLEKey can be connected to the Wiegand lines of a reader in several ways, first via the
insulation displacement connector (IDC) located at the bottom of the board (below the GRN,
WHT, GND screen printing on the board in the figure below). The IDC connector requires that
each wire be placed in the connector and pushed in using a “punchdown” tool to make contact.
The versatile P2 connector with standard 0.1” pin headers can also be used in the case that an
alternate method of connection is required.

The BLEKey requires a single CR1632 lithium coin-cell type battery for operation, which is
inserted on the back-side of the device. The battery holder is pictured in figure 3 below, on the
right hand side of the image.

108

Figure 3: BLEKey v1.1 sample images provided by the production facility, left: front, right: back.

GROUND (BLACK)

DATA (/DATA (GREEN}

Figure 4: BLEKey installed in a popular RFID reader.

Using BLEKey

The firmware released at Blackhat USA 2015 is designed to work with HID Prox compatible
systems that use 26-40 bit formatted cards. Once the BLEKey is installed and powered on it will
begin to record card data. A Python utility is included in the BLEKet git repository that is capable
of reading data from and controlling the BLEKey.

In figure 5 below the BLEKey client is scan command used to scan for BLE devices, then
connect to a BLEKey. Once connected the client returns the device’s current battery status and
awaits a command from the user. The readcards command is issued reading back 0 cards in
the first instance because the BLEKey has received no card data, after two cards are read by
the BLEKey the user again issues the readcards command which returns the two 32 bit cards
read (0x21DEADBEEF and 0x21BAADFOQO0D). Finally, the tx command is issued, which by
default replays the last card read by the BLEKey. The client implements rudimentary help, most
of its functions should be fairly self-explanatory.

[blark@archvm clientl$ sudo ./blekey.py

Type quit, exit or ~D to cleanly exit and disonnect from BLEKey or you're gonna have a bad time...
? or help gets you a list of commands. Tab completion FTW.

blekey= scan
canning...
[{'address': 'DE:AB:92:17:E6:41', 'name': 'BLEKey'}]

blekey= connect DE:AB:92:17:E6:41

connecting to DE:AB:92:17:E6:41
2015-07-29 08:57:34,296 DEBUG pygatt.cl 25, init_ :61 — gatttool_cmd=gatttool -t random -b DE:AB
2015-87-29 ©88:57:34,381 INFO pygatt.cla connect:89 - Connecting with timeout=15
2015-07-29 ©8:57:34,301 INFO pygatt.classes.run:292 — Running...
Battery at 87%
[DE:AB:92:17:E6:41] blekey>readcards
reading last cards...
no cards read/received from BLEKey...
[DE:AB:92:17:E6:41] blekey>readcards
reading last cards...
8. 32 bit card: @x2ldeadbeef
1. 32 bit card: @x2lbaadfeed
[DE:AB:92:17:E6:41] blekey=>tx
sending...
2015-07-29 @8:57:57,064 DEBUG pygatt.classes.char_write:183 - Sending cmd=char-write—cmd @x@d @1
2015-87-29 08:57:57,165 DEBUG pygatt.c 5. char_write:189 - Sent cmd=char-write-cmd @xed @1
[DE:AB:92:17:E6:41] blekey=>

5

Figure 5: the BLEKey client example interaction with a target device.

The BLEKey client utility runs exclusively on Linux and requires version 1.1.0 of the pygatt [16]
module and corresponding Linux bluetooth tools.

Alternately, it is possible to read data from the device using one of the many available tools
designed to work with BLE devices. The information required to use the BLEKey with a custom
tool or generic BLE application is available in Table 1.

¢ BLEKey

DE:AB:92:17:E6:41

¥ DISCONNECT

Status: CONNECTED
NOT BONDED
FPRIMAKY SERVIGE

Unknown Service

PRIMARY SERVICE

UUID:

Properties: READ

UUuID:

Properties: WRITE

UUID: 0000abcd-0000-1000-8000-00805f9b34fb

Unknown Characteristic ¥
0000aaaa-0000-1000-8000-00805f9b34fb

Value: (0x) 24-47-60-85-08-37-00

Unknown Characteristic)

0000bbbb-0000-1000-8000-00805f9b34fb

Write Type: WRITE REQUEST

(XX]

Figure 6: Nordic’s Master Control panel application (Android) connected to a BLEKey.

Description

uuiD

Purpose

Cards read

0000aaaa-0000-1000-80
00-00805f9b34fb

Reading this characteristic will return the last
73 cards read by the BLEKey (unless page is
configured). The field will return up to 511 bits
of non-delimited data, each card is 7 bytes and
is OxLLCCCCCCCCCCCC where L is the
bitlength of the card and C is the card data in
Proxmark3 format

Write Wiegand

0000bbbb-0000-1000-80
00-00805f9b34fb

Write a number to this characteristic to replay
that card. A value of 255 will cause the
BLEKey to replay the last card, while a value of
254 will write arbitrary data supplied by the
user.

Custom data

0000cccc-0000-1000-80
00-00805f9b34fb

7 bytes of data can be supplied to the BLEKey
in the format OXLLCCCCCCCCCCCC where L
is the bitlength of the card and C is the card

data in Proxmark3 format.

Page to be implemented Configure the card page to be read from flash
memory
Cards Read to be implemented Returns the number of unique cards read and

stored by the BLEKey

Table 1: BLE characteristics implemented and planned for the BLEKey.

BLEKey v1.1 outputs a 3.3v TTL serial debug on the P2 port’s first pin (with the square solder
mask). The serial debug can be used to monitor the BLEKey’s operation, and for
troubleshooting while adding new features.

Firmware Updates

The firmware (application) on the BLEKey will be outdated before Blackhat 2015 due to ongoing
work on the application. The latest firmware for the device will be available on the github repo
under the firmware folder, entitled application.bin. In order to perform an upgrade simply take a
paperclip and short the first and last pins of P2 while powering on the device. It will enter the
bootloader and advertise as “DfuTarg,” at this point the NRF Master Control Panel application
can be used to perform a software update. For more details see the readme.md available in the
root directory of the project’s git repository.

Conclusion

The BLEKey was created and released as an open source tool in effort to illustrate the potential
for abuse of the Wiegand protocol. We believe the device provides an effective mechanism for
physical penetration testers to easily and impactfully illustrate practical attacks to their clients.
We hope that the device and media coverage surrounding its release at Blackhat USA 2015,
helps to end the use of Wiegand as an upstream protocol.

Appendix A

BLEKey v1.1 Schematic

BLEKey v1.1 Bill of Materials (BOM)

Designators Mfr.

1 K1
2 U1
3 Q1,Q2
4 R2,R4
5 R3,R5
6 R1
7 C1
8 C2,C3
9 X1
10 BATT1
11 D1
12 P1,P2

AVX

Raytac

Diodes Inc
Panasonic
Panasonic
Panasonic

Murata

Murata
Epson

MPD
Lite-on

Part Number
9176003022006

MDBT40
2N7002-7-F
ERJ-3GEYJ104V
ERJ-3EKF9312V
ERJ-3GEYJ221V

GRM188R71C104

KAO01D

GRM1885C1H120

JAO1D
FC-135

BU1632SM-JJ-GT

R

LTST-C191KGKT

Supplier P/N
478-4619-1-ND

MDBT40
2N7002-FDICT-ND
P100KGCT-ND
P93.1KHCT-ND
P220GCT-ND

490-1532-1-ND

490-1405-1-ND

BU1632SM-JJ-GCT-
ND
160-1446-1-ND

Description

IDC Connector
Bluetooth Module
(nRF51822)

FET

Res 100k

Res 93.1k

Res 220

Cap 0.1 uF

Cap 12 pF
32.768 KHz Xtal

Battery Holder
LED, Green
0.1" pin header
(1x4)

Qty.

—_

10

Reference Documents

[1]

"Patent US3820090 - Bistable magnetic device - Google ..." 2011. 21 Jul. 2015
<http://www.google.com/patents/US3820090>

[2]

"Brushing Up on Wiegand: The man, the effect, and the wire ..." 2014. 21 Jul. 2015
<http://machinedesign.com/engineering-essentials/brushing-wiegand-man-effect-and-wire-cha
nged-engineering>

[3]

"Access Control in the 21st Century - 3M." 2014. 21 Jul. 2015
<http://multimedia.3m.com/mws/media/8338040/beyond-wiegand-access-control-in-the-21st-c

entury.pdf>

[4]

"monkeyboard/Wiegand-Protocol-Library-for-Arduino - GitHub." 2013. 22 Jul. 2015
<https://github.com/monkeyboard/Wiegand-Protocol-Library-for-Arduino>

[5]

"Arduino Wiegand Decoder for HID RFID Reader - PageMac." 2012. 22 Jul. 2015
<http://www.pagemac.com/azure/arduino_wiegand.php>

[6]

"Tastic RFID Thief - Bishop Fox." 2013. 22 Jul. 2015
<http://www.bishopfox.com/resources/tools/rfid-hacking/attack-tools/>

[7]

Meriac, M. "Heart of Darkness - exploring the uncharted backwaters of ..." 2010.
<http://www.openpcd.org/images/HID-iICLASS-security.pdf>

[8]

"Zac Franken BlackHat DC 2008." 2008. 23 Jul. 2015
<https://www.blackhat.com/presentations/bh-dc-08/Franken/Presentation/bh-dc-08-franken.pdf
>

[9]

"Wiegand's Had Its Day! White Paper - Borer Data Systems Ltd." 2008. 23 Jul. 2015
<http://borer.co.uk/pages/case_studies/wiegand_white_paper_oct 2007.pdf>

[10]

"Patent US8358783 - Secure wiegand communications ..." 2013. 23 Jul. 2015
<http://www.google.com/patents/US8358783>

[11]

"Review of the Open Supervised Device Protocol (OSDP™)." 2015. 23 Jul. 2015
<http://www.acg.osd.mil/ncbdp/nm/pseag/news-references/references/SEIWG _OSDP%20Revi
ew_Public%20Release 20140801 v1.0.pdf>

[12]

"OSDP_V2 1_5 2014 - Security Industry Association." 2014. 23 Jul. 2015
<http://www.siaonline.org/SiteAssets/SIAStore/Standards/OSDP_V2%201 5 2014.pdf>

[13]

"GCC ARM Embedded - Launchpad." 2011. 23 Jul. 2015
<https://launchpad.net/gcc-arm-embedded/+download>

[14]

"nrf51822 DFU Bootloader w/ gcc and SDK 6.0 - Nordic ..." 2014. 23 Jul. 2015
<https://devzone.nordicsemi.com/question/14463/nrf51822-dfu-bootloader-w-gcc-and-sdk-60/>

[19]

"nRFready Demo Apps - Nordic Semiconductor." 2015. 23 Jul. 2015
<https://www.nordicsemi.com/eng/Products/nRFready-Demo-Apps>

[16]

Python wrapper for gatttool

11

http://www.google.com/patents/US3820090
http://machinedesign.com/engineering-essentials/brushing-wiegand-man-effect-and-wire-changed-engineering
http://machinedesign.com/engineering-essentials/brushing-wiegand-man-effect-and-wire-changed-engineering
http://multimedia.3m.com/mws/media/833804O/beyond-wiegand-access-control-in-the-21st-century.pdf
http://multimedia.3m.com/mws/media/833804O/beyond-wiegand-access-control-in-the-21st-century.pdf
https://github.com/monkeyboard/Wiegand-Protocol-Library-for-Arduino
http://www.pagemac.com/azure/arduino_wiegand.php
http://www.bishopfox.com/resources/tools/rfid-hacking/attack-tools/
http://www.openpcd.org/images/HID-iCLASS-security.pdf
https://www.blackhat.com/presentations/bh-dc-08/Franken/Presentation/bh-dc-08-franken.pdf
http://borer.co.uk/pages/case_studies/wiegand_white_paper_oct_2007.pdf
http://www.google.com/patents/US8358783
http://www.acq.osd.mil/ncbdp/nm/pseag/news-references/references/SEIWG_OSDP%20Review_Public%20Release_20140801_v1.0.pdf
http://www.acq.osd.mil/ncbdp/nm/pseag/news-references/references/SEIWG_OSDP%20Review_Public%20Release_20140801_v1.0.pdf
http://www.siaonline.org/SiteAssets/SIAStore/Standards/OSDP_V2%201_5_2014.pdf
https://launchpad.net/gcc-arm-embedded/+download
https://devzone.nordicsemi.com/question/14463/nrf51822-dfu-bootloader-w-gcc-and-sdk-60/
https://www.nordicsemi.com/eng/Products/nRFready-Demo-Apps

https://github.com/ampledata/pygatt

12

