Exploiting
Out-of-Order-Execution

Processor Side Channels to Enable
Cross VM Code Execution

Sophia D’Antoine
REcon 2015




The Cloud

[
(=]

0

w
[
w
o
o
o

loc_31306D:

1ge~313
[ +arg
[ +arg 4]
sub_ 314623
c::313

sub_3140F3

06/19/2015

Exploiting Out-of-Order-Execution

loc 31308C:

2/46



Cloud Computing (Iaa$S)

e Virtual instances Operating

. System
e Hypervisors 0

Operating
System

Dynamic allocation

=> Reduces cost

Operating
System

.
e
g’
\-’

Virtualization Layer

06/19/2015 Exploiting Out-of-Order-Execution 3/46



Everyone’s Happy i

sub 3140F

06/19/2015 Exploiting Out-of-Order-Execution 4/46



Problems with the Cloud

Security issues with
cloud computing I .|| Software

e Sensitive data

stored remotely
e Vulnerable host
e Untrusted host Hardware
e Co-located with e e LG

foreign VM's

06/19/2015 Exploiting Out-of-Order-Execution 5/46



Physical co-location leads
to side channel
vulnerabilities.

Exploiting Out-of-Order-Execution

6/46



Cloud Hardware

1st Partition of a Nth Partition of a o

Virtual Machine Instance Virtual Machine Instance

Application | Application || Application | Application
Operating System Operating System ‘

5 irtual . Virtual
K Allocation Allocation

Hypervisor ( Virtualization Layer)

Shared
Disk Physical
Layer

06/19/2015 Exploiting Out-of-Order-Execution 7/46



Universal Vulnerabilities

1) Translation between physical and virtual
hardware based on need

2) Allocation causes contention

3) Private VM activities not opaque to
co-residents

06/19/2015 Exploiting Out-of-Order-Execution 8/46



Overview

Or B WY —

~N O

Introduction

Cloud exploitation techniques
Targeting the processor

Importance of memory models
Design of an Out-of-Order-Execution
channel

Demo

Conclusion

06/19/2015 Exploiting Out-of-Order-Execution

9/46



Side Channel Attack

“In cryptography, a side- Cloud Computing
channel attack is any attack

based on information gained
from the physical

e Hardware side
channel

e (Cross virtual
machine

e Information gained
through recordable
changes in the

implementation of a
cryptosystem”

system

06/19/2015 Exploiting Out-of-Order-Execution 10/46



Classification S/R Model =

e Hardware agnostic

e Two methods of interacting
- Transmit
— Receive transmit: receive:

force record
artifacts artifacts

06/19/2015 Exploiting Out-of-Order-Execution 11/46



Possible Exploits

e Receive (exfiltrate)
1. crypto key theft
2. process monitoring
3. environment keying
4. broadcast signal

e Transmit (infiltrate)
1. DoS
2. Cco-residency

e Transmit & Receive (network)
1. communication (C&QC)

06/19/2015 Exploiting Out-of-Order-Execution 12/46



Communication

VM2 Master VM

Communication Medium

Virtual
Allocations

Shared
Hardware

06/19/2015

Exploiting Out-of-Order-Execution

13/46



Cache Side Channel Example !

Flush+Reload targets the L3 Cache Tier

e Receiving Mechanism (Adversary)
- Flushes & queries

e Transmitting Mechanism (Victim)
- Accesses same L3 line

e Leaked GnuPG Private Key

sophia.re/cache.pdf

06/19/2015 Exploiting Out-of-Order-Execution 14/46



Pipeline vs Cache Channel

Benefits:

e (Quiet, covert channel

 Not affected by cache misses, etc.

e Channel & noise amplifies in a crowded cloud
environment >

06/19/2015 Exploiting Out-of-Order-Execution 15/46



Overview

O & W -

~N O

Introduction

Cloud exploitation techniques
Targeting the pipeline

Importance of memory models
Design of an Out-of-Order-Execution
channel

Demo

Conclusion

06/19/2015 Exploiting Out-of-Order-Execution

16/46



The Attack Vector

Side Channels which Exploit Hardware
Vulnerabilities Inherent to Modern Cloud
Computing Systems

Requirements:

e Shared hardware
e Dynamically allocated hardware resources
e Co-Location with adversarial VMs or infected VMs

06/19/2015 Exploiting Out-of-Order-Execution 17/46



Pipeline Side Channel

We chose to target the processor as the
hardware medium.

=> CPU’s pipeline
=> System artifacts queried dynamically

e Instruction order
e Results from instruction sets

06/19/2015 Exploiting Out-of-Order-Execution 18/46



Out-of-Order-Execution

06/19/2015 Exploiting Out-of-Order-Execution 19/46



Processor Pipeline Contention

VM

|

VM

VM

)

ProcessO1

Process04

SMT Pipeline
Optimizes CoreO1 COFEOZ Exe(?uting
Shared Instructions
Hardware Processor From .For(.eign
\ Appllcatlons/
06/19/2015 Exploiting Out-of-Order-Execution 20/46



RECEIVER

06/19/2015 Exploiting Out-of-Order-Execution 21/46



Record Out of Order Execution '

8.23.4 Loads May Be Reordered with Earlier Stores to Different Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location.
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following
example:

Example 8-3. Loads May be Reordered with Older Stores

mov [ _x], 1 mov [ _y], 1
mov r1,[ _y] mov r2,[ _x]
Initially x =y =0

ri =0andr2 =0 is allowed

06/19/2015 Exploiting Out-of-Order-Execution 22/46



Record Out of Order Execution

THREAD 1 THREAD 2

Synched |store [X], 1 store [Y], 1
= MN=r2=1
load n, [Y] load r2, [X]
Asynched |store [X],1
load N, [Y] store [Y], 1 => rMN=0r2 =1
load r2, [X]
Out of load N, [Y] load r2, [X]
Order => Mm=r2=0
Execution store [X], 1 store [Y], 1
06/19/2015 Exploiting Out-of-Order-Execution 23/46



Record Out of Order Execution

int X,Y,count_OoOE:

....initialize semaphores Sema1l & Semaz2...

pthread_t thread1, thread2;

pthread_create(&threadN, NULL, threadNFunc, NULL);

for (int iterations = 1 ; iterations++)
XY =0
sem_post(beginSemal & beginSemaz2); Avera ges m atter
sem_wait(endSemal & endSema2);

if(r1==0&& 12 ==0)
count_Oo0OE ++;

06/19/2015 Exploiting Out-of-Order-Execution 24/46



TRANSMITTER

06/19/2015 Exploiting Out-of-Order-Execution 25/46



Force Out of Order Execution

Memory Fences

Mfence:
e x86 instruction full memory barrier

prevents memory reordering of any kind
e order of 100 cycles per operation

... mov dword ptr [_spin1], O
. mfence

... mov dword ptr [_spin2], O
. mfence

06/19/2015 Exploiting Out-of-Order-Execution

26/46



Force Out of Order Execution

THE PIPELINE

_ |NOP

Store [X], 1

Load 1, [X]

NOP H B B RN

06/19/2014

Exploiting Out-of-Order-Execution

27/46



Overview

Or &5 W N —

~N O

Introduction

Cloud exploitation techniques
Targeting the processor
Importance of memory models
Design of an Out-of-Order-Execution
channel

Demo

Conclusion

06/19/2015 Exploiting Out-of-Order-Execution

28/46



Types of Memory Reordering

Memory
Reordering

Processor
(Run)
Time

Compilation
Time

GCC
Multithreaded
Programs

OoOE Execution
MultiCored
(MultiExecution
Processors)
Computers

06/19/2015 Exploiting Out-of-Order-Execution 29/46



Types of Memory Reordering

Dynamic side channel artifacts

Processor
(Run)
Time

OoOE Execution
MultiCored
(MultiExecution
Processors)

Computers

06/19/2015

Exploiting Out-of-Order-Execution

30/46



Weak Memory Models "

WEAK STRONG

data dependency consistent

Really weak < Weak with < Usually strong < Sequentially
ordering

DEC Alpha ARM x86/6 dual 386 (circa 1989)

-

~., L
d- .

C/C++11 PowerPC SPARC TSO Java volatile

low-level atomics —
- C/C++11
; ﬁ default atomics

Or, run on
a single core
without optimization

Source control
analogy

06/19/2015 Exploiting Out-of-Order-Execution 31/46



Types of Memory Reordering

4 types of run time reordering barriers

acquire semantics

#StorelLoad i #StoreStore E

- Instruction A visible to all processes before B occurs
- #StoreLoad most expensive operation

06/19/2015 Exploiting Out-of-Order-Execution 32/46



Force Out of Order Execution

Memory Barrier

e ‘Lock-free programming on SMT
multiprocessors

e #StorelLoad unique prevents r1=r2=0

e x86: mfence ( effects the pipeline)

06/19/2015 Exploiting Out-of-Order-Execution 33/46



Channel Transmitter (Victim)

* Force Out-of-Order-Execution patterns
e Affect the order of stores and loads
e Time frame dependant

e Xx86: mfence

acquire semantics

06/19/2015 Exploiting Out-of-Order-Execution 34/46



Overview

Introduction

Cloud exploitation techniques

Targeting the processor

Importance of memory models

Design of an Out of Order Execution.channel
Demo

Conclusion

~N O Ol B W -

06/19/2015 Exploiting Out-of-Order-Execution 35/46



Lab Model

Scheduler Xen hypervisor
e Popular commercial IaaS platforms
Xeon Processors
Shared multi-core/ multi-processor hardware
e 3 logical CPU’s/ 4 cores
e 06 virtual machines (VM’s)

e Parallel Processing/ Simultaneous Multi-Threading
On (SMT)

06/19/2015 Exploiting Out-of-Order-Execution 36/46



Virtual Machines

e b Windows 7 VM's

m VM5 VM6
_A ]
& é \

J

~

VM1 VM2

N\ A

J

CPU1

06/19/2015 Exploiting Out-of-Order-Execution 37/46



Virtual Machine S/R

06/19/2015 Exploiting Out-of-Order-Execution 38/46



Overview

O B~ W N -

~N 9

Introduction

Cloud exploitation techniques
Targeting the processor

Importance of memory models
Design of an Out-of-Order-Execution
channel

Demo

Conclusion

06/19/2015 Exploiting Out-of-Order-Execution

39/46



Demo Links

sophia.re/sender.py

sophia.re/receiver.py

06/19/2015 Exploiting Out-of-Order-Execution 40/46



Overview

Introduction

Cloud exploitation techniques
Targeting the processor
Importance of memory models

Design of an Out-of-Order-Execution channel
Demo
Conclusion

~N O 01 B W -

06/19/2015 Exploiting Out-of-Order-Execution 41/46



Potential Channel Mitigation

Protected Resource Ownership

® |[solating VM’s
e Turn off hyperthreading

® Bilacklisting resources for concurrent threads
e Downside: cloud benefits

06/19/2015 Exploiting Out-of-Order-Execution 4246



In Conclusion...

Contribution:

We demonstrate a novel Out of Order
Execution side channel.

e Dynamic querying/ forcing method
e Application to cloud computing
o Mitigation techniques

06/19/2015 Exploiting Out-of-Order-Execution

43/46



Acknowledgements

- Jeremy Blackthorne
- RPISEC
- Trail of Bits

THAIL
‘pDITC

6




Any Questions?

IRC: quend (#rpisec, #pwning)
email: sophia@trailofbits.com
thesis link: sophia.re/thesis.pdf

06/19/2015 Exploiting Out-of-Order-Execution 45/46


mailto:sophia@trailofbits.com

References

http://preshing.com/20120913/acquire-and-release-semantics
[6]
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf

06/19/2015 Exploiting Out-of-Order-Execution 46/46


http://www.thewhir.com/web-hosting-news/aws-to-reach-24-billion-in-revenue-by-2022-morgan-stanley
http://www.thewhir.com/web-hosting-news/aws-to-reach-24-billion-in-revenue-by-2022-morgan-stanley
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015/
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015/
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015/
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://preshing.com/20120913/acquire-and-release-semantics/
http://preshing.com/20120913/acquire-and-release-semantics/
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf
http://preshing.com/20120930/weak-vs-strong-memory-models/
http://preshing.com/20120930/weak-vs-strong-memory-models/
http://en.wikipedia.org/wiki/Memory_barrier#An_illustrative_example
http://en.wikipedia.org/wiki/Memory_barrier#An_illustrative_example
http://preshing.com/20120710/memory-barriers-are-like-source-control-operations/
http://preshing.com/20120710/memory-barriers-are-like-source-control-operations/

EXTRA SLIDES

06/19/2015 Exploiting Out-of-Order-Execution 20/60



1,: R1:=R2/R3

I: R4:=R1*R1

L: RL:=R8+R9 !

t

04/19/2015 Exploiting Out-of-Order-Execution 34/60



Interconnect

Memory

04/19/2015 Exploiting Out-of-Order-Execution 33/60



OoOQOE vs Other Channel

Appllcablllty
Subversive applications show potential

e Detection difficult by an “intelligent” hypervisor

e Interference (eavesdropping) sufficiently mutilates
channel

06/19/2015 Exploiting Out-of-Order-Execution 57/60



Cache Side Channel Example !

e Successfully leaked the private key from the

GnuPG
o |Leaked 96.7% bits of the secret key

Adversary VM Victim VM

\/

13 Cache Line decryption round

06/19/2015 Exploiting Out-of-Order-Execution 17/60



Classification of Each Unit

Hardware Medium Transmitting Mechanism | Reception Mechanism

Processor Processor Register and Time Compared Against
Functional Unit Resources | Threshold
Contention

Cache Tier Prime-Probe, Shared Time Compared Against
Cache Functionality Threshold

System Bus System Bus Restricted Measurement of Memory
Access Contention Access Capabilities

Main Memory Prime-Probe, Shared Main | Measurement of Memory
Memory Storage Access Capabilities

Hard Disk Drive Prime-Probe, Shared Disk | Time Compared Against
Drive Data Access Threshold

06/19/2015 Exploiting Out-of-Order-Execution 12/60



List of Physically Shared Units

e Processors (CPU/ GPU)
e Cache Tiers
e System Buses

e Main Memory
e Hard Disk Drive

Literature demonstrates exploits across
each hardware unit.

06/19/2015 Exploiting Out-of-Order-Execution 9/60



Hardware Architectures (1)

L2 cache L2 cache
L3 cache L3 cache

single core AMD Optetron, Athlon intel Core Duo, Xeon Intel ftanium 2

Intel’'s Core Duo, Xeon Architecture
1. Each processor has two cores
2. The Xen hypervisor schedules between all processors on a server
3. Each core then allocates processes on its pipeline

06/19/2015 Exploiting Out-of-Order-Execution 37/60



Hardware Architectures:(2)

i cache ] [T cache

L2 cache L2 cache
L3 cache L3 cache

single core AMD Optetron, Athlon intel Core Duo, Xeon Intel ftanium 2

Modern Computation
=> Multiple processes run on a pipeline (SMT)
=> Relaxed memory model

06/19/2015 Exploiting Out-of-Order-Execution

38/60



Shecication Runtime Binary B  File Hashing
?/iolations Activity Structure & Inst.
Analysis =2 Blacklist

Whitelisting Valid _- . y sub.3
App Behaviors P ‘ Z"e?””_t | Predict Execution , v
e . \ nalysis | SAT Solvers ’
R Analysis of \ ! Y Mapped against
2 Network Traffic . I oKk Dictionary
Calls to System & \d Modification of """“V":"f:‘ri .....
Protected Data Patterns in Privileged Data SavetERImtn e
Execution Events . State Compared
51/60

06/19/2015 Exploiting Out—of—Order—Executjqn .



Potential Channel Detection{1)

Signature
® Changes in the signature of a hardware unit over time

Eavesdropping
Hypervisor

06/19/2015 Exploiting Out-of-Order-Execution 52/60



Classification of Intent

bi-wa
Avg Time per 4bits U .
6 communication
broadcast /
signal \ / &5
2 \@
I
1 |

attack implementation

06/19/2015 Exploiting Out-of-Order-Execution 46/60



Potential Channel Detection(2)

Anomaly
® Specification

Pattern recognition

Records average OoOE patterns
Predicts what to expect

06/19/2015 Exploiting Out-of-Order-Execution 53/60



Communication of a Mallc:lous
Process

Malicious Malicious
Sender Receiver

transmit receive
‘LT “..001..."
signal launch

Xen
Hypervisor

06/19/2015 Exploiting Out-of-Order-Execution 47/60



Stages of Side Channel Attack

Measurement Stage

Phase 1
Cross-VM
side-channel
probing

Co-Resident
VM's
L1-Cache
Measurements

Inferred
Phase 2 Phase 3 Phase 4 Code-Path

Cache pattern ’ Noise Code-path
classifications Reduction reassembly

Analysis Stages

Example applied to L1 cache side channel

06/19/2015 Exploiting Out-of-Order-Execution 15/60



Dynamic Difterences

e Dynamic allocations of physical resources
e Force artifacts on the shared hardware

e Reception of these artifacts

e Querying the specific hardware unit
e Difficulty/ reliability unique to each hardware unit.

06/19/2015 Exploiting Out-of-Order-Execution 16/44



