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Cloud Computing (Iaa$S)

e Virtual instances Operating

. System
e Hypervisors 0

Operating
System

Dynamic allocation

=> Reduces cost

Operating
System

.
e
g’
\-’

Virtualization Layer
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Everyone’s Happy i

sub 3140F
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Problems with the Cloud

Security issues with
cloud computing I .|| Software

e Sensitive data

stored remotely
e Vulnerable host
e Untrusted host Hardware
e Co-located with e e LG

foreign VM's
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Physical co-location leads
to side channel
vulnerabilities.
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Cloud Hardware

1st Partition of a Nth Partition of a o

Virtual Machine Instance Virtual Machine Instance

Application | Application || Application | Application
Operating System Operating System ‘

5 irtual . Virtual
K Allocation Allocation

Hypervisor ( Virtualization Layer)

Shared
Disk Physical
Layer
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Universal Vulnerabilities

1) Translation between physical and virtual
hardware based on need

2) Allocation causes contention

3) Private VM activities not opaque to
co-residents
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Introduction

Cloud exploitation techniques
Targeting the processor

Importance of memory models
Design of an Out-of-Order-Execution
channel

Demo

Conclusion
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Side Channel Attack

“In cryptography, a side- Cloud Computing
channel attack is any attack

based on information gained
from the physical

e Hardware side
channel

e (Cross virtual
machine

e Information gained
through recordable
changes in the

implementation of a
cryptosystem”

system
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Classification S/R Model =

e Hardware agnostic

e Two methods of interacting
- Transmit
— Receive transmit: receive:

force record
artifacts artifacts
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Possible Exploits

e Receive (exfiltrate)
1. crypto key theft
2. process monitoring
3. environment keying
4. broadcast signal

e Transmit (infiltrate)
1. DoS
2. Cco-residency

e Transmit & Receive (network)
1. communication (C&QC)
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Communication

VM2 Master VM

Communication Medium

Virtual
Allocations

Shared
Hardware
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Cache Side Channel Example !

Flush+Reload targets the L3 Cache Tier

e Receiving Mechanism (Adversary)
- Flushes & queries

e Transmitting Mechanism (Victim)
- Accesses same L3 line

e Leaked GnuPG Private Key

sophia.re/cache.pdf
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Pipeline vs Cache Channel

Benefits:

e (Quiet, covert channel

 Not affected by cache misses, etc.

e Channel & noise amplifies in a crowded cloud
environment >
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The Attack Vector

Side Channels which Exploit Hardware
Vulnerabilities Inherent to Modern Cloud
Computing Systems

Requirements:

e Shared hardware
e Dynamically allocated hardware resources
e Co-Location with adversarial VMs or infected VMs
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Pipeline Side Channel

We chose to target the processor as the
hardware medium.

=> CPU’s pipeline
=> System artifacts queried dynamically

e Instruction order
e Results from instruction sets
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Out-of-Order-Execution
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Processor Pipeline Contention

VM

|

VM

VM

)

ProcessO1

Process04

SMT Pipeline
Optimizes CoreO1 COFEOZ Exe(?uting
Shared Instructions
Hardware Processor From .For(.eign
\ Appllcatlons/
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RECEIVER
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Record Out of Order Execution '

8.23.4 Loads May Be Reordered with Earlier Stores to Different Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location.
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following
example:

Example 8-3. Loads May be Reordered with Older Stores

mov [ _x], 1 mov [ _y], 1
mov r1,[ _y] mov r2,[ _x]
Initially x =y =0

ri =0andr2 =0 is allowed
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Record Out of Order Execution

THREAD 1 THREAD 2

Synched |store [X], 1 store [Y], 1
= MN=r2=1
load n, [Y] load r2, [X]
Asynched |store [X],1
load N, [Y] store [Y], 1 => rMN=0r2 =1
load r2, [X]
Out of load N, [Y] load r2, [X]
Order => Mm=r2=0
Execution store [X], 1 store [Y], 1
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Record Out of Order Execution

int X,Y,count_OoOE:

....initialize semaphores Sema1l & Semaz2...

pthread_t thread1, thread2;

pthread_create(&threadN, NULL, threadNFunc, NULL);

for (int iterations = 1 ; iterations++)
XY =0
sem_post(beginSemal & beginSemaz2); Avera ges m atter
sem_wait(endSemal & endSema2);

if(r1==0&& 12 ==0)
count_Oo0OE ++;

06/19/2015 Exploiting Out-of-Order-Execution 24/46



TRANSMITTER

06/19/2015 Exploiting Out-of-Order-Execution 25/46



Force Out of Order Execution

Memory Fences

Mfence:
e x86 instruction full memory barrier

prevents memory reordering of any kind
e order of 100 cycles per operation

... mov dword ptr [_spin1], O
. mfence

... mov dword ptr [_spin2], O
. mfence
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Force Out of Order Execution

THE PIPELINE

_ |NOP

Store [X], 1

Load 1, [X]

NOP H B B RN
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Types of Memory Reordering

Memory
Reordering

Processor
(Run)
Time

Compilation
Time

GCC
Multithreaded
Programs

OoOE Execution
MultiCored
(MultiExecution
Processors)
Computers
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Types of Memory Reordering

Dynamic side channel artifacts

Processor
(Run)
Time

OoOE Execution
MultiCored
(MultiExecution
Processors)

Computers
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Weak Memory Models "

WEAK STRONG

data dependency consistent

Really weak < Weak with < Usually strong < Sequentially
ordering

DEC Alpha ARM x86/6 dual 386 (circa 1989)

-

~., L
d- .

C/C++11 PowerPC SPARC TSO Java volatile

low-level atomics —
- C/C++11
; ﬁ default atomics

Or, run on
a single core
without optimization

Source control
analogy
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Types of Memory Reordering

4 types of run time reordering barriers

acquire semantics

#StorelLoad i #StoreStore E

- Instruction A visible to all processes before B occurs
- #StoreLoad most expensive operation

06/19/2015 Exploiting Out-of-Order-Execution 32/46



Force Out of Order Execution

Memory Barrier

e ‘Lock-free programming on SMT
multiprocessors

e #StorelLoad unique prevents r1=r2=0

e x86: mfence ( effects the pipeline)
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Channel Transmitter (Victim)

* Force Out-of-Order-Execution patterns
e Affect the order of stores and loads
e Time frame dependant

e Xx86: mfence

acquire semantics
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Lab Model

Scheduler Xen hypervisor
e Popular commercial IaaS platforms
Xeon Processors
Shared multi-core/ multi-processor hardware
e 3 logical CPU’s/ 4 cores
e 06 virtual machines (VM’s)

e Parallel Processing/ Simultaneous Multi-Threading
On (SMT)
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Virtual Machines

e b Windows 7 VM's

m VM5 VM6
_A ]
& é \

J

~

VM1 VM2

N\ A

J

CPU1
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Virtual Machine S/R
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Demo Links

sophia.re/sender.py

sophia.re/receiver.py
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Potential Channel Mitigation

Protected Resource Ownership

® |[solating VM’s
e Turn off hyperthreading

® Bilacklisting resources for concurrent threads
e Downside: cloud benefits
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In Conclusion...

Contribution:

We demonstrate a novel Out of Order
Execution side channel.

e Dynamic querying/ forcing method
e Application to cloud computing
o Mitigation techniques
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Any Questions?

IRC: quend (#rpisec, #pwning)
email: sophia@trailofbits.com
thesis link: sophia.re/thesis.pdf
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1,: R1:=R2/R3

I: R4:=R1*R1

L: RL:=R8+R9 !

t
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Interconnect

Memory
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OoOQOE vs Other Channel

Appllcablllty
Subversive applications show potential

e Detection difficult by an “intelligent” hypervisor

e Interference (eavesdropping) sufficiently mutilates
channel
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Cache Side Channel Example !

e Successfully leaked the private key from the

GnuPG
o |Leaked 96.7% bits of the secret key

Adversary VM Victim VM

\/

13 Cache Line decryption round
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Classification of Each Unit

Hardware Medium Transmitting Mechanism | Reception Mechanism

Processor Processor Register and Time Compared Against
Functional Unit Resources | Threshold
Contention

Cache Tier Prime-Probe, Shared Time Compared Against
Cache Functionality Threshold

System Bus System Bus Restricted Measurement of Memory
Access Contention Access Capabilities

Main Memory Prime-Probe, Shared Main | Measurement of Memory
Memory Storage Access Capabilities

Hard Disk Drive Prime-Probe, Shared Disk | Time Compared Against
Drive Data Access Threshold
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List of Physically Shared Units

e Processors (CPU/ GPU)
e Cache Tiers
e System Buses

e Main Memory
e Hard Disk Drive

Literature demonstrates exploits across
each hardware unit.
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Hardware Architectures (1)

L2 cache L2 cache
L3 cache L3 cache

single core AMD Optetron, Athlon intel Core Duo, Xeon Intel ftanium 2

Intel’'s Core Duo, Xeon Architecture
1. Each processor has two cores
2. The Xen hypervisor schedules between all processors on a server
3. Each core then allocates processes on its pipeline
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Hardware Architectures:(2)

i cache ] [T cache

L2 cache L2 cache
L3 cache L3 cache

single core AMD Optetron, Athlon intel Core Duo, Xeon Intel ftanium 2

Modern Computation
=> Multiple processes run on a pipeline (SMT)
=> Relaxed memory model
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Potential Channel Detection{1)

Signature
® Changes in the signature of a hardware unit over time

Eavesdropping
Hypervisor
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Classification of Intent

bi-wa
Avg Time per 4bits U .
6 communication
broadcast /
signal \ / &5
2 \@
I
1 |

attack implementation
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Potential Channel Detection(2)

Anomaly
® Specification

Pattern recognition

Records average OoOE patterns
Predicts what to expect
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Communication of a Mallc:lous
Process

Malicious Malicious
Sender Receiver

transmit receive
‘LT “..001..."
signal launch

Xen
Hypervisor
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Stages of Side Channel Attack

Measurement Stage

Phase 1
Cross-VM
side-channel
probing

Co-Resident
VM's
L1-Cache
Measurements

Inferred
Phase 2 Phase 3 Phase 4 Code-Path

Cache pattern ’ Noise Code-path
classifications Reduction reassembly

Analysis Stages

Example applied to L1 cache side channel
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Dynamic Difterences

e Dynamic allocations of physical resources
e Force artifacts on the shared hardware

e Reception of these artifacts

e Querying the specific hardware unit
e Difficulty/ reliability unique to each hardware unit.
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