
“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 1 — #1

ID:ti0005

A New Algorithm of Mining High Utility Sequential Pattern in
Streaming Data

Huijun Tang, Yangguang Liu*, Le Wang

School of Information Engineering, Ningbo Dahongying University, N0. 899, XueYuan Road, YinZhou District Ningbo, Zhejiang, P.R. China, 315175

ART I C L E I N FO
Article History

Received 03 Jan 2019
Accepted 11 Jan 2019

Keywords

ID:p0065

High utility sequential pattern
Data streaming
Sliding windows
Tree structure
Header table

ABSTRACT

ID:p0060

High utility sequential pattern (HUSP) mining has emerged as a novel topic in data mining, its computational complexity
increases compared to frequent sequences mining and high utility itemsets mining. A number of algorithms have been pro-
posed to solve such problem, but they mainly focus on mining HUSP in static databases and do not take streaming data into
account, where unbounded data come continuously and often at a high speed. The efficiency of mining algorithms is still the
main research topic in this field. In view of this, this paper proposes an efficient HUSP mining algorithm named HUSP-UT
(utility on Tail Tree) based on tree structure over data stream. Substantial experiments on real datasets show that HUSP-UT iden-
tifies high utility sequences efficiently. Comparing with the state-of-the-art algorithm HUSP-Stream (HUSP mining over data
streams) in our experiments, the proposed HUSP-UT outperformed its counterpart significantly, especially for time efficiency,
which was up to 1 order of magnitude faster on some datasets.

© 2019 The Authors. Published by Atlantis Press SARL.
http://creativecommons.org/licenses/by-nc/4.0/).

1.

ID:TI0020

INTRODUCTION

ID:p0070

Sequential pattern mining discovers sequences of itemsets that
frequently appear in a sequence database. For example, in mar-
ket basket analysis, mining sequential patterns from the purchase
sequences of customer transactions is to find the sequential lists of
itemsets that are frequently appeared in a time order. However, the
traditional methods of sequential pattern mining lose sight of the
number of occurrences of an item inside a transaction (e.g., pur-
chased quantity), so is the importance (e.g., unit price/profit) of an
item in the order of the transaction. Thus, not only some infrequent
patterns that bring high profits to the business may be missed, but
also a large number of frequent patterns having low selling profits
are discovered. To address the issue, high utility sequential pattern
(HUSP) mining [1–3] has emerged as a challenging topic in data
mining.

ID:p0075ID:p0070

*Corresponding author. Email: y.g.liu@foxmail.com

ID:p0080

Many studies [1, 10–14] have been conducted to mine sequen-
tial patterns over DSs. For example, A. Marascu et al. propose an
algorithm based on sequences alignment for mining approximate
sequential patterns in web usage DSs. B. Shie et al. aim at integrat-
ing mobile data mining with utility mining for finding high utility
mobile sequential patterns, two types of algorithms named level-
wise and tree-based methods [12] are proposed to mine high utility
mobile sequential patterns. Chang et al. proposed SeqStream [14]
for mining closed sequential patterns over DSs. However, all these
methods are for finding frequent sequential patterns, despite its use-
fulness, sequential pattern mining over DS has the limitation that
it neither considers the frequency of an item within an item set nor
the importance of an item (e.g., the profit of an item). Thus, some
infrequent sequences with high profits may be missed. Although
some preliminary works have been conducted on this topic, they
may have the following deficiencies: 1. They are not developed for
HUSP mining over DS and may produce too many patterns with
low utility (e.g., low profit). 2. Most of the algorithms produce too
many candidates and the efficiency of algorithms still need to be
improved.

ID:p0085

In 2017, Morteza Zihayat [15] et al. proposed HUSP-Stream for
mining HUSP based on sliding windows. Two efficient data struc-
tures named ItemUtilLists (Item Utility Lists) and High Utility
Sequential Pattern Tree (HUSP-Tree) for maintaining the essential
information of HUSPs were introduced in the algorithm. To the
best of our knowledge, HUSP-Stream is the first method to find
HUSP over DSs. Experimental results on both real and synthetic

Pdf_Folio:1

In HUSP mining, each item has an internal number and external
weight (e.g., profit/price), the item may appear many times in one
transaction, the goal of HUSP mining is to find sequences whose
total utility are more than a predefined minimum utility value. A
number of improved algorithms have been proposed to solve this
problem in terms of execution time, memory usage, and number
of generated candidates [4–9]. But they mainly focus on mining
HUSP in static dataset and do not consider the streaming data.
However, in real world there are many data streams (DSs) such
as wireless sensor data, transaction flows, call records, and so on.
Users are more interested in information that reflects recent data

rather than old ones in a period of time. So it has been an important
research issue in the field of data mining to mine HUSP over DSs.

This is an open access article distributed under the CC BY-NC 4.0 license (

International Journal of Computational Intelligence Systems
Vol. 12(1); 2019, pp. 342–350

DOI: https://doi.org/10.2991/ijcis.2019.125905650; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.2991/ijcis.2019.125905650

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 2 — #2

datasets demonstrate impressive performance of HUSP-Stream, it
is the state-of-the-art algorithm for mining HUSP in stream data.

ID:p0090

The efficiency of mining algorithms is still the main research topic
in this field [16–18], in this paper, we propose a new mining algo-
rithm named HUSP-UT (utility on Tail Tree), the newly proposed
algorithm is comparedwith the state-of-the-artHUSP-Stream algo-
rithm in the experiments, theoretical analysis, and experiments are
carried out to prove its effectiveness. The organization of this arti-
cle is as follows: Section 2 provides a description of the problem and
defines relevant terms, Section 3 introduces a structureUT-tree and
a corresponding algorithm, Section 4 shows experimental results
under different scenes, and Section 5 gives conclusions.

2.

ID:TI0025

PROBLEM STATEMENT AND
DEFINITIONS

ID:p0095

A DS can formally be defined as an infinite sequence of transac-
tions, DS = {t1, t2,⋯, tm,⋯}, where ti is the ith arrival of transac-
tions. tj could be known as {(x1:c1), (x2:c2),⋯, (xv:cv)}, where v is
the length of the transaction tj. ck = q(xk, t) is the quantity of item xk
and p(xk) is the profit value. An example of a sequential DS could
be seen from Tables 1 and 2 is the external utility of the items.

Table 1

ID:p0100

High utility transaction dataset.

ID:t0005ID:t0010ID:t0015ID:t0020ID:t0025ID:t0030ID:t0035ID:t0040ID:t0045ID:t0050ID:t0055ID:t0060ID:t0065ID:t0070ID:t0075ID:t0080

Table 2

ID:p0105

A profit table.

ID:t0085ID:t0090ID:t0095ID:t0100ID:t0105ID:t0110ID:t0115ID:t0120ID:t0125ID:t0130ID:t0135ID:t0140ID:t0145ID:t0150ID:p0110ID:p0115

For example, in Tables 1 and 2, u(d, t1) = 8 * 3 = 24. The item may
appear in the transaction more than once, the maximum utility of
an item among all its occurrences in t is used as its utility in the
transaction. Thus u(a, t1) = 2 * 2 = 4.

Definition 2.

ID:p0120

The utility of sequential itemset X in transaction t is
denoted as u(X, t), it is defined as

u (X, t) = {
0, if X ⊈ t,
∑
x∈X

u (x, t) , if X ⊆ t. (2)

ID:p0125

For example, in Tables 1 and 2, u({de}, t1) = u(d, t1) + u(e, t1) = 24
+ 40 = 64.

Definition 3.

ID:p0130

The utility of sequential itemset X in the current
window of the data stream (WDS) is denoted as u(X). It is defined
as

u (X) = ∑
t∈WDS

u (X, t) (3)

ID:p0135

For example, in Tables 1 and 2, if the current window size w = 3, if
consists of t1, t2, t3. u({ad}) = u({ad}, t1) + u({ad}, t2) + u({ad}, t3)
= 28 + 20 + 20 = 68.

Definition 4.

ID:p0140

The utility of sequential transaction t is denoted as
stu(t), it is defined as

stu (t) = ∑
x∈t

u (x, t) (4)

ID:p0145

For example, in Tables 1 and 2, stu(t4) = u(a, t4) + u(d, t4) + u(b, t4)
= 8 + 64 + 6 = 78.

Definition 5.

ID:p0150

The current WDS is denoted as swu(WDS), and it is
defined as

swu (WDS) = ∑
t∈WDS

stu (t) (5)

ID:p0155

For example, in Tables 1 and 2, if the current window size w = 3, it
consists of t1, t2, t3. swu(WDS) = stu(t1) + stu(t2) + stu(t3) = 70 +
49 + 50 = 169.

Definition 6.

ID:p0160

Give a user-specified threshold 𝛿(0 < 𝛿 < 1), mini-
mum utility threshold (MinUti) set is defined as

MinUti = 𝛿 ∗ swu (WDS) (6)

ID:p0165

An sequential itemset X is an HUSP if its utility is no less than the
minimum utility MinUti.

Definition 7.

ID:p0170

An sequential itemsetX in the current window of DS
is a candidate if its utility is no less than the minimum utility value.

swu (X) = ∑
X ⊆ t
t ∈ WDS

stu (t) (7)

3.

ID:TI0030

MINING HUSP IN DS

3.1.

ID:ti0035

UT-Tree

ID:p0175

A tree structure named UT-tree is introduced in this section. There
are two types of nodes in the structure of UT-tree, one is ordinary-
node [19], the other is tail-node [20], compared to the ordinary-
node, tail-node owes the utility of the transactions in the window.
Also, the tail pointer table is introduced in the construction of the
UT-tree, which is used to delete obsolete data for updating.Pdf_Folio:2

Transaction Sequences

t1 (a, 2)(d, 3)(e, 4)(a, 1)
t2 (a, 2)(c, 8)(d, 2)(c, 1)(g, 2)
t3 (a, 2)(c, 8)(b, 1)(d, 2)
t4 (a, 4)(d, 8)(b, 1)
t5 (a, 3)(c, 2)(d, 2)
t6 (a, 6) (d, 4) (b, 5) (c, 4)
t7 (a, 2)(c, 2)(b, 7)(a, 1)
t8 (a, 4) (d, 3) (b, 4) (f, 1)

Item Profit

a 2
b 6
c 3
d 8
e 10
f 1
g 1

Definition 1. The utility value of item x in transaction t is set as
u(x, t), it is defined as

u (x, t) = q (x, t) ∗ p (x) (1)

H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350 343

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 3 — #3

ID:p0180

We use an example to illustrate the construction of UT-tree based

batch of data contains two transactions. The first batch of data with
transaction t1 and t2 are added to a tree in its original order. Note
that the last node of each transaction that is added to the tree is a
tail-node, such as the node “a” in the transaction {a, d, e, a} and “g”
in the transaction {a, c, d, c, g}, the tail-node records the utility of
the items in its transaction. Figure 1(a) is the result of the first batch
of two transactions added to a UT-tree. Figure 1(b) shows the final
UT-tree after the third batch of data is added. When constructing a
UT-tree, if a tail-node which is added to the tree has already being
a corresponding ordinary-node, we simply convert this ordinary-
node to a tail-node. For example, t5 = {a, c, d}, when the transaction
is added into the tree, the same path has already existed after adding
the transaction t2, but in transaction t5, “d” is the tail-node while
it is an ordinary-node in t2, simply convert the node to a tail-node
with the utility of t5. The global header table which records the swu
of batch in t[1], t[2], and t[3]. The tail table (Figure 1(c)) records the
order of the batch which is used to delete obsolete data, we also add
the pointer to the nodewhen the item is appearedmore than once in
the transaction, it is pointed to the same item which is nearest to it.
For example, in transaction {a, c, d, c, g}, the second item “c” points
to the first “c” for calculating the utility of same item or sequence in
the same transactions.

3.2.

ID:ti0040

Data Updating

ID:p0190

When a newbatchwith two transactions comes, two important pro-
cesses occur: deleting obsolete data and adding new data.

ID:p0195

The algorithm of deleting old data is shown in Algorithm 1 of
Figure 2(a). Mainly its work is to process each obsolete tail-node

which is recorded in the tail table. Delete the utility in the tail-node
(line 2), if there is not any utility in the tail-node, delete the whole
path (line 3–10), also delete the item in the tail table (line 11). The
algorithm for adding new data is shown in algorithm 2 of Figure
2(a). Transactions are added to the tree (line 3–4), then, the nail-
node is stored to the tail table (line 6). The variable y in algorithm
2 is the looping counter.

ID:p0200

For UT-tree in Figure 1(b), when the fourth batch with transaction
t7 and t8 comes, Figure 1(d) is the result after deleting the first batch
of data and Figure 1(e) is the final result after updating.

3.3.

ID:ti0045

Mining HUSP Algorithm

ID:p0210

The new mining algorithm is proposed in Figure 2(b). Line 1 in the
algorithm is to add a numeric list named Utility_cache to each leaf
node on the UT-tree T. The elements in this list are the list of utility
for each batch of data on the node (shown as “{}” on the tail-node),
for example, for the tree of Figure 1(b), each leaf node adds a list of
Utility_cache as shown in Figure 3(a). Line 2 in the algorithm is to
create a header table H, and the entries and their order are obtained
from global header table GH, scanning the tree and placing all the
nodes of the same item in the link of H, the link order of the item
is corresponding to the order of the batches. H could be obtained
in Figure 3(b) based on the UT-tree and global head table of
Figure 3(a).

ID:p0220

The third to fifteenth lines of the algorithm start from the last item
in H and sequentially process each item in H. Lines 4 and 5 calcu-
late swu and utility values of the current processing item based on
Utility_cache in the path. From the current processing item, the
utility of the same item in another transaction can be obtained based

item t[1] t[2] t[3]

a 119 128 114

b 0 128 86

c 49 50 114

d 119 128 114

e 70 0 0

f 0 0 0

g 49 0 0

Header Table

item t[1] t[2] t[3]

a 119

b 0

c 49

d 119

e 70

f 0

g 49

Tail Table

batch item

1
a

g

2
d

b

3
d

c

Header Table

item t[1] t[2] t[3]

a 0 128 114

b 0 128 86

c 0 50 114

d 0 128 114

e 0 0 0

f 0 0 0

g 0 0 0

Header Table

item t[1] t[2] t[3]

a 111 128 114

b 111 128 86

c 54 50 114

d 57 128 114

e 0 0 0

f 57 0 0

g 0 0 0

Figure 1

ID:p0185

Construction of a UT-Tree.
Pdf_Folio:3

on the data in Tables 1 and 2. The window size w = 3 and in each

ID:p0180ID:ti0040ID:p0190ID:p0195ID:p0200ID:ti0045ID:p0210ID:p0220ID:p0185

344 H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350
ID:p0180ID:ti0040ID:p0190ID:p0195ID:p0200ID:ti0045ID:p0210ID:p0220ID:p0185

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 4 — #4

(a) updating data into a UT-tree (b) mining HUSP algorithm

Figure 2

ID:p0205

Algorithms based on UT-tree.

Figure 3

ID:p0215

Process of mining HUSPs from a UT-Tree.

Pdf_Folio:4

Global Header Table

item t[1] t[2] t[3]

a 119 128 114

b 0 128 86

c 49 50 114

d 119 128 114

e 70 0 0

f 0 0 0

g 49 0 0

H

item swu link

a 361

b 214

c 213

d 361

e 70

f 0

g 49

H

item swu link

a 361

b 214

d 361

H

item swu link

a 214

H

item swu link

a 154

H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350 345

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 5 — #5

on the links, if the item appears in a path more than once, the util-
ity can be calculated based on definition 1. If the utility value of
the current processing item is not less than MinUti, the item is an
HUSP (sequence with length 1). If the swu of the item is not less
thanMinUti, you can create the sub-header table and sub-tree (lines
11 and 12 in the algorithm).

ID:p0220-p345

The creation of the sub-header table and sub-tree is described in
line 16 and line 25 of Figure 2(b). For example, set MinUti = 214,
Figure 3(c) is the final UT-tree after deleting the items whose swu
is less than 214, and the tail-nodes of the tree contain the value of
Utility_cache. The sub-tree of item “d” could be known from Figure
3(d), the value of base is corresponding to the processing item. To
process the item “d” in H of Figure 3(c), there are two paths in the
UT-tree. The path “root-a-d” and “root-a-b-d,” the swu values of all
items in these two paths are calculated, and the item whose swu is
not less thanMinUti is stored in a sub-header table, we can find that
the sequence {ad} satisfies the demand. Figure 3(e) is the sub-tree
corresponding to the sequence {db}.

ID:p0230

The 26th line of the algorithm deals with the sub-header table and
sub-tree. The process method of sub-header table and sub-tree is
the same as the processing method of UT-tree. For details, refer to
the lines 1–15 in Figure 2(b).

3.4.

ID:ti0050

Algorithm Analysis

ID:p0235

The proposed algorithm HUSP-UT (mining HUSPs-based UT-
tree) stores the sequence’s utility in the leaf node. It guarantees
HUSP-UT to get the real utility value of the sequence from the UT-
tree instead of estimating value, there is no candidates generating in
the mining process, the storage consumption is effectively reduced.
You can get the utility value of each item in the correlative sequence
when creating sub trees (the creation of the sub-tree in Figure 3)
based on the node pointer. This is also guaranteed to be able to cal-
culate the utility of items in the head table and the new swu value
fast (not contain the utility value of items that have been processed
and not in the head table), it reduces the running time efficiently.

ID:p0240

It is known that when it is going to create a sub-tree of the item or
sequence X, the utility of X is calculated from the global tree and
the sequence which contains X could be found based on the sub-
tree. The utility can be calculated from a sub-tree to any item or
sequence.

ID:p0245

The above is the reason for the efficiency improvement of algorithm
HUSP-UT, the experimental results are given in Section 4 of this
paper.

ID:p0250

Below we prove that our method for finding HUSPs does not miss
any HUSPs. Firstly assuming the sequence Z is any HUSP mode,
than the swu value of any non-empty subset will not be less than
the minimum threshold. According to the algorithm HUSP-UT, all
items in the sequence Z will appear in the header table correspond-
ing to theUT-tree.When the itemZ1 in the sequence Z is processed
and the sub-header table is created based on the node pointer, the
swu value of Z1 combined with the rest item of Z is not less than
the minimum threshold. So these combined item will appear in the
sub-tree of Z1. When processing the new item of Z1, it is iteratively
calculated according to the same creation rules of the sub-tree, it
can definitely get that the sequence Z is the HUSP mode and this
algorithm HUSP-UT can mine all HUSPs.

4.

ID:TI0055

EXPERIMENTAL ANALYSES

ID:p0255

In this section, we evaluate the performance of the proposed algo-
rithm HUSP-UT (mining HUSPs based UT-tree) and compare it
with state-of-the-art HUSP-Stream on four datasets: Bible, FIFA,
Kosarak10k, and SIGN. These datasets have varied characteris-
tics and represent the main types of data typically encountered in
real-life scenarios (dense, sparse, short, and long sequences). The
dataset is obtained from SPNF [21] and paper [22]. The charac-
teristics of datasets are shown in Table 3, where |I|, avgLength,
and |SD| columns indicate the number of distinct items, the aver-
age sequence length, and number of sequences. Bible is moderately
dense and contains many medium-length sequences. FIFA is mod-
erately dense and contains many long sequences. Kosarak10k is a
sparse dataset that contains short sequences and a few very long
sequences. SIGN is a dense dataset having very long sequences.
For all datasets, external utilities of items are generated between
0.01 and 10 by using a lg-normal distribution [23]. All algorithms
were written in Java programming language. The configuration of
the testing platform is as follows: Windows7 operating system, 2G
Memory, intel

Table 3

ID:p0260

Data characteristics.

Dataset |I| AvgLength |SD|

ID:t0155

Bible

ID:t0160

13 905

ID:t0165

21.64

ID:t0170

36 369

ID:t0175

FIFA

ID:t0180

13 749

ID:t0185

45.32

ID:t0190

573 060

ID:t0195

Kosarak10k

ID:t0200

39 998

ID:t0205

11.64

ID:t0210

638 811

ID:t0215

 SIGN

ID:t0220

267

ID:t0225

93.00

ID:t0230

730

ID:p0265

(R) Core(TM) i3-2310 CPU@2.10 GHz, Java heap size is 1G. The
two methods can mine all HUSPs in the dataset, and we evaluate
the time and memory consumption efficiency on the four datasets.

ID:p0270

Figure 4 shows the running time comparison of HUSP-UT and
HUSP-Streamunder four datasets, respectively. The number of data
batch is set as w = 3 in each window and the batch-size are set as
10K. From the results on Figure 4, we can see that our algorithm
HUSP-UT outperforms HUSP-stream on different minimum sup-
port thresholds. For example, when the minimum support thresh-
old is 0.01% on the dataset SIGN, HUSP-UT spends 29.56 seconds
while HUSP-stream spends 274.521 seconds. The time efficiency is
up to 1 order of magnitude faster on the dataset. There will be more
HUSPs when the threshold getting smaller, the total running time
will increase along with the decrease of the threshold, but we can
see that the running time is stable by HUSP-UT and the efficiency
is improved by using the new method.

ID:p0280

Figure 5 shows the running time comparison for evaluating the
accumulated performance of HUSP-UT and HUSP-stream under
varied window-width, the minimum utility threshold is set as
0.026%, 0.1%, 0.0174%, and 0.014%, respectively. Each batch-size
is 10K, with the increasing of the number of batches in the win-
dow, the total running time ofHUSP-stream increasesmore,mainly
because it creates more candidates, while the time of HUSP-UT
is not very big. The performance advantage of algorithm HUSP-
UT accumulates along with window-width, it is stable under varied
window-width.

ID:p0290

Figure 6 shows that our algorithm HUSP-UT outperforms HUSP-
stream on varied batch-sizes. In Figure 6, the minimum utilityPdf_Folio:5

346 H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 6 — #6

threshold was set to 0.026%, 0.1%, 0.0174%, and 0.014%, respec-
tively. The window size was three batches, and the batch-size test
range was 5K–25K. The results of this experiment are the same as
the above experiments. The time performance of HUSP-UT is still
better than that of HUSP-stream.

ID:p0300

We also evaluate the memory usage of the algorithms under dif-
ferent utility thresholds. The number of data batch is set 3 in each
window and the batch-size is set as 10K, the results are shown in
Figure 7, which indicates our approach consumes lessmemory than
HUSP-stream. For example, for the dataset FIFA, when the thresh-
old is 0.026%, the memory consumption of HUSP-UT is around
200 MB, while that of HUSP-Stream is over 500 MB. A reason is
that HUSP-Stream produces too many candidates during the min-
ing process, which causes HUSP-Stream having a larger tree than
that of HUSP-UT.

ID:p0310

The performance of the algorithms under different window sizes
and batch number are also evaluated in this experiment, the
minimum utility threshold is set to 0.026%, 0.1%, 0.0176%,
and 0.014% for the four datasets, respectively. The results are

shown in Figure 8. In Figure 8(a), each bar shows the memory con-
sumption of HUSP-UT on a dataset under a window size when
the number of batches is three. For example, the most left bar is
the memory consumption of HUSP-UT on Bible when the win-
dow size is set to 10K. From Figure 8(a), we observe that the
memory consumption of HUSP-UT increases very slowly with
increasing window sizes.

ID:p0320

Figure 8(b) shows the memory consumption of HUSP-UT under
different batch number when the size of a window is 10K, the
dataset with different number is displayed with the abscissa. For
example, “Bible-3” indicates that there are three batches of trans-
actions in a window with the dataset Bible. We also see that the
memory consumption of HUSP-UT increases very slowly with
increasing number of batches in a window.

ID:p0325

Concluding the above experiments, we can see that our pro-
posed algorithmHUSP-UT has achieved a better performance than
HUSP-stream under varied minimum support thresholds, varied
window-width, and varied batch-sizes, and its advantage is stable
along with the accumulation of the data flow process.

0.020 0.022 0.024 0.026 0.028 0.030 0.032
0

50

100

150

R
un

ni
ng

 ti
m

e
(s

)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

0.07 0.08 0.09 0.10 0.11 0.12 0.13
0

20

40

60

80

100

R
un

ni
ng

 ti
m

e
(s

)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

(a) Bible (b) FIFA

0.0174 0.0176 0.0178
0

50

100

150

R
un

ni
ng

 ti
m

e
(s

)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

0.008 0.010 0.012 0.014 0.016 0.018 0.020
0

100

200

300

R
un

ni
ng

 ti
m

e
(s

)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

 (c) Kosarak10k (d) SIGN

Figure 4

ID:p0275

Execution time under varied minimum utility threshold.
Pdf_Folio:6

H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350 347

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 7 — #7

1 2 3 4 5 6
0

50

100

150
R

un
ni

ng
 ti

m
e

(s
)

Number of batches of a window (#)

 HUSP-Stream
 HUSP-UT

1 2 3 4 5 6
0

50

100

150

R
un

ni
ng

 ti
m

e
(s

)

Number of batches of a window (#)

 HUSP-Stream
 HUSP-UT

(a) Bible (b) FIFA

Figure 5

ID:p0285

Execution time under varied window-width.

Figure 6

ID:p0295

Execution time under varied batch-size.
Pdf_Folio:7

R
un

ni
ng

 ti
m

e
(s

)

Number of transactions in a batch (K)

 HUSP-Stream
 HUSP-UT

30 25 20 15 10 5 0
0

50

100

R
un

ni
ng

 ti
m

e
(s

)

Number of transactions in a batch (K)

 HUSP-Stream
 HUSP-UT

(a) Bible (b) FIFA

30 25 20 15 10 5 0
0

50

100

150

R
un

ni
ng

 ti
m

e
(s

)

Number of transactions in a batch (K)

 HUSP-Stream
 HUSP-UT

30 25 20 15 10 5 0

0

100

200

300

400

R
un

ni
ng

 ti
m

e
(s

)

Number of transactions of a batch (K)

 HUSP-Stream
 HUSP-UT

(c) Kosarak10k (d) SIGN

30 25 20 15 10 5 0
0

50

100

348 H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 8 — #8

0.020 0.022 0.024 0.026 0.028 0.030 0.032

200

400

600

800

1000
M

em
or

y
C

on
su

m
pt

io
n

(M
B)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

0.07 0.08 0.09 0.10 0.11 0.12 0.13
0

250

500

750

1000

M
em

or
y

C
on

su
m

pt
io

n
(M

B)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

(a) Bible (b) FIFA

0.0174 0.0176 0.0178
0

250

500

750

1000

M
em

or
y

C
on

su
m

pt
io

n
(M

B)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

0.008 0.010 0.012 0.014 0.016 0.018 0.020
0

100

200

300

400

500

M
em

or
y

C
on

su
m

pt
io

n
(M

B)

Minimum utility threshold (%)

 HUSP-Stream
 HUSP-UT

(c) Kosarak10k (d) SIGN

Figure 7

ID:p0305

Memory consumption on four datasets.

0

200

400

600

800

SI
G

N
-2

0k
SI

G
N

-1
5k

SI
G

N
-1

0k
Ko

sa
ra

k1
0k

-2
0k

Ko
sa

ra
k1

0k
-1

5k
Ko

sa
ra

k1
0k

-1
0k

FI
FA

-2
0k

FI
FA

-1
5k

FI
FA

-1
0k

Bi
bl

e-
20

k
Bi

bl
e-

15
kM

em
or

y
C

on
su

m
pt

io
n

(M
B)

Bi
bl

e-
10

k

Dataset- size of window

0

200

400

600

800

1000

SI
G

N
-3

00
SI

G
N

-2
00

SI
G

N
-1

00
Ko

sa
ra

k1
0k

-9
0

Ko
sa

ra
k1

0k
-6

0
Ko

sa
ra

k1
0k

-3
0

FI
FA

-3
0

FI
FA

-2
0

FI
FA

-1
0

Bi
bl

e-
5

Bi
bl

e-
4M

em
or

y
C

on
su

m
pt

io
n

(M
B)

Bi
bl

e-
3

Dataset- number of batch

 (a) HUSP-UT with different size of window (b) HUSP-UT with different number of batch

Figure 8

ID:p0315

Evaluation of high utility sequential pattern utility on Tail Tree (HUSP-UT).

Pdf_Folio:8

H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350 349

“IJ-CIS-D-19-00009_proof ” — 2019/2/2 — 12:33 — page 9 — #9

5.

ID:TI0060

CONCLUSIONS

ID:p0330

To improve the overall performance of the high utility sequence
mining algorithm over DSs, the efficiency of updating data and
mining HUSP should be considered. This study proposes a new
data structure UT-tree and gives the corresponding algorithm
HUSP-UT. We apply the new method to mine HUSPs over DSs.
Theoretical and experimental analysis shows that the performance
of our proposed algorithm outperforms the state-of-the-art algo-
rithm HUSP-Stream.

ID:TI0065

ACKNOWLEDGMENTS

ID:p0335

This work is supported by the Project of Zhejiang Provincial Public Welfare
Technology Application and Research (LGF19H180002, 2017C35014) and
Ningbo Natural Science Foundation (2017A610122).

REFERENCES

ID:TI0070

[1] J. Pei, J. Han, B.Mortazavi-Asl, PrefixSpan:mining sequential pat-

IEEE International Conference on Data Engineering, New Jersey,
2001, pp. 215–552.

[2] M.J. Zaki, SPADE: an efficient algorithm for mining frequent
sequences, Mach. Learn. 42 (2001), 31–60.

[3]

[4] B. Zhang, C.W. Lin, P. Fournierviger, Mining of high utility-
probability sequential patterns from uncertain databases, PLOS
ONE. 12(7) (2017), e0180931.

[5] M. Zihayat, Y. Chen, A. An. Memory-adaptive high utility
sequential pattern mining over data streams, Mach. Learn. 106
(2017), 799–836.

[6] J.Z. Wang, Z.H. Yang, J.L. Huang, An efficient algorithm for
high utility sequential patternmining, Frontier Innovation Future
Comput. Commun. 30(1) (2014), 49–56.

[7] C.F. Ahmed, S.K. Tanbeer, B. Jeong. A novel approach for mining
high-utility sequential patterns in sequence databases. Electron.
Telecommun. Res. Inst. 32 (2010), 676–686.

[8] J. Yin, Z. Zheng, L. Cao, Uspan: an efficient algorithm for mining

SIGKDD International Conference on Knowledge Discovery and
Data Mining, New York, 2012, pp. 660–666.

[9] J.Z. Wang, J.L. Huang, Y.C. Chen, On efficiently mining high util-
ity sequential patterns, Knowl. Info. Syst. 49(2) (2016), 597–627.

[10] A. Marascu, F. Masseglia, Mining sequential patterns from tem-
poral streaming data, Food Chem. 155(28) (2005), 186–191.

[11] M. Zihayat, A. An, Mining top-k high utility patterns over data
streams, Info. Sci. 285 (2014), 138–161.

[12] B. Shie, H. Hsiao, V.S. Tseng, Efficient algorithms for discovering
high utility user behavior patterns in mobile commerce environ-
ments, Knowl. Info. Syst. J. 37(2) (2013), 363–387.

[13] M. Zihayat, C.-W. Wu, A. An, V.S. Tseng, Mining high utility

the ASE BigData & Social Informatics, Kaohsiung, Taiwan, 2015,
pp. 1–26.

[14] L. Chang, T. Wang, D. Yang, H. Luan, Seqstream: mining closed

pp. 83–92.
[15] M. Zihayat, C.W. Wu, A. An, Efficiently mining high utility

sequential patterns in static and streaming data, Intell. Data Anal.
21 (2017), 103–135.

[16] Y. Wu, Z. Tang, H. Jiang, Approximate pattern matching with gap
constraints, J. Info. Sci. 42(5) (2016), 639–658.

[17] W. Le, W. Shui, L. Sheng-Lan, W. Hui-Bing, An algorithm of Min-
ing Sequential pattern with wildcards based on Index-Tree, Chin.
J. Comput. 39(17) (2016), 1–9.

[18] Z. Farzanyar, M. Kangavari, N. Cercone, Max-FISM: mining
(recently) maximal frequent itemsets over data streams using the
sliding window model, Comput. Math. Appl. 64(6) (2012), 1706–
1718.

[19] L. Wang, L. Feng, B. Jin, Sliding window-based frequent itemsets
mining over data streams using tail pointer table, Int. J. Comput.
Intell. Syst. 7(1) (2014), 25–36.

[20] M. Song, S. Rajasekaran, A transaction mapping algorithm for
frequent itemsets mining, IEEE Trans. Knowl. Data Eng. 18(4)
(2006), 472–481.

[21] P. Fournier-Viger, A. Gomariz, T. Gueniche, SPMF: a Java open
source pattern mining library, J. Mach. Learn. Res. 15 (2014),
3389–3393.

[22] S. Zida, P. Fournier-Viger, C.W. Wu, Efficient mining of high-

on Machine Learning and Data Mining, San Francisco, 2015, pp.
157–171.

[23] V.S. Tseng, C.W. Wu, B.E. Shie, UP-Growth: an efficient algo-

tional Conference on Knowledge Discovery and Data Mining,
Washington, 2010, pp. 253–262.

Pdf_Folio:9

350 H. Tang et al. / International Journal of Computational Intelligence Systems 12(1) 342–350

terns efficiently by prefix-projected pattern growth, in Proceeding

P.P.C. Rassi, M. Teisseire. Speed: mining maximal sequential
patterns over data streams, in Proceeding of the IEEE Inter-
national Conference on Intelligent Systems, New Jersey, 2006,
pp. 546–552.

high utility sequential patterns, in Proceeding of the 18th ACM rithm for high utility itemset mining, in Proceeding Interna-

utility sequential rule, in Proceeding International Conference

sequential patterns over stream sliding windows, in Proceeding of
the IEEE International Conference on Data Mining, Pisa, 2008,

sequential patterns from evolving data streams, in Proceeding of

https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1371/journal.pone.0180931
https://doi.org/10.1371/journal.pone.0180931
https://doi.org/10.1371/journal.pone.0180931
https://doi.org/10.1007/s10994-016-5617-1
https://doi.org/10.1007/s10994-016-5617-1
https://doi.org/10.1007/s10994-016-5617-1
https://doi.org/10.1007/978-94-017-8798-7_7
https://doi.org/10.1007/978-94-017-8798-7_7
https://doi.org/10.1007/978-94-017-8798-7_7
https://doi.org/10.4218/etrij.10.1510.0066
https://doi.org/10.4218/etrij.10.1510.0066
https://doi.org/10.4218/etrij.10.1510.0066
https://doi.org/10.1007/s10115-015-0914-8
https://doi.org/10.1007/s10115-015-0914-8
https://doi.org/10.1016/j.foodchem.2014.01.041
https://doi.org/10.1016/j.foodchem.2014.01.041
https://doi.org/10.1016/j.ins.2014.01.045
https://doi.org/10.1016/j.ins.2014.01.045
https://doi.org/10.1007/s10115-012-0483-z
https://doi.org/10.1007/s10115-012-0483-z
https://doi.org/10.1007/s10115-012-0483-z
https://doi.org/10.3233/IDA-170874
https://doi.org/10.3233/IDA-170874
https://doi.org/10.3233/IDA-170874
https://doi.org/10.1177/0165551515603286
https://doi.org/10.1177/0165551515603286
https://doi.org/10.1016/j.camwa.2012.01.045
https://doi.org/10.1016/j.camwa.2012.01.045
https://doi.org/10.1016/j.camwa.2012.01.045
https://doi.org/10.1016/j.camwa.2012.01.045
https://doi.org/10.1080/18756891.2013.859860
https://doi.org/10.1080/18756891.2013.859860
https://doi.org/10.1080/18756891.2013.859860
https://doi.org/10.1109/TKDE.2006.1599386
https://doi.org/10.1109/TKDE.2006.1599386
https://doi.org/10.1109/TKDE.2006.1599386
https://doi.org/10.1145/2339530.2339636
https://doi.org/10.1145/2339530.2339636
https://doi.org/10.1145/2339530.2339636
https://doi.org/10.1145/2339530.2339636
https://doi.org/10.1145/1835804.1835839
https://doi.org/10.1145/1835804.1835839
https://doi.org/10.1145/1835804.1835839
https://doi.org/10.1145/1835804.1835839
https://doi.org/10.1109/ICDM.2008.36
https://doi.org/10.1109/ICDM.2008.36
https://doi.org/10.1109/ICDM.2008.36
https://doi.org/10.1109/ICDM.2008.36

	A New Algorithm of Mining High Utility Sequential Pattern in Streaming Data
	1. INTRODUCTION
	2. PROBLEM STATEMENT ANDDEFINITIONS
	3. MINING HUSP IN DS
	3.1. UT-Tree
	3.2. Data Updating
	3.3. Mining HUSP Algorithm
	3.4. Algorithm Analysis

	4. EXPERIMENTAL ANALYSES
	5. CONCLUSIONS

