
A Quantitative Assured Forwarding Service

Nicolas Christin, Jörg Liebeherr, and Tarek F. Abdelzaher
Department of Computer Science

University of Virginia

P.O. Box 400740

Charlottesville, VA 22904-4740, U.S.A.

Abstract— The Assured Forwarding (AF) service of the
IETF DiffServ architecture provides a qualitative service
differentiation between classes of traffic, in the sense that a
low-priority class experiences higher loss rates and higher
delays than a high-priority class. However, the AF ser-
vice does not quantify the difference in the service given to
classes. In an effort to strengthen the service guarantees
of the AF service, we propose a Quantitative Assured For-
warding service with absolute and proportional differentia-
tion of loss, service rates, and packet delays. We present a
feedback-based algorithm which enforces the desired class-
level differentiation on a per-hop basis, without the need for
admission control or signaling. Measurement results from a
testbed of FreeBSD PC-routers on a 100 Mbps Ethernet net-
work show the effectiveness of the proposed service, and in-
dicate that our implementation is suitable for networks with
high data rates.

I. INTRODUCTION

The Assured Forwarding (AF, [1]) service of the Dif-
ferentiated Services (DiffServ, [2]) architecture is an at-
tempt to provide a scalable solution to the problem of
service differentiation in the Internet. In the AF service,
flows with similar QoS requirements are grouped into
classes, using the DiffServ CodePoint field (DSCP, [3])
in the IP header. An attractive feature of the AF service is
that it does not require admission control or per-flow clas-
sification, and is therefore scalable on both the control and
data paths. However, the AF service only provides qual-
itative differentiation between classes, in the sense that
some classes receive lower delays and a lower loss rate
than others, but the differentiation is not quantified, and
no absolute service bounds are offered.

Recently, research efforts have tried to strengthen the
guarantees that can be provided within the context of the
AF service without sacrificing its scalability and its sim-
plicity, either by trying to quantify the difference in the
level of service received by different classes, or by offer-
ing absolute bounds on service parameters, e.g., delays,
to a specific set of classes. For instance, the proportional

This work is supported in part by the National Science Foundation
through grants NCR-9624106 (CAREER), ANI-9730103, and ANI-
0085955.

service differentiation model [4], [5] quantifies the dif-
ference in the service by making the ratios of delays or
loss rates of different classes roughly constant. This type
of service can be implemented through scheduling algo-
rithms [4], [5], [6], [7], [8], [9], [10], [11] and/or buffer
management algorithms [5], [12]. Recent works have
tried to combine the scheduling and dropping decisions
in a single algorithm [13], [14]. Most scheduling and/or
buffer management algorithms aim at proportional differ-
entiation, but do not support absolute service guarantees.

In a different approach to strengthening the AF service,
the Alternative Best-Effort (ABE) service considers two
traffic classes. The first class obtains absolute delay guar-
antees, and the second class has no delay guarantees, but
is given a better loss rate than the first class. Schedul-
ing and buffer management algorithms for the ABE ser-
vice are presented in [15]. The service model in [16] also
supports absolute delay bounds, and qualitative loss and
throughput differentiation, but no proportional differenti-
ation.

These recent efforts to strengthen the AF service raise
questions on the best possible class-based service model
that can be achieved by entirely relying on scheduling
and dropping algorithms at routers, and without admis-
sion control, traffic policing, or signaling. In an attempt
to explore the limits of such a class-based service, we de-
fine in this paper a “Quantitative Assured Forwarding” 1

service that offers, on a per-hop basis, both absolute and
proportional guarantees to classes. Each node enforces
any mix of absolute and proportional guarantees. Ab-
solute guarantees apply to loss rates, delays, or through-
put, and define a lower bound on the service received by
each class. Proportional guarantees apply to loss rates and
queueing delays. As an example of the guarantees in the
Quantitative Assured Forwarding service for three classes
of traffic, one could specify service guarantees of the form
“Class-1 Delay ≤ 2 ms,” meaning that no Class-1 packet
should experience a queueing delay greater than two mil-
liseconds, “Class-2 Delay ≈ 4·Class-1 Delay,” meaning
that Class-2 packets should experience queueing delays

1The name “quantitative differentiated service” was recently used in
[16].

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 864 IEEE INFOCOM 2002

roughly twice as large as Class-1 packets, “Class-2 Loss
Rate ≤ 1%,” meaning that the loss rate of Class 2 should
never exceed 1%, “Class-3 Loss Rate ≈ 2·Class-2 Loss
Rate,” and “Class-3 Service Rate ≥ 1 Mbps,” meaning
that the aggregate of flows belonging to Class 3 should
get a throughput of at least 1 Mbps. The Quantitative
Assured Forwarding service supports any mix of such
service guarantees, and the QoS parameters (e.g., delay
bound of 1 ms) are configurable by the network opera-
tor. Clearly, without admission control, it is not feasi-
ble to satisfy all absolute guarantees at all times. Thus,
when absolute constraints cannot be satisfied, we allow
that some service guarantees can be temporarily relaxed
according to a specified order.

We present a formal description of the Quantitative As-
sured Forwarding service, and we devise an algorithm
that enforces guarantees on loss, delay and throughput for
classes by adjusting the service rate allocation to classes
and by selectively dropping traffic. We apply linear feed-
back control theory for the design of the algorithm, and,
to this effect, make assumptions which approximate the
non-linearities in the system of study, similar to [17], [18],
[19].

This paper is organized as follows. In Section II, we
define the Quantitative Assured Forwarding service. In
Sections III and IV, we describe the algorithms which
provide the Quantitative Assured Forwarding service. In
Section V, we present an implementation of these al-
gorithms in FreeBSD PC-routers. We evaluate the al-
gorithms using the implementation in Section VI, and
present brief conclusions in Section VII.

II. THE QUANTITATIVE ASSURED FORWARDING

SERVICE

In this section, we describe the Quantitative Assured
Forwarding Service, and outline a solution for an algo-
rithm that realizes this service.

A. Formal Description

We assume that all traffic that arrives to the transmis-
sion queue of the output link of a router is marked to be-
long to one of N classes. We use a convention whereby
a class with a lower index receives a better service. We
consider a discrete event system, where events are traffic
arrivals. We use t(n) to denote the time of the n-th event
in the current busy period2, and ∆t(n) to denote the time
elapsed between the n-th and (n + 1)-th events. We use
ai(n) and li(n), respectively, to denote the class-i arrivals
and the amount of class-i traffic dropped (‘lost’) at the n-
th event. We use ri(n) to denote the service rate allocated

2The beginning of the current busy period is defined as the last time
when the transmission queue at the output link was empty.

time

Bi(n)

Ai

Rin

Rout
Dropped

t(n1) t(n2) t(n)

C
la

ss
-

i T
ra

ffi
c

Di(n)

i

i

Fig. 1. Delay and backlog at the transmission queue of an output link.
Ai is the arrival curve, Rin

i is the input curve and Rout
i is the output

curve.

to class-i at the time of the n-th event. The service rate
of a class i is a fraction of the output link capacity, which
can vary over time, and is set to zero if there is no backlog
of class-i traffic in the transmission queue. For the time
being, we assume bursty arrivals with a fluid-flow service,
that is, the output link is viewed as simultaneously serving
traffic from several classes. Such a fluid-flow interpreta-
tion is idealistic, since traffic is actually sent in discrete
sized packets. In Section V, we discuss how the fluid-
flow interpretation is realized in a packet network.

All service guarantees are enforced over the duration
of a busy period. An advantage of enforcing service guar-
antees over short time intervals is that the output link can
react quickly to changes of the traffic load. Further, en-
forcing guarantees only within a busy period requires lit-
tle state information, and, therefore, keeps the implemen-
tation overhead limited. As a disadvantage, at times of
low load, when busy periods are short, enforcing guaran-
tees only with information on the current busy period can
be unreliable. However, at underloaded links transmis-
sion queues are mostly idle and all service classes receive
a high-grade service.

The following presentation specifies the service differ-
entiation independently for each busy period. Let t(0)
define the beginning of the busy period. The arrival curve
of class i at the n-th event, Ai(n), is the total traffic that
has arrived to the transmission queue of an output link at
a router since the beginning of the current busy period,
that is,

Ai(n) =
n∑

k=0

ai(k) .

The input curve, Rin
i (n), is the traffic that has been en-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 865 IEEE INFOCOM 2002

tered into the transmission queue at the n-th event,

Rin
i (n) = Ai(n) −

n∑
k=0

li(k) .

The output curve is the traffic that has been transmitted
since the beginning of the current busy period, that is,

Rout
i (n) =

n−1∑
k=0

ri(k)∆t(k) . (3)

In Figure 1, we illustrate the concepts of arrival curve, in-
put curve, and output curve for class-i traffic. At any time
t(n), the service rate is the slope of the output curve. In
the figure, the service rate is adjusted at times t(n1), t(n2)
and t(n).

As illustrated in Figure 1, for event n, the vertical and
horizontal distance between the input and output curves,
respectively, denote the class-i backlog Bi(n) and the
class-i delay Di(n). For the n-th event, we have

Bi(n) = Rin
i (n) − Rout

i (n) ,

and

Di(n) = t(n)
−t

(
max{k < n | Rout

i (n) ≥ Rin
i (k)}) .

(4)
Eqn. (4) characterizes the delay of the class-i traffic that
departs at the n-th event.

We define the ‘loss rate’ to be the ratio of dropped traf-
fic to the arrivals. That is

pi(n) =
Ai(n) − Rin

i (n)
Ai(n)

. (5)

Since, from the definition of Ai(n) and Rin
i (n), the pi(n)

are computed only over the current busy period, they cor-
respond to long-term loss rates only if busy periods are
long. We justify our choice with the observation that traf-
fic is dropped only at times of congestion, i.e., when the
link is overloaded, and, hence, when the busy period is
long.

With these metrics, we can express the service guar-
antees of a Quantitative Assured Forwarding service. An
absolute delay guarantee on class i is specified as

∀n : Di(n) ≤ di , (6)

where di is the delay bound of class i. Similarly, an abso-
lute loss rate bound for class i is defined by

∀n : pi(n) ≤ Li . (7)

An absolute rate guarantee for class i is specified as

∀n : Bi(n) > 0 , ri(n) ≥ µi . (8)

C
la

ss
- i

 T
ra

ffi
c

time

Di(n)

t(n)

di

di-Di(n)

Bi(n)

Rin
i

Rout
i

ri,min(n)slope =

Fig. 2. Determining service rates for delay guarantees.

The proportional guarantees on delay and loss, respec-
tively, are defined, for all n such that Bi(n) > 0 and
Bi+1(n) > 0, as

Di+1(n)
Di(n)

= ki , (9)

and
pi+1(n)
pi(n)

= k′
i , (10)

where ki and k′
i are constants that quantify the propor-

tional differentiation desired.

B. Rate Allocation and Drop Decisions

We now sketch a solution for providing the service
guarantees specified in Eqs. (6)-(10) at the output link of
a router with capacity C and buffer size B. We assume
per-class buffering of incoming traffic, thus, each class is
transmitted in a First-Come-First-Served manner. In the
proposed solution, the service rates ri(n) and the amount
of dropped traffic li(n) are adjusted at each event n so
that the constraints defined by Eqs. (6)-(10) are met. If
not all constraints in Eqs. (6)-(10) can be met at the n-th
event, then some service guarantees need to be temporar-
ily relaxed. We assume that the order in which guarantees
are relaxed is given.

The absolute delay guarantee on class i, di, imposes a
minimum required service rate in the sense that all back-
logged class-i traffic at the n-th event will be transmitted
within its delay bound if

ri(n) ≥ Bi(n)
di − Di(n)

.

This condition can be verified by inspection of Figure 2.
If the condition holds for any n, the delay bound di is
never violated. If class i has, in addition, an absolute rate

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 866 IEEE INFOCOM 2002

guarantee µi, the expression for the minimum rate needed
by class i at the n-th event, becomes 3

ri,min(n) = max
{

Bi(n)
di − Di(n)

, µi · χBi(n)>0

}
. (12)

The service rate that can be allocated to class i is upper
bounded by the output link capacity minus the minimum
service rates needed by the other classes, that is,

ri,max(n) = C −
∑
j �=i

rj,min(n) .

Therefore, the service rate can take any value ri(n) with

ri,min(n) ≤ ri(n) ≤ ri,max(n) ,

subject to the constraint
∑

i ri(n) ≤ C. Given this range
of feasible values, ri(n) can be selected to satisfy propor-
tional delay differentiation.

We view the computation of ri(n) in terms of the re-
cursion

ri(n) = ri(n − 1) + ∆ri(n) , (15)

where ∆ri(n) is selected such that the constraints of pro-
portional delay differentiation are satisfied at event n.
From Eqs. (3) and (4), the delay Di(n) at the n-th event
is a function of ri(k) with k < n. By monitoring Di(n)
we can thus determine the deviation from the desired pro-
portional differentiation resulting from past service rate
allocations, and infer the adjustment ∆ri(n) = f(Di(n))
needed to attenuate this deviation.

If no feasible service rate allocation for meeting all de-
lay guarantees exist at the n-th event, or if there is a buffer
overflow at the n-th event, traffic must be dropped, ei-
ther from a new arrival or from the current backlog. The
loss guarantees determine which class(es) suffer(s) traffic
drops at the n-th event.

To enforce loss guarantees, we rewrite the loss rate, de-
fined by Eqn. (5), as a difference equation

pi(n) = pi(n − 1)
Ai(n − 1)

Ai(n)
+

li(n)
Ai(n)

. (16)

From Eqn. (16), we can determine how the loss rate of
class i evolves if traffic is dropped from class i at the n-th
event. Thus, we can determine the set of classes that can
suffer drops without violating absolute loss guarantees. In
this set, we choose the class whose loss rate differs by the
largest amount from the objective of Eqn. (9).

Having expressed the service rate and the loss rate in
terms of a recursion, we can characterize the service rate
allocation and dropping algorithm as feedback control

3For any expression ‘expr’, we define χexpr = 1 if ‘expr’ is true
and χexpr = 0 otherwise.

problems. In the next sections, we will describe two feed-
back problems: one for delay and absolute rate differenti-
ation (‘delay feedback loop’), and one for loss differenti-
ation (‘loss feedback loop’). We describe the interaction
of the two feedback problems in Section V.

III. THE DELAY FEEDBACK LOOP

In this section, we present feedback loops which en-
force the desired delay and rate differentiation given by
Eqs. (6), (8), and (9). We have one feedback loop for each
class with proportional delay guarantees. In the feedback
loop for class i, we characterize changes to service rate
∆ri(n) by approximating the non-linear effects of the ser-
vice rate adjustment on the delays by a linear system, and
derive stability conditions for the linearized control loop.

A. Objective

Let us assume for now that all classes are offered pro-
portional delay guarantees. Later, this assumption will be
relaxed. The set of constraints given by Eqn. (9) leads to
the following system of equations:

D2(n) = k1 · D1(n) ,
...

DN (n) =
(∏N−1

j=1 kj

)
D1(n) .

(17)

Let mi =
∏i−1

j=1 kj for i > 1, and m1 = 1. We define a
‘weighted delay’ of class i at the n-th event, denoted by
D∗

i (n), as

D∗
i (n) =


 N∏

k=1, k �=i

mk


 Di(n) .

By multiplying each line of Eqn. (17) with
∏

j �=i mj , we
see that the desired proportional delay differentiation is
achieved for all classes if

∀i, j ,∀n : D∗
i (n) = D∗

j (n) . (19)

Eqn. (19) is equivalent to

∀i ,∀n : D∗
i (n) = D

∗
(n) ,

where

D
∗
(n) :=

1
N

∑
i

D∗
i (n) .

We set D
∗
(n) to be the set point common to all delay

feedback loops. The feedback loop for class i reduces the
difference |D∗ − D∗

i (n)| of class i from the common set
point D

∗
(n).

Remark: We view event numbers, n, as sampling times on
a virtual time axis in which events are equidistant. Hence,

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 867 IEEE INFOCOM 2002

convergence of the control loop applies to virtual time.
However, the relationship between delay and rate is inde-
pendent of the time axis chosen. By virtue of this inde-
pendence, and since real-time is monotonically increasing
with virtual time, we make the assumption that the skew
between virtual-time and real-time can be neglected, and
that the convergence condition we present later applies to
real-time as well.

B. Service Rate Adjustment

Next, we determine how to adjust the service rate to
achieve the desired delay differentiation. Let ei(n), re-
ferred to as “error”, denote the deviation of the weighted
delay of class i from the set point, i.e.,

ei(n) = D
∗
(n) − D∗

i (n) . (22)

Note that the sum of the errors is always zero, that is, for
all n, ∑

i

ei(n) = ND
∗
(n) −

∑
i

D∗
i (n) = 0 .

If proportional delay differentiation is achieved, we have
ei(n) = 0 for all classes. We use the error ei(n) to
compute the service rate adjustment ∆ri(n) needed for
class i to satisfy the proportional delay differentiation
constraints. From Eqn. (22), we note that if ei(n) < 0,
D∗

i (n) > D
∗
(n), class i delays are too high with respect

to the desired proportional delay differentiation. There-
fore, ri(n) must be increased. Conversely, ei(n) > 0
indicates that class i delays are too low, and ri(n) must
be decreased. Hence, the rate adjustment ∆ri(n) is a de-
creasing function of the error ei(n), written as ∆ri(n) =
f(ei(n)), where f(.) is a monotonically decreasing func-
tion. We choose

∆ri(n) = K(n) · ei(n) , (24)

where K(n) < 0, which, in feedback control terminol-
ogy, is the controller. An advantage of this controller is
that it requires a single multiplication, and hence is easily
implemented in a real system. Another advantage is that,
at any n, we have∑

i

∆ri(n) = K(n)
∑

i

ei(n) = 0 . (25)

Therefore, the controller produces a work-conserving sys-
tem, as long as the initial condition

∑
i ri(0) = C is sat-

isfied. Note that systems that are not work-conserving,
i.e., where the link may be idle even if there is a positive
backlog, are undesirable for networks that need to achieve
a high resource utilization.

We then express limits on K(n) so that the feedback
loops are stable. Let us define ri(n) as the average service

rate experienced by the class-i traffic departing at the n-
th event over the time this class-i traffic was backlogged.
Under the assumption that the backlog Bi(n) does not
change significantly during the time a particular traffic ar-
rival is backlogged, we can write Di(n) ≈ Bi(n)/ri(n).
Further, if we can assume that changes to the average ser-
vice rate, defined as ∆ri(n) = ri(n)−ri(n−1), are small
compared to the average service rate, i.e., ∆ri(n)

ri(n), then we can approximate the effects of changes to
the rate allocation on the changes to the delay by a linear
relationship. We refer to [20] for details of these argu-
ments.

With the above approximations, we can design K(n)
so that the feedback loop, composed of the controller and
the effects of the service rate adjustment on the delay, is
linear and time-invariant. We can then derive a stability
condition on the worst-case of the approximate, linearized
model.

The stability condition on the linearized approximate
model, presented in detail in [20], results in the following
condition

−2 · min
i

{
Bi(n)∏

j �=i mj · D2
i (n)

}
≤ K(n) ≤ 0 . (26)

We emphasize that the assumptions made do not hold in
general. Thus, while we cannot make any claim as to the
stability of the delay feedback loops resulting from the
analysis presented here, the numerical data in Section VI
suggests that the loops converge adequately well.

To satisfy the constraints ri(n) ≥ ri,min(n), we may
need to clip ∆ri(n) when the new rate is below the min-
imum. This, however, may violate the work-conserving
property resulting from Eqn. (25). Hence, we use the fol-
lowing to compute K(n) that would satisfy the saturation
constraint

ri(n − 1) + K(n)ei(n) ≥ ri,min(n) ,

and apply that K(n) to all control loops. The above im-
plies that we must have

K(n) ≥ max
i

(
ri,min(n) − ri(n − 1)

ei(n)

)
. (28)

If maxi

(
ri,min(n)−ri(n−1)

ei(n)

)
> 0, we see that we cannot

have K(n) < 0. In other words, we cannot satisfy ab-
solute delay and rate guarantees and proportional delay
differentiation at the same time. In such a case, we relax
either Eqn. (26) or (28) according to the given precedence
order on the service guarantees.
Remark: If proportional delay differentiation is requested
for some, but not for all classes, constraints as in Eqn. (17)
can be defined for each group of classes with contiguous
indices. Then, the feedback loops are constructed inde-
pendently for each group.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 868 IEEE INFOCOM 2002

IV. THE LOSS FEEDBACK LOOP

We now describe the feedback loop which controls the
traffic dropped from a class i to satisfy proportional loss
differentiation within the limits imposed by the absolute
loss guarantees. As before, we assume that all classes
have proportional loss guarantees. The assumption is re-
laxed similarly as described in the remark at the end of
Section III.

Traffic must be dropped at the n-th event either if there
is a buffer overflow or if absolute delay guarantees cannot
be satisfied given the current backlog. To prevent buffer
overflows at the n-th event, the following condition must
hold:

B ≥
N∑

k=1

(
Bk(n − 1) + ak(n) − lk(n)

)
−∆t(n − 1)C .

(29)

To provide absolute delay and rate guarantees, the follow-
ing condition must be satisfied

C ≥
N∑

k=1

max
{

Bk(n − 1) − rk(n − 1)∆t(n − 1)
dk − Dk(n)

+
ak(n) − lk(n)
dk − Dk(n)

, µk · χBk(n)>0

}
. (30)

To choose the amount of traffic to drop from each class
so that Eqs. (29) and (30) hold, we define the weighted
loss rate to be

p∗i (n) =


 N∏

j=1, j �=i

m′
j


 pi(n) ,

where m′
i =

∏i−1
j=1 k′

j for i > 1 and m′
1 = 1. With this

definition, Eqn. (10) is equivalent to

∀(i, j) ,∀n : p∗i (n) = p∗j (n) .

We choose the following set point for the loss feedback
loop

p̄∗(n) =
1
N

∑
i

p∗i (n) ,

and we use the set point to describe an error

e′i(n) = p̄∗(n) − p∗i (n) .

To reach the set point, the error is decreased by increasing
p∗i (n) for classes that have e′i(n) > 0 as follows. Let
〈i1, i2, . . . , iR〉 be an ordering of the class indices from all
backlogged classes, that is, Bik

(n) > 0 for 1 ≤ k ≤ R,
such that e′is

(n) ≥ e′ir
(n) if is < ir. Traffic is dropped in

the order of 〈i1, i2, . . . , iR〉.

Absolute loss guarantees impose an upper bound,
l∗i (n), on the traffic that can be dropped at event n from
class i. The value of l∗i (n) is determined from Eqs. (7)
and (16) as

l∗i (n) = Ai(n)Li − pi(n − 1)Ai(n − 1) .

If the conditions in Eqs. (29) and (30) are violated, traf-
fic is dropped from class i1 until the conditions are satis-
fied, or until the maximum amount of traffic l∗i1(n) has
been dropped. Then traffic is dropped from class i2, and
so forth. Suppose that the conditions in Eqs. (29) and (30)
are satisfied for the first time if l∗j (n) traffic is dropped
from classes j = i1, i2, . . . , ik̂−1, and x̂(n) ≤ l∗

k̂
(n) traf-

fic is dropped from class ik̂, then we obtain:

li(n) =




l∗i (n) if i = i1, i2, . . . , ik̂−1 ,
x̂(n) if i = ik̂ ,
0 otherwise .

(36)

If lk(n) = l∗k(n) for all k = i1, i2, . . . , iR, we allow ab-
solute delay and rate conditions to be violated. In other
words, condition (30) is relaxed.

The loss feedback loop never increases the maximum
error e′i(n), if e′i(n) > 0 and more than one class is back-
logged. Thus, the errors remain bounded and the algo-
rithm presented will not engage in divergent oscillations
around the target value p∗(n). Additionally, the loss feed-
back loop and the delay feedback loops are independent
of each other, since we always drop traffic from the tail of
each per-class buffer, losses do not have any effect on the
delays of traffic admitted into the transmission queue.

V. IMPLEMENTATION

We implemented the algorithms presented in Sec-
tions III and IV on PC-routers running the FreeBSD
v4.3 [21] operating system, using the ALTQ v3.0 pack-
age [22]. ALTQ allows programmers to modify the op-
erations of the transmission queue in the IP layer of
the FreeBSD kernel. Our implementation is available
to the public at http://qosbox.cs.virginia.
edu/software.html. For a detailed discussion of
the implementation issues, we refer the reader to [23]. In
this paper, we will only discuss the operations performed
in our implementation when a packet is entered into the
transmission queue of an IP router (packet enqueueing)
and when a packet is selected for transmission (packet
dequeueing).

We use the DSCP field in the header of a packet to iden-
tify the class index of an IP packet. The DSCP field is set
by the edge router; in our testbed implementation, this is
the first router traversed by a packet.

In our implementation, we chose the following prece-
dence order for relaxing constraints. Absolute loss guar-
antees have higher precedence than absolute delay and

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 869 IEEE INFOCOM 2002

rate guarantees, which have in turn higher precedence
than proportional guarantees.

A. Packet Enqueueing

The enqueue procedure are the operations executed
in the IP layer when a packet is entered into the transmis-
sion queue of an output link. Since the FreeBSD kernel
is single-threaded, the execution of the enqueue proce-
dure is strictly sequential.

The enqueue procedure performs the dropping deci-
sions and the service rate allocation. We avoid floating
point operations in the kernel of the operating system, by
expressing delays as machine clock cycles, service rates
as bytes per clock cycle (multiplied by a scaling factor of
232) , and loss rates as fractions of 232. Then, 64-bit (un-
signed) integers provide a sufficient degree of accuracy.

In our modified enqueue procedure, the transmission
queue of an output link has one FIFO queue for each
class, implemented as a linked list. We limit the total
number of packets that can be queued to B = 200. When-
ever a packet is entered into the FIFO queue of its class,
the arrival time of the packet is recorded, and the waiting
times of the packets at the head of each FIFO queue are
updated.

The enqueue procedure uses the loss feedback loop
described in Section IV to determine if and how much
traffic needs to be dropped from each class. In our im-
plementation, the algorithm of Section IV is run twice.
The first time, buffer overflows are resolved by ignoring
condition (30); The second time, violations of absolute
delay and rate guarantees are resolved by ignoring condi-
tion (29).

Next, the enqueue procedure computes new values
for ri,min(n) from Eqn. (12), and determines new service
rates, using Eqs. (15) and (24), with the constraints on
K(n) given in Eqs. (26) and (28). If no feasible value for
K(n) exists, Eqn. (26) is ignored, thereby giving abso-
lute delay guarantees precedence over proportional delay
guarantees.

B. Packet Dequeueing

The dequeue procedure selects one packet from the
backlog for transmission. In our implementation, de-
queue selects one of the traffic classes, and picks the
packet at the head of the FIFO queue for this class.

The dequeue procedure uses a rate-based schedul-
ing algorithm to adapt the transmission rates ri(n) from
a fluid-flow view to a packet-level environment. In our
implementation, we use a modified Deficit Round Robin
(DRR, [24]) scheduling algorithm. Let Xmiti(n) denote
the number of bytes of class-i traffic that have been trans-
mitted in the current busy period, the scheduler selects a

Bottleneck Bottleneck

Source
1

Source
2

Router
1

Router
2 Sink 1Router

3

Sink 3Sink 2

Source
3

Fig. 3. Network Topology. All links have a capacity of 100 Mbps.
We measure the service provided by Routers 1 and 2 at the indicated
bottleneck links.

Class Service Guarantees
di Li µi ki k′

i

1 8 ms 1 % – – –
2 – – 35 Mbps 2 2
3 – – – 2 2
4 – – – N/A N/A

TABLE I
SERVICE GUARANTEES. THE GUARANTEES ARE IDENTICAL AT

EACH ROUTER.

packet from class i for transmission if

i = arg max
k

{
Rout

k (n) − Xmitk(n)
}

.

In other words, the dequeue procedure selects the class
which is the most behind its theoretical output curve.

VI. EVALUATION

We present experimental measurements of our imple-
mentation of the Quantitative Assured Forwarding service
on a testbed of PC routers. The PCs are Dell PowerEdge
1550 with 1 GHz Intel Pentium-III processors and 256
MB of RAM. The system software is FreeBSD 4.3 and
ALTQ 3.0. Each system is equipped with five 100 Mbps-
Ethernet interfaces.

In our experiments we determine if and how well our
algorithm provides the desired service differentiation on
a per-node basis. In addition, we want to observe the sta-
bility of the feedback loops.

We use a local network topology using point-to-point
Ethernet links as shown in Figure 3. All links are full-
duplex and have a capacity of C = 100 Mbps. Three PCs
are set up as routers, indicated in Figure 3 as Router 1, 2
and 3. Other PCs are acting as sources and sinks of traf-
fic. The topology has two bottlenecks: the link between
Routers 1 and 2, and the link between Routers 2 and 3.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 870 IEEE INFOCOM 2002

1

2

3

4
R

at
io

 o
f

D
el

ay
s

Time (s)
0 10 20 30 40 50 60

Class 4/Class 3
Class 3/Class 2

(a) Ratios of Delays.

0 10 20 30 40 50 60

D
el

ay
 (

m
s)

Time (s)

Delay Bound Class 1

4
8

12

(b) Class-1 Delays.

R
at

io
 o

f
L

os
s

R
at

es

Class 4/Class 3
Class 3/Class 2

1

2

3

4

Time (s)
0 10 20 30 40 50 60

(c) Ratios of Loss Rates.

0.1

1

Time (s)
0 10 20 30 40 50 60L

os
s

R
at

e
(%

)

Class 1

(d) Class-1 Loss Rate.

Class 2 Class 1

TotalClass−2 Guarantee

Class 3
Class 4

T
hr

ou
gh

pu
t (

M
b/

s)

0

20

40

60

80

100

0 10 20 30 40 50 60
Time (s)

(e) Throughput.

Fig. 4. Router 1. The graphs show the service obtained by each class
at the output link of Router 1.

As mentioned earlier, the buffer size at the output link of
each router is set to B = 200 packets.

We consider four traffic classes with service guarantees
as summarized in Table I. Recall that all service guaran-
tees are per-node guarantees. They are enforced indepen-
dently at each router.

Sources 1, 2 and 3 send traffic to Sinks 1, 2 and 3,
respectively. Each source transmits traffic from all four
classes. The traffic mix, the number of flows per class,
and the characterization of the flows, is identical for each
source, and as shown in Table II. Each source transmits 6

1

2

3

4

R
at

io
 o

f
D

el
ay

s

Time (s)
0 10 20 30 40 50 60

Class 4/Class 3
Class 3/Class 2

(a) Ratios of Delays.

0 10 20 30 40 50 60

4
8

12

D
el

ay
 (

m
s)

Time (s)

Delay Bound Class 1

(b) Class-1 Delays.

L
os

s
R

at
es

R
at

io
 o

f

Class 4/Class 3
Class 3/Class 2

1

2

3

4

Time (s)
0 10 20 30 40 50 60

(c) Ratios of Loss Rates.

0.1

1

Time (s)
0 10 20 30 40 50 60L

os
s

R
at

e
(%

)

Class 1

(d) Class-1 Loss Rate.

Total

Class 2 Class 4
Class 3

Class−2 Guarantee

Class 1

T
hr

ou
gh

pu
t (

M
b/

s)

0

20

40

60

80

100

0 10 20 30 40 50 60
Time (s)

(e) Throughput.

Fig. 5. Router 2. The graphs show the service obtained by each class
at the output link of Router 2.

flows from each of the classes. Class 1 traffic consists of
on-off UDP flows, and the other classes consist of greedy
TCP flows. All sources start transmitting packets with a
fixed size of 1024 Bytes at time t = 0 until the end of the
experiments at t = 60 seconds. Traffic is generated using
the netperf v2.1pl3 tool [25]. The network load is initially
zero and quickly ramps up to generate an overload at the
bottleneck links of Figure 3. Congestion control at the
TCP sources maintains the total load at a level of about
99% of the link capacity [20].

We measure the delay, the loss rate, and the through-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 871 IEEE INFOCOM 2002

Class No. of Type
flows Protocol Traffic

1 6 UDP On-off
2 6 TCP Greedy
3 6 TCP Greedy
4 6 TCP Greedy

TABLE II
TRAFFIC MIX. THE TRAFFIC MIX IS IDENTICAL FOR EACH

SOURCE-SINK PAIR. THE ON-OFF UDP SOURCES SEND BURSTS OF

20 PACKETS DURING AN ON-PERIOD, AND HAVE A 150 MS

OFF-PERIOD. ALL TCP SOURCES ARE GREEDY, I.E., THEY ALWAYS

HAVE DATA TO TRANSMIT, AND RUN THE NewReno CONGESTION

CONTROL ALGORITHM.

put of each traffic class at the output links of Routers 1
and 2 (the links which go to the bottleneck links). Delays
are measured as the waiting time of a packet in the trans-
mission queue, i.e., as the difference of the times read
of the machine clock when the packet enters and departs
the transmission queue. Throughput and loss rates are ob-
tained from reports generated every 0.5 sec by the OS ker-
nel. In the plots, which summarize our measurements, we
depict delay measurements of individual packets. Mea-
surement of delay ratios, loss rates, ratios of loss rates and
throughput are shown as averages over a sliding window
of size 0.5 sec.

In Figures 4 and 5, we present our measurements of
the service received at the bottleneck links of Routers 1
and 2, respectively. Figs. 4(a) and 5(a) depict the ratios of
the delays of Classes 4 and 3, and the delays of Classes
3 and 2. The plots show that the target value of k = 2
(from Table I) is achieved. The plots indicate that the de-
lay feedback loops appear to be stable, despite the simpli-
fied model we used for determining K(n) in Section III.

In Figs. 4(b) and 5(b) we show the delay of Class-1
packets at Router 1 and Router 2. The delay bound of
d1 = 8 ms is satisfied, with few (< 1.5%) exceptions
at times when it is not possible to satisfy simultaneously
absolute loss and delay guarantees; as discussed in Sec-
tion V, such a conflict is resolved by giving precedence
to the loss guarantee. Note that even if delay bounds are
violated, no class-1 packet experiences a delay which ex-
ceeds 10 ms at either Router 1 or 2. Delay values, aver-
aged over sliding windows of size 0.5 s, of other classes
(not shown) are in the range 12-50 ms.

In Figs. 4(c) and (d), and Figs. 5(c) and (d), we show
the measurements of the loss rates. Figs. 4(c) and 5(c)
depict the ratios of loss rates for Classes 4 and 3, and for
Classes 3 and 2. The desired ratios of k′

2 = k′
3 = 2

are maintained most of the time. Since the buffers at
the routers are empty at the beginning of the experiment,

there are no losses initially. As Figs. 4(d) and 5(d) indi-
cate, the bound on the loss rates for Class 1 of L1 = 1 %
is always kept (Recall that we give highest precedence
to absolute loss guarantees.) We note that the maximum
loss rate of classes 2–4 (not shown) is below 2% over the
entire experiment.

Finally, in Figs. 4(e) and 5(e) we include the through-
put measurements of all classes. We observe that the
rate guarantee for Class 2 of µ2 = 35 Mbps is main-
tained. The total throughput of all classes, labeled in
Figs. 4(e) and 5(e) as ‘Total’, is close to the link capacity
of 100 Mbps at each router.

In summary, the measurement experiments of an over-
loaded network with multiple bottlenecks show that our
feedback algorithms achieve the desired service differen-
tiation, and utilize the entire available bandwidth, while
maintaining stability throughout.

We present a brief evaluation of the overhead of the
feedback-based algorithms. We have measured the num-
ber of CPU cycles consumed by the enqueue and de-
queue procedures, by reading the timestamp counter
register of the Pentium processor. We measured the av-
erage and standard deviation of the number of cycles over
500,000 packet transmissions on a heavily loaded link,
using the topology and traffic pattern described in Fig-
ure 3 and Table II. We compare measurements for a set
of four classes with constraints given in Table I, to a sys-
tem of four classes without any guarantees. The measure-
ments of the number of cycles, collected for Router 1, are
shown in the following table.

Guaran- Enqueue Dequeue
tees Avg. Std. Dev. Avg. Std. Dev.
with 15347 2603 4053 912
without 2415 837 3810 858

The table shows that the overhead for the enqueue
operation, which implements the feedback algorithms, is
significant. At the same time, the numbers indicate that
a 1 GHz PC can enqueue and dequeue more than 50,000
packets per second. Considering that the average size of
an IP packet on the Internet is P = 451.11 bytes [26],
this results in a maximum throughput of 186 Mbps.

VII. CONCLUSIONS

We presented the Quantitative Assured Forwarding
service, which provides proportional differentiation on
loss and delay and absolute service guarantees on loss,
throughput and delay for classes of traffic. We proposed
a feedback based algorithm for realizing the Quantita-
tive Assured Forwarding service at a router. The algo-
rithm does not require prior knowledge of traffic arrivals,
and does not rely on signaling. At times when not all

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 872 IEEE INFOCOM 2002

absolute service guarantees can be satisfied simultane-
ously, the algorithm relaxes some of the guarantees by
using a priority order. The algorithm has been imple-
mented in FreeBSD PC-routers and the implementation is
available at http://qosbox.cs.virginia.edu/
software.html. Through experiments in a network
of PC-routers, we showed that the proposed algorithm
could fully utilize the available capacity of 100 Mbps.
The measurements showed that the service guarantees
of the Quantitative Assured Forwarding service are en-
forced. In ongoing work, we are conducting experiments
for an empirical evaluation of the robustness of the pro-
posed feedback algorithms, where we vary the network
topology, the service guarantees, and the network load.

REFERENCES

[1] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured
forwarding PHB group,” IETF RFC 2597, June 1999.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An architecture for differentiated services,” IETF RFC 2475, De-
cember 1998.

[3] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the
differentiated services field (DS field) in the IPv4 and IPv6 head-
ers,” IETF RFC 2474, December 1998.

[4] C. Dovrolis, Proportional differentiated services for the Internet,
Ph.D. thesis, University of Wisconsin-Madison, Dec. 2000.

[5] C. Dovrolis and P. Ramanathan, “Proportional differentiated ser-
vices, part II: Loss rate differentiation and packet dropping,” in
Proceedings of IWQoS 2000, Pittsburgh, PA, June 2000, pp. 52–
61.

[6] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional dif-
ferentiated services: Delay differentiation and packet scheduling,”
in Proceedings of ACM SIGCOMM ’99, Boston, MA, Aug. 1999,
pp. 109–120.

[7] Y. Moret and S. Fdida, “A proportional queue control mechanism
to provide differentiated services,” in Proceedings of the Interna-
tional Symposium on Computer and Information Systems (ISCIS),
Belek, Turkey, Oct. 1998, pp. 17–24.

[8] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bargha-
van, “Delay differentiation and adaptation in core stateless net-
works,” in Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Is-
rael, Apr. 2000, pp. 421–430.

[9] S. Bodamer, “A scheduling algorithm for relative delay differen-
tiation,” in Proceedings of the IEEE Conference on High Perfor-
mance Switching and Routing (ATM 2000), Heidelberg, Germany,
June 2000, pp. 357–364.

[10] L. Essafi, G. Bolch, and H. de Meer, “Dynamic priority scheduling
for proportional delay differentiated services,” Tech. Rep. TR-I4-
01-03, University of Erlangen, Mar. 2001.

[11] H. Saito, C. Lukovszki, and I. Moldován, “Local optimal propor-
tional differentiated services scheduler for relative differentiated
services,” in Proceedings of Ninth IEEE International Conference
on Computer Communications and Netowrks (ICCCN 2000), Las
Vegas, NV, Oct. 2000, pp. 554–550.

[12] U. Bodin, A. Jonsson, and O. Schelen, “On creating proportional
loss differentiation: predictability and performance,” in Proceed-
ings of IWQoS 2001, Karlsruhe, Germany, June 2001, pp. 372–
386.

[13] J. Liebeherr and N. Christin, “JoBS: Joint buffer management and
scheduling for differentiated services,” in Proceedings of IWQoS
2001, Karlsruhe, Germany, June 2001, pp. 404–418.

[14] A. Striegel and G. Manimaran, “Packet scheduling with delay and
loss differentiation,” Computer Communications, vol. 25, no. 1,
pp. 21–31, Jan. 2002.

[15] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara, “ABE: pro-
viding low delay service within best effort,” IEEE Networks,
vol. 15, no. 3, pp. 60–69, May 2001. See also http://www.
abeservice.org.

[16] R. R.-F. Liao and A. T. Campbell, “Dynamic core provisioning
for quantitative differentiated service,” in Proceedings of IWQoS
2001, Karlsruhe, Germany, June 2001, pp. 9–26.

[17] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “On design-
ing improved controllers for AQM routers supporting TCP flows,”
in Proceedings of IEEE INFOCOM 2001, Anchorage, AK, Apr.
2001, vol. 3, pp. 1726–1734.

[18] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feedback
control real-time scheduling: Framework, modeling and algo-
rithms,” Journal of Real Time Systems, Mar. 2002, Special Issue
on Control-Theoretical Approaches to Real-Time Computing. In
press.

[19] Y. Lu, A. Saxena, and T. F. Abdelzaher, “Differentiated caching
services; A control-theoretical approach,” in Proceedings of the
21st International Conference on Distribute d Computing Systems,
Phoenix, AZ, Apr. 2001, pp. 615–624.

[20] N. Christin, J. Liebeherr, and T. F. Abdelzaher, “A quantitative
assured forwarding service,” Tech. Rep. CS-2001-21, University
of Virginia, Aug. 2001, ftp://ftp.cs.virginia.edu/
pub/techreports/CS-2001-21.pdf.

[21] “The FreeBSD project,” http://www.freebsd.org.
[22] K. Cho, “A framework for alternate queueing: towards traffic man-

agement by PC-UNIX based routers,” in Proceedings of USENIX
’98 Annual Technical Conference, New Orleans, LA, June 1998.

[23] N. Christin and J. Liebeherr, “The QoSbox: A PC-router for quan-
titative service differentiation in IP networks,” Tech. Rep. CS-
2001-28, University of Virginia, Nov. 2001, ftp://ftp.cs.
virginia.edu/pub/techreports/CS-2001-28.pdf.

[24] M. Shreedhar and G. Varghese, “Efficient fair queueing using
deficit round-robin,” IEEE/ACM Transactions on Networking, vol.
4, no. 3, pp. 375–385, June 1996.

[25] R. Jones, “netperf: a benchmark for measuring network
performance - revision 2.0,” Information Networks Division,
Hewlett-Packard Company, Feb. 1995. See also http://www.
netperf.org.

[26] “Packet sizes and sequencing,” May 2001, http:
//www.caida.org/outreach/resources/learn/
packetsizes.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 873 IEEE INFOCOM 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

