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Université de Nice Sophia-Antipolis

Nice, France

dmitsche@unice.fr
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Abstract

In this paper, the on-line list colouring of binomial random graphs G(n, p) is
studied. We show that the on-line choice number of G(n, p) is asymptotically almost
surely asymptotic to the chromatic number of G(n, p), provided that the average
degree d = p(n − 1) tends to infinity faster than (log log n)1/3(log n)2n2/3. For
sparser graphs, we are slightly less successful; we show that if d > (log n)2+ε for
some ε > 0, then the on-line choice number is larger than the chromatic number
by at most a multiplicative factor of C, where C ∈ [2, 4], depending on the range
of d. Also, for d = O(1), the on-line choice number is by at most a multiplicative
constant factor larger than the chromatic number.

1 Introduction

The combinatorial game we study in the paper is played by two players, named Mr.
Paint and Mrs. Correct, and is played on a finite, undirected graph in which each vertex
has assigned a non-negative number representing the number of erasers at the particular
vertex. We assume for simplicity that this number is initially the same for each vertex.
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In each round, first Mr. Paint selects a subset of the vertices and paints them all the
same colour; he cannot use this colour in subsequent rounds. Mrs. Correct then has to
erase the colour from some of the vertices in order to prevent adjacent vertices having
the same colour. Whenever the colour at a vertex is erased, the number of erasers at
that vertex decreases by 1, but naturally, Mrs. Correct cannot erase the colour if she
has no erasers left at that vertex. Vertices whose colours have not been erased can be
considered as being permanently coloured and can be removed from the game. The game
has two possible endings: (i) all vertices have been permanently coloured, in which case
Mrs. Correct wins, or (ii) at some point of the game, Mr. Paint presents two adjacent
vertices u and v and neither u nor v has any eraser left, in which case Mr. Paint wins. If,
regardless of which sets she gets presented, there is a strategy for Mrs. Correct to win the
game having initially k− 1 erasers at each vertex, we say that the graph is k-paintable.
The smallest k for which the graph is k-paintable is called the paintability number of G,
and denoted by χP (G). Note that this parameter is indeed well defined: for any graph on
n vertices, n− 1 erasers at each vertex always guarantee Mrs. Correct to win, as she can
always choose one vertex from a set presented to her and erase colours on the remaining
ones. This problem is also known as the on-line list colouring and the corresponding
graph parameter is also called the on-line choice number of G—see, for example, [16]
and below for the relation to the (off-line) list colouring.

Let us recall a classic model of random graphs that we study in this paper. The
binomial random graph G(n, p) is defined as the probability space (Ω,F ,Pr), where
Ω is the set of all graphs with vertex set {1, 2, . . . , n}, F is the family of all subsets of Ω,
and for every G ∈ Ω,

Pr(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

This space may be viewed as the set of outcomes of
(
n
2

)
independent coin flips, one for

each pair (u, v) of vertices, where the probability of success (that is, adding edge uv) is
p. Note that p = p(n) may (and usually does) tend to zero as n tends to infinity.

All asymptotics throughout are as n→∞ (we emphasize that the notations o(·) and
O(·) refer to functions of n, not necessarily positive, whose growth is bounded; whereas
Θ(·) and Ω(·) always refer to positive functions). We say that an event in a probability
space holds asymptotically almost surely (or a.a.s.) if the probability that it holds
tends to 1 as n goes to infinity. We often write G(n, p) when we mean a graph drawn from
the distribution G(n, p). Finally, for simplicity, we will write f(n) ∼ g(n) if f(n)/g(n)→ 1
as n→∞ (that is, when f(n) = (1 + o(1))g(n)).

Now, we will briefly mention the relation to other known graph parameters. A proper
colouring of a graph is a labelling of its vertices with colours such that no two adjacent
vertices have the same colour. A colouring using at most k colours is called a (proper)
k-colouring. The smallest number of colours needed to colour a graph G is called its
chromatic number, and it is denoted by χ(G). Let Lk be an arbitrary function that
assigns to each vertex of G a list of k colours. We say that G is Lk-list-colourable if there
exists a proper colouring of the vertices such that every vertex is coloured with a colour
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from its own list. A graph is k-choosable, if for every such function Lk, G is Lk-list-
colourable. The minimum k for which a graph is k-choosable is called the list chromatic
number, or the choice number, and denoted by χL(G). Since the choices for Lk contain
the special case where each vertex is assigned the list of colours {1, 2, . . . , k}, it is clear
that a k-choosable graph has also a k-colouring, and so χ(G) 6 χL(G). It is also known
that if a graph is k-paintable, then it is also k-choosable [13], that is, χL(G) 6 χP (G).
Indeed, if there exists a function Lk so that G is not Lk-list-colourable, then Mr. Paint
can easily win by fixing some permutation of all colours present in Lk and presenting at
the i-th step all vertices containing the i-th colour of the permutation on their lists (unless
the vertex was already removed before). Finally, it was shown in [16] that the paintability
of a graph G on n vertices is at most χ(G) log n + 1. (All logarithms in this paper are
natural logarithms.) Combining all inequalities we get the following:

χ(G) 6 χL(G) 6 χP (G) 6 χ(G) log n+ 1. (1)

It follows from the well-known results of Bollobás [4],  Luczak [11] (see also McDi-
armid [12]) that the chromatic number of G(n, p) a.a.s. satisfies

χ(G(n, p)) ∼ log(1/(1− p))n
2 log(np)

, (2)

for np→∞ and p bounded away from 1. The study of the choice number of G(n, p) was
initiated in [1], where Alon proved that a.a.s., the choice number of G(n, 1/2) is o(n). Kahn
then showed (see [2]) that a.a.s. the choice number of G(n, 1/2) equals (1 + o(1))χG(n,1/2).
In [7], Krivelevich showed that this holds for p � n−1/4, and Krivelevich, Sudakov, Vu,
and Wormald [8] improved this to p � n−1/3. On the other hand, Alon, Krivelevich,
Sudakov [3] and Vu [15] showed that for any value of p satisfying 2 < np 6 n/2, the choice
number is Θ(np/ log(np)). Later, Krivelevich and Vu [10] generalized this to hypergraphs;
they also improved the leading constants and showed that the choice number for C 6 np 6
0.9n (where C is a sufficiently large constant) is at most a multiplicative factor of 2+o(1)
away from the chromatic number, the best known factor for p 6 n−1/3. Our results below
(see Theorem 1, Theorem 2, and Theorem 3) show that even for the on-line case, for a
wide range of p, we can asymptotically match the best known constants of the off-line
case. Moreover, if np > logω n (for some function ω = ω(n) tending to infinity as n→∞),
then we get the same multiplicative factor of 2 + o(1).

Our main results are the following theorems. The first one deals with dense random
graphs.

Theorem 1. Let ε > 0 be any constant, and suppose that

(log log n)1/3(log n)2n−1/3 � p 6 1− ε.

Let G ∈ G(n, p). Then, a.a.s.,

χP (G) ∼ n

2 logb(np)
∼ χ(G),

where b = 1/(1− p).
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Note that if p = o(1), then

n

2 logb(np)
=
n log(1/(1− p))

2 log(np)
∼ np

2 log(np)
= Θ

(
np

log(np)

)
.

For constant p it is not true that log(1/(1− p)) ∼ p but the order is preserved, provided
p 6 1− ε for some ε > 0.

For sparser graphs we are less successful in determining the asymptotic behaviour of
χP (G(n, p)). Nevertheless, we can prove the following two theorems that determine the
order of the graph parameter we study.

Theorem 2. Let ε > 0 be any constant, and suppose that

(log n)2+ε

n
6 p = O((log log n)1/3(log n)2n−1/3).

Let G ∈ G(n, p). Then, a.a.s.,

χP (G) = Θ

(
np

log(np)

)
= Θ(χ(G)).

Moreover, if np = (log n)C+o(1), a.a.s.

χ(G) 6 χP (G) 6 (1 + o(1))


2χ(G) if C →∞
2C
C−2χ(G) if C ∈ [4,∞)

4χ(G) if C ∈ (2, 4).

Finally, for very sparse graphs we have the following.

Theorem 3. Let G ∈ G(n, p) with p = O(1/n). Then, a.a.s., χP (G) = Θ(1) = Θ(χ(G)).

2 Preliminaries

Most of the time, we will use the following version of Chernoff’s bound. Suppose that
X ∈ Bin(n, p) is a binomial random variable with expectation µ = np. If 0 < δ < 1, then

Pr[X < (1− δ)µ] 6 exp

(
−δ

2µ

2

)
,

and if δ > 0,

Pr[X > (1 + δ)µ] 6 exp

(
− δ2µ

2 + δ

)
.

However, at some point we will need the following, stronger, version: for any t > 0, we
have

Pr[X > µ+ t] 6 exp

(
−µϕ

(
t

µ

))
, (3)
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where
ϕ(x) = (1 + x) log(1 + x)− x.

These inequalities are well known and can be found, for example, in [6].

Let G = (V,E) be any graph. A set S ⊆ V is called independent if no edge e ∈ E
has both endpoints in S. Denote by α(G) the independence number of G, that is, the
size of a largest independent set of G. Let k0 be defined as follows:

k0 = k0(n, p) = max

{
k ∈ N :

(
n

k

)
(1− p)(

k
2) > n4

}
.

It is well known that k0 is well defined (for all n sufficiently large and provided that
p 6 1 − ε for some ε > 0) and that k0 ∼ 2 logb(np) with b = 1/(1 − p). The following
result was proved in [8].

Theorem 4 ([8]). Suppose n−2/5 log6/5 n � p 6 1 − ε for some constant ε > 0. Let
G ∈ G(n, p). Then

Pr(α(G) < k0) = exp

(
−Ω

(
n2

k40 p

))
.

We obtain the following immediate corollary that will be useful to deal with dense
random graphs. In fact, this lemma is the bottleneck for the argument that prevents us
to extend Theorem 1 for sparser graphs.

Corollary 5. Let ε > 0 be any constant and let ω = ω(n) = o(log n) be any function
tending to infinity as n→∞. Suppose that

ω(log log n)1/3(log n)2n−1/3 6 p 6 1− ε.

Let G ∈ G(n, p). Then, a.a.s. every set S ⊆ V (G) with |S| = s > s0 := n/(ω log2 n)
contains an independent set of size k0 = k0(s, p) ∼ k0(n, p).

Proof. Fix a set S ⊆ V (G) with |S| = s > n/(ω log2 n). First, let us note that

k0 = k0(s, p) ∼ 2 logb(sp) = 2 logb(np)

(
1−O

(
log log n

log n

))
∼ k0(n, p).

Moreover, since n/(ω log2 n) 6 s 6 n, we can easily verify that p satisfies s−2/5 log6/5 s�
p 6 1−ε (with room to spare in the lower bound). It follows immediately from Theorem 4
that the probability of not having an independent set of size k0 in S is at most

exp

(
−Ω

(
s2

k40p

))
= exp

(
−Ω

(
s2p3

log4 n

))
= exp

(
−Ω

(
snp3

ω log6 n

))
= exp

(
−Ω

(
sω2 log log n

))
.
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On the other hand, the number of sets of size s can be bounded as follows:(
n

s

)
6
(ne
s

)s
= exp (s log(ne/s)) 6 exp (3s log log n) ,

since log(ne/s) 6 log(eω log2 n) = (2+o(1)) log log n. Hence, the expected number of sets
of size s for which the desired property fails is exp (−Ω (sω2 log log n)). Summing over
all s > s0, the expected number of all such sets is exp (−Ω (s0ω

2 log log n)) = o(1). The
claim holds by Markov’s inequality.

Given a graph G and some fixed ordering of its vertices (for example, we may assume
that it is the natural ordering 1, 2, . . . , n), the greedy colouring algorithm proceeds by
scanning vertices of G in the given order and assigning the first available colour for the
current vertex. We will use the following lemma due to [9] (see also [5]). However, since we
use it in a slightly different setting, we point out a few small differences in the argument
by providing a sketch of the proof. In fact, this lemma is the bottleneck for the argument
that prevents us to extend Theorem 2 for sparser graphs.

Lemma 6. Let ω = ω(n) := log log n. Given any constant 0 < ε < 1, let G ∈ G(n, p)
with log2+ε n/n =: p0 6 p = o(1/ log n). Then, a.a.s. every subgraph of G of size u >
u0 := n/(ω log2 n) has an independent set of size at least ε(1− ε) log(np)/(3p).

Note that in the lemma we set ω = log log n; other functions tending to infinity slower
than log log n, constant, or even tending to 0 not too quickly clearly would work as well,
but would make the statement of the result weaker.

Sketch of the proof. We follow the notation as in [9] and apply the greedy approach given
there for each subgraph of size u. Let

α0 =
(1− ε) log(up)

p
and t =

up

log(up)
.

Note that

α0 >
(1− ε) log(np/(ω log2 n))

p
=

(1− ε)(log(np)− (2 + o(1)) log log n)

p

>
(1− ε)(ε+ o(1)) log(np)

(2 + ε)p
>

(1− ε)ε log(np)

3p
,

since np > log2+ε n. (Note that, if np > logC n, then we get the better estimate

α0 > (1− ε)(1− 2/C + o(1)) log(np)/p;

see Remark 7 below.) Moreover,

(1− p)α0 = exp (−pα0(1 +O(p))) = exp (−(1− ε) log(up)(1 +O(p)))

the electronic journal of combinatorics 22(2) (2015), #P2.41 6



∼ exp (−(1− ε) log(up)) = (up)−1+ε,

since p = o(1/ log n). For a fixed subgraph of size u, it follows from [9] that the probability
that the algorithm fails to produce an independent set of size at least α0 is at most

exp (−t(1− p)α0uε) = exp

(
−(up)(1 + o(1))(up)−1+εuε

log(up)

)
= exp

(
−u

1+εpε(ε+ o(1))

log(up)

)
.

By taking a union bound over all(
n

u

)
6
(ne
u

)u
= exp(u log(ne/u)) 6 exp(3u log log n)

sets of size u, the probability Pu that there exists a subgraph of size u for which the
algorithm fails is at most

exp

(
−u
(

(up)ε(ε+ o(1))

log(up)
− 3 log log n

))
6 exp

(
−u
(

(u0p0)
ε(ε+ o(1))

log(u0p0)
− 3 log log n

))
,

as the function f(x) = xε/ log x is increasing for large enough x. Since u0p0 = logε n/ω =
logε+o(1) n,

Pu 6 exp

(
−u
(

(log n)(ε+o(1))ε(ε+ o(1))

(ε+ o(1)) log log n
− 3 log log n

))
= exp

(
−u
(

(log n)ε
2+o(1) − 3 log log n

))
6 e−u.

Summing over all u0 6 u 6 n, we see that the probability that the algorithm fails is at
most

∑n
u=u0

e−u = O(e−u0) = o(1), and the lemma follows.

Remark 7. Lemma 6 is sufficient to determine the order of the on-line choice number for
sparse random graphs. We comment on improvements in order to obtain the smallest lead-
ing constant in the upper bound. From the proof of the lemma it is clear that the bound
on the size of the independent set can be improved for denser graphs. More precisely, for
np > logω n (for ω →∞ but still p = o(1/ log n)), we can obtain independent sets of size
at least (1− 2ε) log(np)/p for any arbitrarily small ε, and so we are asymptotically just a
factor 2 + o(1) off from the bound of Corollary 5.

On the other hand, for C being a constant larger than 2, and np = logC+o(1) n, we
can obtain independent sets of size at least (1− ε)(1− 2/C + o(1)) log(np)/p (again, for
any arbitrarily small ε), so by Lemma 6 we are off by a factor 2/(1 − 2/C) + o(1) =
2C/(C − 2) + o(1). We will now show that for log2+ε n/n 6 p = o(n−5/6), however,
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the independence number obtained is by at most a factor 4 + o(1) off from the one
obtained by Corollary 5. First, as shown above, given u > n/(ω log2 n), there are at most
exp(3u log log n) sets of size u, and the expected number of edges induced by each such
set is

(
u
2

)
p. By Chernoff’s bound, the probability that the number of edges induced by

one of them deviates by an additive
(
u
2

)
p/ log log n factor from its expected value is at

most exp (−(1/ log log n)2u2p/5). Hence, with probability at most

exp
(
u(3 log log n− (log n)ε(1/ log log n)2/(5ω))

)
6 exp (−u) ,

there exists a set of size u that does not satisfy the condition. Summing over all u such
that n/(ω log2 n) 6 u 6 n, we see that a.a.s. for all such sets we have (1+o(1))u2p/2 edges.
On the other hand, note that for this range of p, the expected number of pairs of triangles
sharing one vertex in G is Θ(n5p6) = o(1), and thus by Markov’s inequality, a.a.s. every
vertex is in at most one triangle. It follows that there exists a set D of edges which is a
matching such that after removing D the graph is triangle-free. Since in G the average
degree of every set of size u is up(1 + o(1)), the same also holds for G \D. Since G \D
is triangle-free, by Shearer’s lemma [14], an independent set of size (1 + o(1)) log(np)/p
can be found. By eliminating at most half of the set (one vertex for each edge in D), we
obtain an independent set in the original graph. It follows that for every set of size u,
there exists an independent set of size at least log(np)/((2 + o(1))p), being therefore at
most a factor 4 + o(1) off from the size obtained by Corollary 5.

We will also need the following observation.

Lemma 8. Let G ∈ G(n, p), for 10 log n/n 6 p 6 1, and set s0 = 10 log n/p. Then, a.a.s.
the following holds:

(i) every set S ⊆ V (G) with s0 6 |S| 6 n contains an independent set of size at least
1/(9p);

(ii) for every i ∈ N and every set S ⊆ V (G) with 2−is0 6 |S| < 2−i+1s0, S contains an
independent set of size at least i/(9p2i).

Before we move to the proof of the lemma, let us note that the lower bound on p is
not used in the proof of part (i), which becomes a trivial statement if p < 10 log n/n.
For part (ii), we could easily relax this bound to p > 1/nk (for any constant k > 0) by
changing some of the constants in the statement. Furthermore, part (i) is trivially true
for p > 1/9, and part (ii) is only non-trivial for all i satisfying 9p2i < i.

Proof. For part (i), let us fix a set S with |S| = s satisfying s0 6 s 6 n. Denote by
ES the set of edges induced by S. We have E|ES| =

(
s
2

)
p ∼ s2p/2. By Chernoff’s

bound, with probability at least 1 − exp(−E|ES|/4), we have |ES| 6 s2p. By taking
a union bound over all

(
n
s

)
6 exp(s log n) subsets of size s, with probability at most

exp(s(log n − sp/9)) there exists a set of size s not satisfying the condition. Since, by
assumption, s > s0 = 10 log n/p, this probability is at most exp(−s log n/9), and so
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summing over all s > s0, the claim holds a.a.s. for all s in the desired range. We may
therefore assume that (deterministically) every subset of size s > s0 satisfies |ES| 6 s2p.
Then, for any set S in the desired range, at least s/2 vertices of S have a degree of at
most 4sp in the graph induced by S. By applying a greedy algorithm to these vertices,
we can therefore always find an independent set of size at least (s/2)/(4sp+ 1) > 1/(9p).

Part (ii) is proved in a similar way. Fix i = i(n) ∈ N such that

9p2i < i (4)

(since otherwise the statement is trivial), and a set S ⊆ V (G) of size s satisfying the
following:

2−is0 6 s < 2−i+1s0. (5)

Since s is a natural number, we must have 2−i+1s0 > 1. Therefore, 2i 6 2s0 6 2n
(where we used that p > 10 log n/n), and thus

i 6 log(2n)/ log 2 6 2 log n, (6)

for n large enough. Combining (5), (4), the fact that ps0 = 10 log n, and (6), we get

s > 2−is0 > (9p/i)s0 = (90/i) log n > 45.

Note that for s > 45,

E|ES| =
(
s

2

)
p >

s2p

2.1
.

It follows from the stronger version of Chernoff’s bound (3) that

Pr

(
|ES| >

(
1 +

2i

i

)
E|ES|

)
= exp

(
−ϕ(2i/i)E|ES|

)
6 exp

(
−2i

4
· s

2p

2.1

)
6 exp

(
−2is2p

9

)
.

(Note that ϕ(2i/i) = (1 + 2i/i) log(1 + 2i/i)− 2i/i ∼ (2i/i) log(2i/i) ∼ 2i log 2 as i→∞.
Moreover, it is straightforward to see that for every i ∈ N, ϕ(2i/i) > 2i/4.)

As before, by a union bound we get that with probability at most exp(s(log n−2isp/9))
there exists a set of size s not satisfying the condition. Since, by assumption, s > 2−is0 =
2−i10 log n/p, this probability is at most exp(−s log n/9), regardless of which precise in-
terval [2−is0, 2

−i+1s0) contains s. Summing the exp(−s log n/9) bound we obtained over
all values 45 6 s < s0 gives o(1). Therefore, we may assume that (deterministically), for
any i ∈ N, every subset S of size s in the range (5) satisfies

|ES| 6
(

1 +
2i

i

)(
s

2

)
p 6

(
1 +

2i

i

)
s2p

2
6 2is2p/i.
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Arguing as before, this guarantees that we can always find an independent set of size at
least

(s/2)/(4 · 2isp/i+ 1) > i/(9 · 2ip).
(At the last step, we used that 4 · 2isp/i+ 1 6 4.2 · 2isp/i, which follows easily from (5),
(6) and the definition of s0.) The proof of the lemma is finished.

3 Proof of Theorem 1

The lower bound follows immediately from (1). For the upper bound, we give a winning
strategy for Mrs. Correct that a.a.s. requires only (1 + o(1))n/(2 logb(np)) erasers on each
vertex, where b = 1/(1− p). (Recall from (2) that a.a.s. χ(G) ∼ n/(2 logb(np)).) We em-
phasize that most probabilistic statements hereafter in the proof will not refer to G(n, p)
but rather to the randomized strategy that Mrs. Correct uses to select each independent
set, regardless of the strategy of Mr. Paint and assuming that G deterministically satis-
fies the conclusions of Corollary 5 and Lemma 8. Since p � (log log n)1/3(log n)2n−1/3,
we can choose a function ω = o(log n) tending to infinity with n and such that p >
ω(log log n)1/3(log n)2n−1/3. Note that our choice of ω satisfies the requirements of Corol-
lary 5. Call a set S ⊆ V (G) large if |S| = s > n/(ω log2 n), small if s 6 np/(ω log2 n),
and medium otherwise.

Whenever Mrs. Correct is presented a large set, she can, by Corollary 5 find an inde-
pendent set of size k0 = (2 + o(1)) logb(np), and uses erasers for all remaining vertices.
Note that, trivially, at most

n

(2 + o(1)) logb(np)
= (1 + o(1))

n

2 logb(np)
(7)

large sets can be presented to her before the end of the game, and hence, for all large sets
at most that many erasers on each vertex are needed.

Suppose now that a small set S is presented to Mrs. Correct. Then, she chooses a
random vertex v ∈ S and accepts the colour on that vertex; for all other vertices of the
presented set erasers are used. (Note that this is clearly not a optimal strategy; Mrs.
Correct could extend {v} to a maximal independent set but we do not use it in the
argument and so we may pretend that a single vertex is accepted.) Let Xv denote the
random variable counting the number of erasers used when small sets containing v are
presented before eventually v gets a permanent colour (which does not necessarily happen
when a small set is presented). We have

Pr

(
Xv >

np√
ω log n

)
6

(
1− ω log2 n

np

)np/(√ω logn)

6 exp(−
√
ω log n) = o(n−1), (8)

and thus, by a union bound, a.a.s. for all vertices the number of erasers used for small
sets is at most

np√
ω log n

= o

(
n

2 logb(np)

)
, (9)
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and so is negligible.

Now, we are going to deal with medium sets. First, note that the size of a medium set
is at least np/(ω log2 n) > 10 log n/p for the range of p considered in this theorem and by
our choice of ω. Suppose that some medium set S is presented during the game. Applying
Lemma 8 repeatedly, Mrs. Correct can partition S into independent sets of size d1/(9p)e
and a remaining set J of size at most 10 log n/p 6 np/(ω log2 n). The strategy is then the
following: with probability 1/2 she chooses (uniformly at random) one of the independent
sets of size d1/(9p)e, and with probability 1/2 she chooses one vertex chosen uniformly at
random from J (as before, this is clearly a suboptimal strategy but convenient to analyze).
Selected vertices keep the colour; for the others erasers need to be used. We partition the
vertices of S into two groups: group 1 consists of vertices belonging to independent sets,
and group 2 consists of vertices of J . Our goal is to show that each vertex v appears in
less than 3np/(

√
ω log n) many medium sets, so that the total number of erasers needed

to deal with these situations is negligible (see (9)).
Suppose that some vertex v appears in at least 3np/(

√
ω log n) medium sets. Each

time, the corresponding medium set is split into two groups, and we cannot control in
which group v ends up. However, by Chernoff’s bound, with probability 1 − o(n−1), at
least np/(

√
ω log n) times the group to which v belongs is chosen. We condition on this

event. Note that if group 2 is chosen and v belongs to this group, the probability that v
is not selected is at most 1 − ω log2 n/(np) (as in (8) for small sets). Similarly, if group
1 is chosen and v belongs to this group, the probability that v is not chosen, is at most
1− ω log2 n/(9np), as each medium set has size at most n/(ω log2 n).

Denote by Yv the random variable counting the number of erasers used for vertex v
corresponding to medium sets, before eventually v gets a permanent colour. As in (8),

Pr

(
Yv >

3np√
ω log n

)
6 o(n−1) +

(
1− ω log2 n

9np

)(np)/(
√
ω logn)

6 o(n−1) + exp

(
−
√
ω log n

9

)
= o(n−1),

and thus, as before, by a union bound, a.a.s. the desired bound for the number of erasers
used for medium sets holds for all vertices.

Combining bounds for the number of erasers used for large, medium, and small sets,
we get that, regardless of the strategy used by Mr. Paint, Mrs. Correct uses at most
(1 + o(1))n/(2 logb(np)) erasers for each vertex, and the theorem follows.

4 Proof of Theorem 2

As in the proof of Theorem 1, the lower bound follows immediately from (1), and so it
remains to show that Mrs. Correct has a strategy that a.a.s. requires only O(n/ logb(np))
erasers on each vertex (recall also (2)). We will use the same definitions for sets of being
small, medium, and large as before, but we set here ω = log log n; as pointed out right
after Lemma 6, other choices of ω are possible, but our choice gives the strongest result
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(as we assume the weakest condition). The argument for small sets remains exactly the
same; a.a.s. it is enough to have o(n/ logb(np)) erasers on each vertex to deal with all small
sets that Mr. Paint may present. To deal with large sets, by Lemma 6, since we aim for a
statement that holds a.a.s., we may assume that whenever a large set is presented, Mrs.
Correct can always find an independent set of size at least ε(1−ε) log(np)/(3p), keeps the
colour on these vertices, and uses erasers for all remaining vertices. The number of large
sets presented is therefore at most 3(ε(1− ε))−1np/ log(np) = O(n/ logb(np)), as needed.
This is enough to determine the order of the on-line choice number but, if one aims for
a better constant, then Remark 7 implies that for np = logC+o(1) n we are guaranteed to
have an independent set of size i = i(C), where

i = (1 + o(1))


log(np)/p if C →∞
(1− 2

C
) log(np)/p if C ∈ [4,∞)

1
2

log(np)/p if C ∈ (2, 4).

We will show below that the contribution of medium sets is of negligible order, and hence
the upper bound on the number of erasers needed for large sets will also apply (up to lower
order terms) to the total number of erasers needed. As a result, we will get the following
bounds: (2 + o(1)χ(G) for C →∞, ( 2C

C−2 + o(1))χ(G) for C ∈ [4,∞), and (4 + o(1))χ(G)
for C ∈ (2, 4).

The strategy for medium sets has to be substantially modified. Suppose that a medium
set S of size s is presented at some point of the game. Recall that np/(ω log2 n) <
s < n/(ω log2 n), where ω = log log n. Since we aim for a statement that holds a.a.s.,
we may assume that Mrs. Correct can partition S in the following way: by applying
Lemma 8(i) repeatedly, as long as at least s0 = 10 log n/p vertices are remaining, she can
find independent sets of size d1/(9p)e, and remove them from S. (Note that for sparse
graphs it might happen that s < s0 and so the lemma cannot be applied even once.
In such a situation, we simply move on to the next step.) If the number of remaining
vertices, r, satisfies 2−is0 6 r < 2−i+1s0 for some i = i(n) ∈ N and r > np/(ω log2 n),
then by Lemma 8(ii), she can find an independent set of size di/(9p2i)e. Then, she
removes that independent set, and continues iteratively with the remaining vertices in
S. Note that there are clearly M 6 log n/ log 2 = O(log n) different sizes of independent
sets corresponding to different values of i. Finally, if r 6 np/(ω log2 n), she puts all the
remaining vertices into a set J (not necessarily independent), and stops partitioning.

We classify vertices in S into types depending on the size of the set in the partition
of S to which they belong: more precisely, we call vertices from independent sets of
size d1/(9p)e to be of type-0; vertices from independent sets of size di/(9p2i)e for some
1 6 i 6M are called of type-i; and vertices from the last set of vertices J of size at most
np/(ω log2 n) are called of type-(M + 1). Of course, these definitions depend on the
particular time a set S is presented by Mr. Paint. In particular, if a vertex is presented
several times by Mr. Paint, each time it might be of a different type. Finally, we classify
vertices in S into 3 groups: vertices of type-0 form group-0, vertices of type-1 up to
type-M form group-1, and vertices of type-(M + 1) form group-2.
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Mrs. Correct now chooses with probability 1/3 one of the three groups. If group-0 is
selected, she then picks uniformly at random one independent set within the group. In
case when group-2 is selected, she picks uniformly at random a single vertex inside this
group. Finally, if group-1 is selected, she first picks a random type. The probability that
type-i is selected is equal to

qi :=
1/i∑M
j=1 1/j

>
1/i∑logn/ log 2

j=1 1/j
=

1 + o(1)

i log log n
.

Then, within the selected type, an independent set is selected uniformly at random. If the
group or type chosen by Mrs. Correct has no vertices in it, she picks no vertex to colour
permanently, which is clearly a suboptimal strategy. Our goal is to show that a.a.s. each
vertex v appears in less than

4np√
ω log(np)

= o

(
n

logb(np)

)
= o(χ(G))

many medium sets, before its colour is accepted. If this holds, then the number of erasers
needed for each vertex (due to medium sets) is negligible.

Suppose that some vertex v appears in at least 4np/(
√
ω log(np)) medium sets. Since

one of the three groups is selected uniformly at random for each medium set, we expect v to
belong to the selected group at least (4/3)np/(

√
ω log(np)) > log2+ε+o(1) n times. Hence, it

follows from Chernoff’s bound that, with probability 1−o(n−1), at least np/(
√
ω log(np))

times the group to which v belongs is chosen. Call this event E. It remains to show that,
conditional on E, v will be permanently coloured with probability 1− o(n−1) within the
first np/(

√
ω log(np)) times its group is picked for some medium set.

Note that if group-0 is selected and v belongs to this group, the probability that v is
chosen to be permanently coloured, is at least

1/(9p)

n/(ω log2 n)
=
ω log2 n

9np
. (10)

Suppose then that group-1 is chosen, v belongs to this group and is of type-i for some
1 6 i 6M . The number of independent sets in the partition containing vertices of type-i
is at most

2−i+1s0/2

i/(9p2i)
+ 1 =

9s0p

i
+ 1 =

90 log n

i
+ 1 6

100 log n

i
,

where for the last step we used that i 6M 6 log n/ log 2. This time, the probability that
v is permanently coloured is at least

qi
i

100 log n
>

1 + o(1)

100(log n)(log log n)
>
ω log(np) log n

np
, (11)

where we used that ω = log log n and np/(log(np)) > log2+ε/2 n. Finally, if group-2 is
chosen and v belongs to this group, the probability that v is permanently coloured is at
least

1

np/(ω log2 n)
=
ω log2 n

np
. (12)
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Summarizing (10), (11) and (12), whenever the group of v is selected (regardless of which
group it is), the probability that v is chosen to be permanently coloured is at least

ω log(np) log n

9np
.

The rest of the argument works as before. Given a vertex v which is presented in
at least 4np/(

√
ω log(np)) medium sets, denote by Yv the random variable counting the

number of erasers used by v (due to medium sets) before v gets a permanent colour. Then,

Pr

(
Yv >

4np√
ω log(np)

∣∣∣ E) 6

(
1− ω log(np) log n

9np

)np/(√ω log(np))

6 exp
(
−Ω

(√
ω log n

))
= o(n−1).

Since Pr(E) = 1 − o(n−1), the unconditional probability that Yv > 4np/(
√
ω log(np)) is

also o(n−1). Hence, regardless of the strategy followed by Mr. Paint, we can take a union
bound over all vertices that were presented in at least 4np/(

√
ω log(np)) medium sets,

and deduce that a.a.s. for every vertex the number of erasers used (due to medium sets)
is less than 4np/(

√
ω log(np)) and thus negligible. The proof of the theorem is finished.

5 Proof of Theorem 3

Before we move to the proof of Theorem 3, let us state the following simple observation.

Lemma 9. Let G be a graph whose components are all trees or unicyclic graphs. Then
Mrs. Correct has a winning strategy using 1 eraser at each vertex for tree components and
using 2 erasers at each vertex for unicyclic components.

Proof. Since we may consider different components separately, we may assume that G is
connected. First assume that G is a tree. For a contradiction, suppose that 1 eraser at
each vertex is not enough for Mrs. Correct to win on some tree, and consider a smallest
such tree T . Clearly, |T | > 2, and let us consider a leaf ` of T . By minimality of T , Mrs.
Correct has a winning strategy on T \ `. Then, she extends the strategy to T as follows.
The first time she is presented vertex `, she considers the optimal strategy when playing
on the restriction of the set to T \ `. If the set yielded by that strategy does not contain
the neighbour of ` in T , she follows this strategy and simply adds ` to the set, and plays
for the rest of the game on T \ `. On the other hand, if the set does contain the neighbour
of `, then she also follows the strategy on T \ `, but uses the eraser for `. Since the only
neighbour of ` cannot appear later on, she can continue with her optimal strategy on T \`
and simply adds ` the second time she is presented this vertex. We get a contradiction,
and the proof of the first part is finished.

Similarly, suppose now that G is unicyclic. As before, for a contradiction, suppose
that 2 erasers at each vertex are not enough for G, and consider a smallest unicyclic graph
U with this property. Clearly, |U | > 3. If U contains a leaf `, then, as before, she plays
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optimally using two erasers on U \ ` and adapts her strategy exactly as before. If U does
not contain a leaf, then U is a cycle. The first time she is presented a set, she picks one
vertex and uses erasers for all other vertices. The rest of the game is played on a tree (in
fact, a path), and she has still 1 eraser at each vertex at her disposal. By the first part of
the lemma, she has a winning strategy and the proof is finished.

We come now back to the proof of Theorem 3. It is well known that if p < 0.99/n,
then a.a.s. G contains only trees and unicyclic components, and Mrs. Correct can win
using at most 2 erasers by Lemma 9. Assume then that p 6 c/n for some (perhaps large)
constant c > 0.99 (assume w.l.o.g. that c ∈ N). If G contains a component with at least
two cycles, the component must contain a subgraph which either consists of two cycles
connected by a path (or sharing a vertex), or is a cycle with a “diagonal” path. Let us call
such structures complex. Clearly, on k vertices one can construct at most k2k! complex
structures. Note that the degree of any vertex given by the existence of the complex
structure is at most 4. We will show that a.a.s. there is no complex structure with the
property that each vertex of this structure has a degree in the whole graph of at least
100c2. Note that, given a complex structure, in order for each vertex of this structure to
have degree in the whole graph at least 100c2, it must have either at least 47c2 incident
edges towards vertices outside the subgraph on which the complex structure is built, or
it has at least 47c2 additional incident edges inside the subgraph on which the complex
structure is built. Therefore, either half of the vertices of the complex structure have at
least 47c2 incident edges outside, or there are at least 11c2k additional edges inside the
complex structure, and no information about these edges has been revealed so far. Thus,
the expected number of complex structures in which each vertex has degree in the whole
graph at least 100c2 in the whole graph is at most

n∑
k=4

(
n

k

)
k2k!pk+1

((
k

bk/2c

)((
n

47c2

)
p47c

2

)bk/2c
+

( (
k
2

)
11c2k

)
p11c

2k

)

6
n∑
k=4

k2

n
ck+12

( e

22c

)11c2k
= O

(
n∑
k=4

k2

n
ck+1c−2k

)

= O

(
n∑
k=4

k2

n
c−k

)
= O

(∫ ∞
x=0

x2

n
c−xdx

)
= O(1/n), (13)

and therefore, by Markov’s inequality, the subgraph induced by vertices of degree at least
100c2 a.a.s. consists of components that are either trees or unicyclic components. Since
we aim for a statement that holds a.a.s., we may assume that this is the case.

We may assume that each time Mrs. Correct selects a maximal independent set. Hence,
the number of erasers needed to be placed at vertex v is at most deg(v) (if v uses one
of its erasers at some point of the game, it must be the case that at least one of its
neighbours belongs to the maximal independent set). As a result, vertices of degree at
most 100c2 require only a constant number of erasers. Call the set of such vertices L,
and let H = V (G) \ L. By (13), the graph induced by the vertices in H a.a.s. consists of
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components that are either trees or unicyclic components. Mrs. Correct plays as follows:
whenever she is presented a set U , she plays optimally on the restriction of U to H (on
which, by Lemma 9 she uses at most 2 erasers), and then she extends an independent set
found there to any maximal independent set in U . This strategy uses in total at most
100c2 = O(1) erasers for each vertex in L. In this way, clearly O(1) = Θ(χ(G)) colours
are used.
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