
Power of k Choices in

the Semi-Random Graph Process

Pawel Pralat Harjas Singh

Submitted: Feb 26, 2023; Accepted: Dec 1, 2023; Published: Jan 12, 2024

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The semi-random graph process is a single player game in which the player is
initially presented an empty graph on n vertices. In each round, a vertex u is
presented to the player independently and uniformly at random. The player then
adaptively selects a vertex v, and adds the edge uv to the graph. For a fixed
monotone graph property, the objective of the player is to force the graph to satisfy
this property with high probability in as few rounds as possible.

In this paper, we introduce a natural generalization of this game in which k
random vertices u1, . . . , uk are presented to the player in each round. She needs
to select one of the presented vertices and connect to any vertex she wants. We
focus on the following three monotone properties: minimum degree at least ℓ, the
existence of a perfect matching, and the existence of a Hamiltonian cycle.

Mathematics Subject Classifications: 05C80

1 Introduction and Main Results

1.1 Definitions

In this paper, we consider a natural generalization of the semi-random graph process
suggested by Peleg Michaeli, introduced formally in [4], and studied recently in [3, 13, 15,
2, 7, 20, 14, 9, 19, 12] that can be viewed as a “one player game”. The original process
starts from G0, the empty graph on the vertex set [n] := {1, . . . , n} where n 1. In each
step t, a vertex ut is chosen uniformly at random from [n]. Then, the player (who is aware
of the graph Gt and the vertex ut) must select a vertex vt and add the edge utvt to Gt to
form Gt+1. The goal of the player is to build a (multi)graph satisfying a given property
P as quickly as possible. It is convenient to refer to ut as a square, and vt as a circle
so every edge in Gt joins a square with a circle. We say that vt is paired to ut in step
t. Moreover, we say that a vertex x ∈ [n] is covered by the square ut arriving at round

Department of Mathematics, Toronto Metropolitan University, Toronto, Canada
(pralat@torontomu.ca, harjas.singh@torontomu.ca).

the electronic journal of combinatorics 31(1) (2024), #P1.11 https://doi.org/10.37236/11909

https://doi.org/10.37236/11909

t, provided ut = x. The analogous definition extends to the circle vt. As a result, along
the process each vertex is represented by a vector of squares and circles. Equivalently,
we may view Gt as a directed graph where each arc directs from ut to vt, and thus we
may use (ut, vt) to denote the edge added in step t. For this paper, it is easier to consider
squares and circles for counting arguments.

We generalize the process as follows. Let k ∈ N. In each step t, k vertices u1
t , . . . , u

k
t

are chosen independently and uniformly at random from [n]. For simplicity, we allow
repetitions but, of course there will not be too many of them. Then, the player must
select one of them (that is, select it ∈ [k] and fix ut = uit

t), select a vertex vt, and add
the edge utvt to Gt to form Gt+1. The objective is the same as before, namely, to achieve
a property P as quickly as possible. We will refer to this game as the k-semi-random
graph process or simply the k-process. Clearly, it is a generalization, since for k = 1
we recover the original game. Moreover, if k1 > k2 1, then the k1-process is as easy for
the player as the k2-process since additional k1 − k2 squares may be simply ignored when
making choices. However, it is often the case that more choices provide substantially more
power to the player. For more details, we refer the reader to a general survey [21] and
the first paper introducing this powerful and fundamental idea [1].

A strategy S to play against the k-process is defined by specifying for each n 1, a
sequence of functions (ft)

∞
t=1, where for each t ∈ N, ft(u1, v1, . . . , ut−1, vt−1, u

1
t , . . . , u

k
t) is a

distribution over [k]× [n] which depends on the vertices u1
t , . . . , u

k
t , and the history of the

process up until step t−1. Then, it ∈ [k] and vt are chosen according to this distribution.
Observe that this means that the player needs to select her strategy (possibly randomized)
in advance, before the game actually starts. If ft is an atomic distribution, then the pair
(it, vt) is determined by u1, v1, . . . , ut−1, vt−1, u

1
t , . . . , u

k
t . We then denote (GS

i (n))
t
i=0 as

the sequence of random (multi)graphs obtained by following the strategy S for t rounds;
where we shorten GS

t (n) to Gt(n) or Gt when clear.
Suppose P is a monotonely increasing property. Given a strategy S to play against

the k-process and a constant 0 < q < 1, let τ̂P(S, q, n, k) be the minimum t 0 for which
P[GS

t (n) ∈ P] q, where τ̂P(S, q, n, k) := ∞ if no such t exists. Define

τ̂P(q, n, k) = inf
S
τ̂P(S, q, n, k),

where the infimum is over all strategies on [k] × [n]. Observe that for each n 1, if
0 q1 q2 1, then τ̂P(q1, n, k) τ̂P(q2, n, k) as P is increasing. Thus, the function
q → lim supn→∞ τ̂P(q, n, k) is non-decreasing, and so the limit

τP(k) := lim
q→1−

lim sup
n→∞

τ̂P(q, n, k)

n
,

is guaranteed to exist. The goal is typically to compute upper and lower bounds on
τP(k) for various properties P . Note that we normalized τ̂P(q, n, k) by n above since the
properties investigated in this paper need a linear number of rounds to be achieved. Other
properties might require different scaling. For example, creating a fixed graph H requires
o(n) rounds a.a.s. [4, 2].

the electronic journal of combinatorics 31(1) (2024), #P1.11 2

1.2 Main Results

In this paper, we investigate the following three monotone properties: minimum degree
at least ℓ (Section 3), the existence of a perfect matching (Section 4), and the existence
of a Hamiltonian cycle (Section 5).

For minimum degree at least ℓ, we first show that a greedy strategy of choosing a
minimum-degree vertex from the k offered, and joining it to a minimum-degree vertex, is
optimal; the proof adapts one from [4]. For fixed k and ℓ, the time to achieve minimum
degree ℓ follows from the differential equation method.

For perfect matching, an optimal algorithm is not clear so we only provide some lower
and upper bounds. The lower bound is the time to create minimum degree 1 graph, drawn
from the earlier part. For fixed k, the upper bound comes from the differential-equation
analysis of an algorithm that is a straightforward extension of that in [15].

Finally, for Hamiltonicity, the picture is similar to that of perfect matching. The lower
bound is that for minimum degree 2, drawn from the earlier part. For fixed k, the upper
bound comes again from the differential-equation analysis of a natural extension of the
algorithm from [9].

The computations presented in the paper (see Tables 1, 2, and 3) were performed by
using Maple [5]. The worksheets can be found on-line1.

2 Preliminaries

2.1 Notation

The results presented in this paper are asymptotic by nature. We say that some property
P holds asymptotically almost surely (or a.a.s.) if the probability that the k-process
has this property (after possibly applying some given strategy) tends to 1 as n goes to
infinity. Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there
exists an absolute constant c > 0 such that |f(n)| c|g(n)| for all n, f(n) = Ω(g(n))
if g(n) = O(f(n)), f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we
write f(n) = o(g(n)) or f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0. In addition, we write
f(n) ≫ g(n) if g(n) = o(f(n)) and we write f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that
is, limn→∞ f(n)/g(n) = 1.

We will use log n to denote a natural logarithm of n. As mentioned earlier, for a given
n ∈ N := {1, 2, . . .}, we will use [n] to denote the set consisting of the first n natural
numbers, that is, [n] := {1, 2, . . . , n}. Finally, as typical in the field of random graphs, for
expressions that clearly have to be an integer, we round up or down but do not specify
which: the choice of which does not affect the argument.

2.2 Concentration Tools

Let us first state a few specific instances of Chernoff’s bound that we will find useful. Let
X ∈ Bin(n, p) be a random variable distributed according to a Binomial distribution with

1https://math.torontomu.ca/~pralat/

the electronic journal of combinatorics 31(1) (2024), #P1.11 3

https://math.torontomu.ca/~pralat/

parameters n and p. Then, a consequence of Chernoff ’s bound (see e.g. [16, Theorem 2.1])
is that for any t 0 we have

P(X EX + t) exp

− t2

2(EX + t/3)

(1)

P(X EX − t) exp

− t2

2EX

. (2)

Moreover, let us mention that the bound holds in a more general setting as well, that is,
for X =

n
i=1 Xi where (Xi)1in are independent variables and for every i ∈ [n] we have

Xi ∈ Bernoulli(pi) with (possibly) different pi-s (again, see e.g. [16] for more details).
Finally, it is well-known that the Chernoff bound also applies to negatively correlated
Bernoulli random variables [8].

2.3 The Differential Equation Method

In this section, we provide a self-contained non-asymptotic statement of the differential
equation method which we will use for each property we investigate. The statement
combines [22, Theorem 2], and its extension [22, Lemma 9], in a form convenient for our
purposes, where we modify the notation of [22] slightly. In particular, we rewrite [22,
Lemma 9] in a less general form in terms of a stopping time T . We need only check the
‘Boundedness Hypothesis’ (see below) for 0 t T , which is exactly the setting in our
proofs.

Suppose we are given integers a, n 1, a bounded domain D ⊆ Ra+1, and func-
tions (Fk)1ka where each Fk : D → R is L-Lipschitz-continuous on D for L 0.
Moreover, suppose that R ∈ [1,∞) and S ∈ (0,∞) are any constants which satisfy
max1ka |Fk(x)| R for all x = (s, y1, . . . , ya) ∈ D and 0 s S.

Theorem 1 (Differential Equation Method, [22]). Suppose we are given σ-fields F0 ⊆
F1 ⊆ · · · , and for each t 0, random variables (Yk(t))1ka which are Ft-measurable.
Define TD to be the minimum t 0 such that

(t/n, Y1(t)/n, . . . , Ya(t)/n) /∈ D.

Let T 0 be an (arbitrary) stopping time2 adapted to (Ft)t0, and assume that the
following conditions hold for δ, β, γ 0 and λ δmin{S, L−1}+R/n:

(i) The ‘Initial Condition’: For some (0, ŷ1, . . . , ŷa) ∈ D,

max
1ka

|Yk(0)− ŷkn| λn.

(ii) The ‘Trend Hypothesis’: For each k ∈ [a] and each t min{T, TD − 1},

|E[Yk(t+ 1)− Yk(t) | Ft]− Fk(t/n, Y1(t)/n, . . . , Ya(t)/n)| δ.

2The stopping time T 0 is adapted to (Ft)t0, provided the event {T = t} is Ft-measurable for each
t 0.

the electronic journal of combinatorics 31(1) (2024), #P1.11 4

(iii) The ‘Boundedness Hypothesis’: With probability 1− γ,

|Yk(t+ 1)− Yk(t)| β,

for each k ∈ [a] and each t min{T, TD − 1}.

Then, with probability at least 1− 2a exp

−nλ2

8Sβ2

− γ, we have that

max
0tmin{T,σn}

max
1ka

|Yk(t)− yk(t/n)n| < 3λ exp(LS)n, (3)

where (yk(s))1ka is the unique solution to the system of differential equations

y′k(s) = Fk(s, y1(s), . . . , ya(s)) with yk(0) = ŷk for 1 k a, (4)

and σ = σ(ŷ1, . . . , ŷa) ∈ [0, S] is any choice of σ 0 such that (s, y1(s), . . . , ya(s)) has
ℓ∞-distance at least 3λ exp(LS) from the boundary of D for all s ∈ [0, σ).

Remark 2. Standard results for differential equations guarantee that (4) has a unique
solution (yk(s))1ka which extends arbitrarily close to the boundary of D.

3 Minimum Degree at Least ℓ

Let us fix a natural number ℓ. Our goal is to investigate how long does it take for the
k-process to create a graph with minimum degree at least ℓ. This problem was considered
in [4] for the original semi-random process (k = 1). In this paper, we investigate it for
the k-process for any value of k.

Let Pℓ be the property that a graph has a minimum degree at least ℓ. In order to
establish the value of τPℓ

(k), we need to do two things: investigate which strategy is
optimal (we do it in Subsection 3.1) and then analyze the optimal strategy (we do it in
Subsection 3.2). One consequence of our results is Table 1 which consists of numerical
values of τPℓ

(k) for a grid of parameters (k, ℓ) with 1 k, ℓ 5. It follows immediately
from the definition of τPℓ

(k) that it is a non-decreasing function with respect to ℓ but a
non-increasing one with respect to k.

Finally, we note that for large values of k (and any fixed value of ℓ), typically some
square lands on a vertex with minimum degree and so the degree distribution is well
balanced during the whole process. As a result, the total number of rounds is close to
the trivial lower bound of ℓn/2. In other words, τPℓ

(k) = ℓ/2 + ok(1). Similarly, for large
values of ℓ (and any fixed value of k), because of the law of large numbers, each vertex
receives more or less the same number of squares. As before, the degree distribution is
well balanced and as a consequence, τPℓ

(k) = ℓ/2 + oℓ(1). We investigate both of these
properties in Subsection 3.3.

the electronic journal of combinatorics 31(1) (2024), #P1.11 5

Table 1: Minimum Degree at Least ℓ—numerical values of τPℓ
(k) for a grid of parameters

(k, ℓ) with 1 k, ℓ 5.

k = 1 k = 2 k = 3 k = 4 k = 5
ℓ = 1 0.69315 0.62323 0.59072 0.57183 0.55947
ℓ = 2 1.21974 1.12498 1.09081 1.07184 1.05947
ℓ = 3 1.73164 1.62508 1.59081 1.57184 1.55947
ℓ = 4 2.23812 2.12508 2.09081 2.07184 2.05947
ℓ = 5 2.74200 2.62508 2.59081 2.57184 2.55947

3.1 Optimal Strategy

In this subsection, we show that the following greedy strategy is an optimal strategy. In
this strategy, in each round t of the process the player selects a square that lands on a
vertex with the smallest degree, that is, she selects it such that degGt

(ui
t) degGt

(uit
t) for

any i ∈ [k]; if there is more than one such square to choose from, the decision which one
to select is made arbitrarily. Then, the player puts a circle on a vertex with minimum
degree; again, if there is more than one such vertex to choose from, the decision is made
arbitrarily. Let us denote this strategy as S0.

Recall that, in order to make sure the k-process is well defined, we allowed it to create
multi-graphs (that is, loops and parallel edges are allowed). It simplifies the definition of
the strategy S0 above and our proofs below but one can easily adjust the argument to
stay with the family of simple graphs.

Let us fix k and ℓ. For a given strategy S, let H(S) be the hitting time for the
property Pℓ, that is, H(S) is the random variable equal to the number of rounds required
for S to achieve the property Pℓ. We say that a strategy S dominates a strategy
S ′ if the random variable H(S ′) is dominated by the random variable H(S), that is,
P(H(S) t) P(H(S ′) t) for any t.

The next lemma is straightforward. Its proof is an adaptation of the proof for the
original process [4].

Lemma 3. Let k, ℓ ∈ N, and consider the property Pℓ. The strategy S0 dominates any
other strategy S against the k-process.

Proof. We say that a strategy S is (i, j)-minimizing if in each of the first i rounds,
the player chooses a square of minimum degree and in each of the first j rounds, she
puts a circle on a vertex of minimum degree. Strategy S is said to be minimizing if
it is (i, j)-minimizing for every i and j. In order to prove the lemma, since domination
is a transitive relation and any strategy is (0, 0)-minimizing, it is enough to show that
any (i, j)-minimizing strategy is dominated by some (i+1, j)-minimizing strategy as well
as some (i, j + 1)-minimizing strategy. Since S0 is minimizing and any two minimizing
strategies dominate one another, we conclude that S0 dominates any other strategy S.

the electronic journal of combinatorics 31(1) (2024), #P1.11 6

Consider any (i, j)-minimizing strategy S. We will modify it slightly and create two
new strategies, S ′ and S ′′, that are (i + 1, j)-minimizing and, respectively, (i, j + 1)-
minimizing. We can imagine a player using strategy S on the graph Gt and another
player using strategy S ′ on an auxiliary graph G′

t. The two games are coupled such that
squares appear in both games at the same locations.

During the first i rounds, the strategy S ′ is the same as the strategy S. Suppose that
at round i + 1, with probability p > 0, S chooses a square that lands on a vertex v but
the decision is made in a non-greedy fashion (that is, the chosen vertex does not have
minimum degree among the k offered vertices). We condition on this event, and slightly
modify S to get S ′ as follows. At round i + 1, strategy S ′ chooses a square that lands
on a vertex u that has minimum degree; in particular, degGi

(u) < degGi
(v). From that

point on, the two graphs, Gt and G′
t, are going to differ. For the rest of the game, as long

as degGt
(u) degGt

(v) − 2, S ′ continues “stealing” strategy S, that is, both the choices
for squares and for circles are exactly the same in both games. If, at any point of the
game, degGt

(u) = degGt
(v)− 1, then u and v are “relabeled” in G′

t (that is, v becomes u
and u becomes v). After that, we continue coupling the two games but now each time a
square lands on u from Gt, we modify the coupling so that it also lands on u (that used
to be initially labelled as v) in G′

t. The same property holds for v. Clearly, after this
modification, we preserve the property that vertices u1

t , . . . , u
k
t are chosen independently

and uniformly at random from [n]. The strategy S ′ continues “stealing” strategy S.
A simple but important property is that from time i + 1 on, but before possible

relabelling, degG′
t
(u) = degGt

(u) + 1 and degG′
t
(v) = degGt

(v) − 1. Since degGt
(u)

degGt
(v)− 2, degG′

t
(u) degG′

t
(v). As a consequence,

min{degGt
(u), degGt

(v)} = degGt
(u) = degG′

t
(u)− 1 = min{degG′

t
(u), degG′

t
(v)}− 1.

For any other vertex w ∕∈ {u, v}, degGt
(w) = degG′

t
(w). Hence, provided that no rela-

belling took place, min{degGt
(u), degGt

(v)} ℓ implies that min{degG′
t
(u), degG′

t
(v)}

ℓ + 1 and so the desired property Pℓ cannot be achieved by the strategy S before it is
achieved by the strategy S ′. Finally, note that when degGt

(u) = degGt
(v) − 1, we have

that degGt
(u) = degG′

t
(v) and degGt

(v) = degG′
t
(u). Hence, after relabelling, the degree

distribution in Gt is exactly the same as the degree distribution in G′
t (despite the fact

that graphs are possibly different). This property will be preserved to the end of the
process and so both strategies will achieve the desired property Pℓ at the same time.

The same argument can be repeated to create an (i, j + 1)-minimizing strategy S ′′.
This finishes the proof of the lemma.

3.2 Analysis of the Optimal Strategy

In this subsection, we analyze the greedy strategy that was introduced and proved to be
optimal in the previous subsection. This establishes τPℓ

(k) for any value of ℓ and k.

Theorem 4. Let k, ℓ ∈ N. Then, τPℓ
(k) = cℓ,k, where cℓ,k ℓ/2 is a constant that is

derived from a system of differential equations. The numerical values for 1 k, ℓ 5 are
presented in Table 1.

the electronic journal of combinatorics 31(1) (2024), #P1.11 7

Proof. In the greedy strategy S0, we distinguish phases by labelling them with integers
q ∈ {0, 1, . . . , ℓ − 1}. During the qth phase, the minimum degree in Gt is equal to q. In
order to analyze the evolution of the k-process, we will track the following sequence of ℓ
variables: for 0 i ℓ− 1, let Yi = Yi(t) denote the number of vertices in Gt of degree i.

Phase 0 starts at the beginning of the k-process. Since G0 is empty, Y0(0) = n and
Yi(0) = 0 for 1 i ℓ − 1. There are initially many isolated vertices but they quickly
disappear. Phase 0 ends at time t which is the smallest value of t for which Y0(t) = 0.
The DEs method will be used to show that a.a.s. Phase 0 ends at time t0 ∼ x0n, where
x0 is an explicit constant which will be obtained by investigating the associated system of
DEs. Moreover, the number of vertices of degree i (1 i ℓ−1) at the end of this phase
is well concentrated around some values that are also determined based on the solution
to the same system of DEs: a.a.s. Yi(t0) ∼ yi(x0)n. With that knowledge, we move on to
Phase 1 in which we prioritize vertices of degree 1.

Consider any Phase q, where q ∈ {0, 1, . . . , ℓ − 1}. This phase starts at time tq−1,
exactly when the previous phase ends (or at time t−1 := 0 if q = 0). At that point, the
minimum degree of Gtq−1 is q, so Yi(t) = 0 for any t tq−1 and i < q. Hence, we only
need to track the behaviour of the remaining ℓ − q variables. Let Aj(t) be the event
that at time t the player selects a square that lands on a vertex with degree j, that is,
Aj(t) = {degGt

(uit
t) = j}. The probability that Aj(t) holds can be computed based on

the sequence of Yi(t)’s. To that end, it is convenient to introduce the following auxiliary
event. Let Bj(t) be the event that at time t all squares land on vertices of degree at
least j, that is, Bj(t) = {degGt

(ui
t) j, for all i ∈ [k]}. Clearly, Bj+1(t) ⊆ Bj(t) and

Aj(t) = Bj(t) \ Bj+1(t). As a result,

P(Aj(t)) = P(Bj(t))− P(Bj+1(t))

=

1−

j−1

a=q

Ya(t)

n

k

−

1−

j

a=q

Ya(t)

n

k

.

Let us denote H(t) = (Yq(t), Yq+1(t), . . . , Yℓ−1(t)). Let δA be the Kronecker delta for the
event A, that is, δA = 1 if A holds and δA = 0 otherwise. Then, for any i such that
q i ℓ− 1,

E(Yi(t+ 1)− Yi(t) | H(t)) =− δi=q + δi=q+1 − P(Ai(t))

+ δiq+1P(Ai−1(t)) +O(1/n). (5)

Indeed, since the circle is put on a vertex of degree q, we always lose one vertex of degree
q (term −δi=q) that becomes of degree q + 1 (term δi=q+1). The term O(1/n) is added to
cover the (rare) case when one of the squares lands on the very last vertex of degree q.
Alternatively, we could have stopped analyzing the duration of Phase q prematurely when
the number of vertices of degree q is at most one; this phase would finish it in at most one
extra round anyway. We might lose a vertex of degree i when the selected square lands
on a vertex of degree i (term P(Ai(t)). We might also gain one of them when the selected
square lands on a vertex of degree i − 1 (term, P(Ai−1(t)); note that this is impossible

the electronic journal of combinatorics 31(1) (2024), #P1.11 8

if i = q (term δiq+1). This suggests the following system of DEs: for any i such that
q i ℓ− 1,

y′i(x) = −δi=q + δi=q+1

−

1−

i−1

a=q

ya(x)

k

−

1−

i

a=q

ya(x)

k

+ δiq+1

1−

i−2

a=q

ya(x)

k

−

1−

i−1

a=q

ya(x)

k

 . (6)

Let us now check that the assumptions of the DEs method are satisfied and then discuss
the conclusions. Let ε > 0 be an arbitrarily small constant and ω = ω(n) be any function
that tends to infinity as n → ∞. We will ensure that for some universal constant C > 0,
at the beginning of Phase q, the initial condition is satisfied with λ = Cqω/

√
n = o(1).

(At the beginning of Phase 0, there is no error in the initial condition so this property is
trivially satisfied.) In particular, we assume that the phase starts at time tq−1 ∼ xq−1n
for some constant xq−1 ∈ [0,∞), and for any q i ℓ − 1, Yi(tq−1) ∼ yi(xq−1)n for
some constants yi(xq−1) ∈ (0, 1]. The right hand side of (6) is continuous, bounded, and
Lipschitz in the connected open set

D = {(x, yq, . . . , yℓ−1) : −ε < x < ℓ+ ε,−ε < yi < 1 + ε},

which contains the point (xq−1, yq(xq−1), . . . , yℓ−1(xq−1)). Note that there is a small error
in the ‘Trend Hypothesis’, that is, δ = O(1/n) (see (5)). Finally, note that the ‘Bound-
edness Hypothesis’ holds deterministically (γ = 0) with β = 2.

We conclude, based on Theorem 1, that a.a.s. during the entire Phase q,

max
qiℓ−1

|Yi(t)− yi(t/n)n| < λCn = o(n),

provided that C is a large enough constant. In particular, Phase q ends at time tq ∼ xqn,
where xq > xq−1 is the solution of the equation yq(x) = 0. Using the final values yi(xq) in
Phase q as initial values for Phase q + 1 we can repeat the argument inductively moving
from phase to phase. The desired property is achieved at the end of Phase ℓ− 1 when a
graph of minimum degree equal to ℓ is reached.

3.3 Large value of k or ℓ

A natural question that arises is about the asymptotic behaviour of τPℓ
(k) as either ℓ

grows large or k grows large.

First, let us show that τPℓ
(k) → ℓ/2 as ℓ → ∞.

Theorem 5. Fix k ∈ N. Then,

ℓ

2
 τPℓ

(k) ℓ

2

1 +O(

log ℓ/ℓ)

.

the electronic journal of combinatorics 31(1) (2024), #P1.11 9

Proof. Noting that τPℓ
(k) is a non-increasing function in k and, trivially, for any value of

k we have τPℓ
(k) ℓ/2, we only investigate the case k = 1. One can try to analyze an

optimal, greedy strategy but we aim for an easy argument without trying to optimize the
error term, as long as it goes to zero as ℓ → ∞.

Our algorithm consists of two phases. In Phase 1, which lasts ℓn/2 rounds, we place
circles sequentially, that is, in round i, a circle is placed on vertex i− 1 (mod n) + 1. As
a result, at the end of Phase 1, each vertex has exactly ℓ/2 circles. Let Xv denote the
number of squares on vertex v at the end of Phase 1. Then Xv ∈ Bin(ℓn/2, 1/n), with
E(Xv) = ℓ/2. Let t := 2

√
ℓ log ℓ. Then, by the Chernoff bound (2)

P(Xv ℓ/2− t) exp

−t2

ℓ

= exp(−4 log ℓ) = 1/ℓ4.

Hence, we expect at most n/ℓ4 vertices with at most ℓ/2− t squares. More importantly,
the events “Xv ℓ/2 − t” associated with various vertices are negatively correlated. It
follows immediately from the Chernoff bound (1) (see also the comment right after it)
that a.a.s. there are at most 2n/ℓ4 vertices with at most ℓ/2− t squares. (Alternatively,
one could estimate the variance and use Chebyshev’s inequality.)

Let a vertex v be considered deficient if deg(v) < ℓ. Furthermore, define the deficit of
a deficient vertex v to be equal to ℓ− deg(v). Then, at the end of Phase 1, a.a.s. at most
2n/ℓ4 vertices have a deficit of at most ℓ/2 (a trivial, deterministic upper bound), with
the remaining vertices having deficit at most 2

√
ℓ log ℓ. In Phase 2, we place circles on

the deficient vertices to bring the deficit down to 0. This takes at most n/ℓ3 + 2n
√
ℓ log ℓ

rounds. Thus, the total number of rounds is at most

nℓ/2 + n/ℓ3 + 2n

ℓ log ℓ =
nℓ

2

1 +O(

log ℓ/ℓ)

.

It follows that τPℓ
(k) = ℓ/2 + oℓ(1) as ℓ → ∞, as required.

Next, let us show that τPℓ
(k) → ℓ/2 as k → ∞.

Theorem 6. Fix ℓ ∈ N. Then,

ℓ

2
 τPℓ

(k) ℓ

2

1 +O(log k/k)

.

Proof. We will investigate a greedy algorithm by considering ℓ phases. As before, we do
not try to optimize the error term and aim for an easy argument. During Phase i, the
minimum degree is equal to i − 1. The algorithm stops at the end of Phase ℓ. We will
show that a.a.s. each phase takes at most n/2 + n log k/k rounds, so the total number of
rounds is at most (nℓ/2)(1 + 2 log k/k). Since, trivially, τPℓ

(k) ℓ/2, we will get that
τPℓ

(k) = (ℓ/2)(1 +O(log k/k)) = ℓ/2 + ok(1) as k → ∞.
Suppose that Phase i starts at time ti. Let Xt be the number of vertices of degree i−1

at the beginning of round t. Clearly, Xti n. It is convenient to consider two sub-phases.

the electronic journal of combinatorics 31(1) (2024), #P1.11 10

The first sub-phase continues as long as Xt n log k/k. Note that at any step t of this
sub-phase, the probability that no square lands on a vertex of degree i− 1 is equal to

(1−Xt/n)
k exp(−kXt/n) exp(− log k) = 1/k.

It means that Xt goes down by 1 with probability at most 1/k and goes down by 2,
otherwise. In other words, at time t ti during this sub-phase, the number of vertices of
degree i− 1 can be stochastically upper bounded as follows:

Xt Xt0 − 2(t− ti) + Bin(t, 1/k) n− 2(t− ti) + Bin(t, 1/k).

(The term Bin(t, 1/k) corresponds to the number of rounds during which the algorithm
“slows down” because no square lands on a vertex of degree i−1.) Hence, the probability
that the first sub-phase does not finish in less than n/2 rounds is at most

P(Bin(n/2, 1/k) n log k/k) P(Bin(n/2, 1/k) 2E(Bin(n/2, 1/k)))
 exp(−Θ(n)) = o(1),

assuming that k 3 > e (which we may, since we aim for a result that holds for k large
enough). The second sub-phase takes at most n log k/k steps (deterministically) so, a.a.s.
the entire phase ends in at most n/2+n log k/k steps, and the desired property holds.

4 Perfect Matchings

In this section, we investigate another classical monotone property that was already stud-
ied in the context of semi-random processes, namely, the property of having a perfect
matching, which we denote by PM. In the very first paper [4], it was shown that the
semi-random process is general enough to approximate (using suitable strategies) several
well-studied random graph models, including an extensively studied ℓ-out process (see, for
example, Chapter 18 in [17]). In the ℓ-out process, each vertex independently connects to
ℓ randomly selected vertices which results in a random graph on n vertices and ℓn edges.

Since the 2-out process has a perfect matching a.a.s. [11], we immediately get that
τPM(k) τPM(1) 2. By coupling the semi-random process with another random graph
that is known to have a perfect matching a.a.s. [18], the bound can be improved to
1 + 2/e < 1.73576. This bound was recently improved by investigating a fully adaptive
algorithm [15]. The currently best upper bound is τPM(1) < 1.20524 but there is an easy
algorithm that yields the following bound: τPM(1) < 1.27695. In this paper, we adjust the
easy algorithm to deal with the k-process and present the corresponding upper bounds
(see Subsection 4.1). One could adjust the more sophisticated algorithm as well. We do
not do it as the improvement is less significant for larger values of k but the argument is
substantially more involved.

Let us now move to the lower bounds. In the initial paper introducing the semi-random
process [4], it was already observed that τPM(1) τP1(1) = ln(2) > 0.69314. This lower
bound was improved as well, and now we know that τPM(1) > 0.93261 [15]. Since adapting

the electronic journal of combinatorics 31(1) (2024), #P1.11 11

the argument from [15] to k 2 would be much more involved and the improvement
would be less significant, we only use the trivial bound and the results from the previous
section: τPM(k) τP1(k). Indeed, the gap between the upper and lower bounds gets small
as k is large. In fact, τPM(k) → 1/2 as k → ∞ (see Subsection 4.2).

Table 2: Perfect Matchings—numerical upper and lower bounds of τPM(k) for 1 k 10.
Stronger bounds for k = 1 follow from [15].

lower bound upper bound lower bound upper bound
k = 1 0.69315 (0.93261) 1.27696 (1.20524) k = 6 0.55075 0.66425
k = 2 0.62323 0.92990 k = 7 0.54426 0.64243
k = 3 0.59072 0.80505 k = 8 0.53924 0.62573
k = 4 0.57183 0.73708 k = 9 0.53525 0.61255
k = 5 0.55947 0.69402 k = 10 0.53199 0.60187

4.1 Upper bound for τPM(k)

In this subsection, we analyze the following simple but fully adaptive strategy. In each
step t of the algorithm, we will track a partial matching Mt that is already built and the
set Ut of unsaturated vertices. Initially, M0 = ∅ and U0 = [n]. We will use V [Mt] to
denote the set of vertices associated with the edges in Mt. Some vertices in V [Mt] will
be coloured red or green, and some edges (outside of Mt) will be coloured green. The
colours will be used to extend a partial matching. Suppose that an edge bc ∈ Mt and an
edge ab is green. (This will make vertex b to be green and vertex c to be red.) If, at some
point of the process, the square lands on the red vertex c, then the player can create an
augmenting path abcd by adding an edge cd to some vertex d outside of Mt.

Suppose that at time t, k squares land on vertices u1
t , . . . , u

k
t . We consider a few cases.

Case (a): At least one square lands on a vertex from Ut−1, that is, {u1
t , . . . , u

k
t }∩Ut−1 ∕= ∅.

We arbitrarily select ut ∈ {u1
t , . . . , u

k
t } ∩ Ut−1, and let vt be a uniformly random

vertex in Ut−1. If vt = ut, then the matching and the set of unsaturated vertices
do not change: Mt = Mt−1 and Ut = Ut−1. Otherwise, we extend the partial
matching by adding an edge we just created to Mt−1, that is, Mt = Mt−1 ∪ {utvt}
and Ut = Ut−1 \ {ut, vt}. For every green vertex x ∈ V [Mt−1], if it is adjacent to
either ut or vt by a green edge, then we uncolour this green edge, uncolour x (from
green), and uncolour the mate of x in Mt−1 (from red).

Case (b): No square lands on a vertex from Ut−1 but at least one square lands on a red
vertex in V [Mt−1]. We arbitrarily select one of such red vertices to be ut, and let vt
be a uniformly random vertex in Ut−1. Let x ∈ V [Mt−1] be the mate of ut in Mt−1.
Let y be the (unique) vertex in Ut−1 which is adjacent to x by a green edge. If vt = y,
then the matching and the set of unsaturated vertices do not change: Mt = Mt−1

the electronic journal of combinatorics 31(1) (2024), #P1.11 12

and Ut = Ut−1. Otherwise, let Mt be the matching obtained by augmenting along
the path yxutvt, that is, Mt = (Mt−1 \ {xut}) ∪ {yx, utvt}. Let Ut = Ut−1 \ {y, vt}.
Finally, update the green vertices and edges and the red vertices accordingly as in
Case (a).

Case (c): No square lands on a vertex from Ut−1 nor on a red vertex in V [Mt−1] but at
least one square lands on an uncoloured vertex in V [Mt−1]. We arbitrarily select
one of such uncoloured vertices to be ut, and let vt be a uniformly random vertex
in Ut−1. Colour the edge utvt and the vertex ut green and colour the mate of ut in
Mt−1 red. The matching is not affected, that is, Mt = Mt−1 and Ut = Ut−1.

Case (d): All squares land on green vertices. Let vt be an arbitrary vertex in [n]. The
edge utvt will not be used in the process of constructing a perfect matching. Let
Mt = Mt−1 and Ut = Ut−1.

As it was done in [15], we terminate the algorithm prematurely (in order to avoid technical
issues with the DEs method that will be used) at the step when |Ut| becomes at most εn
where ε = 10−14. To saturate the remaining unsaturated vertices, the clean-up algorithm
can be used that was introduced and analyzed in [15]. This algorithm was used for
the original semi-random process (for k = 1) but, by monotonicity, also applies for any
k ∈ N. It is not as efficient as the one described above but it may be easily analyzed. It
was proved in [15] that a.a.s. this algorithm takes at most 100

√
εn = 10−5n steps, which

is numerically insignificant.

Theorem 7. Let k ∈ N. Then, τPM(k) uk + 10−5, where uk 1/2 is a constant that is
derived from a system of differential equations. The numerical bounds for 1 k 10 are
presented in Table 2.

Proof. To analyze the above algorithm, we introduce the following random variables. Let
X(t) be the number of saturated vertices, that is,X(t) = |V (Mt)| = 2|Mt|. LetR(t) be the
number of red vertices in V [Mt]. The algorithm is designed in such a way that R(t) is also
equal to the number of green vertices, and thus equal to the number of green edges. We
will use the DEs method to analyze the behaviour of the sequence Ht := (X(t), R(t)) but
we will not encompass the full history of the process. For convenience, we will condition
on less information and do not reveal the placement of circles associated with green
edges; their placements amongst the unsaturated vertices remain distributed uniformly
at random.

Let us start with analyzing X(t). Let Ai
t+1 be the event that Case (i) occurred at

step t+1. Note that at step t, the set of vertices is partitioned into unsaturated vertices,
red vertices in V [Mt], uncoloured vertices in V [Mt], and green vertices in V [Mt]. The
algorithm makes a greedy selection of squares from these classes. There are X(t) vertices
that are not unsaturated, X(t) − R(t) of them are not red, and R(t) of the remaining

the electronic journal of combinatorics 31(1) (2024), #P1.11 13

ones are not uncoloured (that is, are green). It follows then that

P(Aa
t+1) = 1−

X(t)

n

k

P(Ab
t+1) =

X(t)

n

k

−

X(t)−R(t)

n

k

P(Ac
t+1) =

X(t)−R(t)

n

k

−

R(t)

n

k

P(Ad
t+1) =

R(t)

n

k

.

Since X(t) increases by 2 when Aa
t+1 or Ab

t+1 occur, and does not change otherwise, we
get that

E[X(t+ 1)−X(t) | Ht] = 2 ·

1−

X(t)−R(t)

n

k

+O(1/n). (7)

The term O(1/n) corresponds to the probability that vt+1 is the same as ut+1 (in Case (a))
or the same as y (in Case (b)).

The analysis of R(t) is slightly more complicated. If Aa
t+1 occurs, then two vertices in

Ut become saturated after the augmentation. Since the endpoints of the set of green edges
(those with circles) are uniformly distributed in Ut, the expected number of green edges
incident with at least one of the two vertices is equal to 2R(t)/(n − X(t)). The other
endpoints of these green edges become uncoloured from green after the augmentation
which, in turn, forces their mates to become uncoloured from red. If Ab

t+1 occurs, then
the situation is similar, except that ut+1 is first uncoloured from red and its mate is
uncoloured from green. If Ac

t+1 occurs, then a new green vertex is created which, in turn,
makes its mate red. Finally, If Ad

t+1 occurs, then there is no change to R(t). It follows
that

E[R(t+ 1)−R(t) | Ht] = P(Aa
t+1) ·

− 2R(t)

n−X(t)

+ P(Ab

t+1) ·

−1− 2(R(t)− 1)

n−X(t)

+P(Ac
t+1) +O(1/n)

= −

P(Aa

t+1) + P(Ab
t+1)

· 2R(t)

n−X(t)

−P(Ab
t+1) + P(Ac

t+1) +O(1/n)

= −

1−

X(t)−R(t)

n

k

· 2R(t)

n−X(t)
−

X(t)

n

k

+2

X(t)−R(t)

n

k

−

R(t)

n

k

+O(1/n). (8)

the electronic journal of combinatorics 31(1) (2024), #P1.11 14

By writing x(s) = X(sn)/n and r(s) = R(sn)/n, we have that

x′ = 2(1− (x− r)k),

r′ =
−2(1− (x− r)k)r

1− x
− xk + 2(x− r)k − rk, (9)

with the initial conditions x(0) = 0 and r(0) = 0.
Let us now check that the assumptions of the DEs method are satisfied. Let ε > 0

be an arbitrarily small constant. Note that the right hand sides of (9) are continuous,
bounded, and Lipschitz in the connected open set

D = {(s, x, r) : −ε < s < 2,−ε < x < 1− ε/3,−ε < r < 1 + ε},

which contains the point (0, x(0), r(0)) = (0, 0, 0). There is no error in the ‘Initial Con-
dition’ so it holds with any λ = Ω(δ). The ‘Trend Hypothesis’ holds with δ = O(1/n)
(see (7) and (8)) so any λ = Ω(1/n) works. Trivially, |X(t+1)−X(t)| 2 for every t TD.
To estimate |R(t + 1) − R(t)|, first note that for any unsaturated vertex, the expected
number of green vertices that are adjacent to it is equal to R(t)/|Ut| = R(t)/(n−X(t))
1/(ε/3) = O(1). It follows from Chernoff’s bound that with probability O(n−2), for any
1 t TD 2n we have |R(t + 1) − R(t)| (log n)2. Hence, the ‘Boundedness Hy-
pothesis’ holds with γ = O(n−2) and β = (log n)2. It follows from Theorem 1, applied
with λ = n−1/4, γ = O(n−2) and β = (log n)2, that the differential equations (9) with the
given initial conditions have a unique solution that can be extended arbitrarily close to
the boundary of D and, more importantly, a.a.s. for every t such that t/n < σ, where σ
is the supremum of s where x(s) 1− ε/2 and s < 2,

max

|X(t)− x(t/n)n|, |R(t)− r(t/n)n|

= O(λn) = o(n).

Numerical calculations show that x(s) reaches 1 − ε/2 before s reaches 2. This gives us
a bound (that holds a.a.s.) for the number of steps for the process to reach at most εn
unsaturated vertices and the clean-up algorithm can deal with the rest.

4.2 Large value of k

Let us show that τPM(k) → 1/2 as k → ∞.

Theorem 8. The following bounds hold:

1

2
 τPM(k)

1

2

1 +O(

log k/k)

.

Proof. The lower bound is trivial. Deterministically, a perfect matching cannot be created
in less than n/2 rounds.

Let us now move to the upper bound. During the first phase that lasts for n/2
steps, we will consider the following greedy algorithm. If at least one square lands on
an unsaturated vertex, then a partial matching is extended; otherwise, an edge that is

the electronic journal of combinatorics 31(1) (2024), #P1.11 15

created at this step is simply ignored and will not be used in the process of constructing
a perfect matching.

Let Y (t) be the number of unsaturated vertices at time t. We will show that a.a.s.
after n/2 steps, all but at most log k/k fraction of vertices are saturated, that is, a.a.s.
Y (n/2) n log k/k. For a contradiction, suppose that Y (n/2) > n log k/k. It implies
that at any step t, 1 t n/2, Y (t) Y (n/2) > n log k/k and so a partial matching
cannot be extended at time t with probability

1− Y (t)

n

k

 exp

−kY (t)

n

< exp(− log k) = 1/k.

Hence, we expect at most n/(2k) steps failing to extend the matching and so a.a.s. at
most n/(2k) + o(n) steps do that by Chernoff’s bound. We get that a.a.s.

Y (n/2) 2 ·
 n

2k
+ o(n)

= n/k + o(n) n log k/k

assuming that k 3 (which we may, since we aim for a result that holds for k large
enough). The desired contradiction implies that a.a.s. at the end of the first phase, there
are at most n log k/k unsaturated vertices.

During the second phase, the clean-up algorithm analyzed in [15] can be used to finish
the job and to saturate the remaining ε = ε(k) = log k/k fraction of vertices. It was
proved in [15] that a.a.s. this algorithm takes at most 100

√
εn = O(n

log k/k) steps,

which finishes the proof of the theorem.

5 Hamiltonian Cycles

In this section, we concentrate on another classical property, namely, the property of
having a Hamiltonian cycle, which we denote by HAM. It is known that a.a.s. the 3-out
process we discussed in the previous section is Hamiltonian [6]. As already mentioned
earlier, the semi-random process can be coupled with the ℓ-out process [4] (for any ℓ ∈ N)
and so we get that τHAM 3. A new upper bound was obtained in [13] in terms of an
optimal solution to an optimization problem whose value is believed to be 2.61135 by
numerical support.

The upper bound on τHAM of 3 obtained by simulating the 3-out process is non-adaptive.
That is, the strategy does not depend on the history of the semi-random process. The
above mentioned improvement proposed in [13] uses an adaptive strategy but in a weak
sense. The strategy consists of 4 phases, each lasting a linear number of rounds, and the
strategy is adjusted only at the end of each phase (for example, the player might identify
vertices of low degree, and then focus on putting circles on them during the next phase).

In [14], a fully adaptive strategy was proposed that pays attention to the graph Gt and
the position of ut for every single step t. As expected, such a strategy creates a Hamilto-
nian cycle substantially faster than the weakly adaptive or non-adaptive strategies, and it
allows to improve the upper bound from 2.61135 to 2.01678. One more trick was observed

the electronic journal of combinatorics 31(1) (2024), #P1.11 16

recently which further improves the upper bound to 1.84887 [9]. After combining all the
ideas together, the currently best upper bound is equal to 1.81701 [10]. In this paper, we
adjust a slightly easier version of the algorithm from [9] to deal with the k-process and
present the corresponding upper bounds (see Subsection 5.1).

Let us now move to the lower bounds. As observed in the initial paper introducing
the semi-random process [4], if Gt has a Hamiltonian cycle, then Gt has minimum degree
at least 2. Thus, τHAM τP2 = ln 2 + ln(1 + ln 2) 1.21973, where P2 corresponds to
the property of having the minimum degree at least 2—see Section 3. In [13], the lower
bound mentioned above was shown to not be tight. However, the lower bound was only
increased by ε = 10−8 and so numerically negligible. A better bound was obtained in [14]
(see also [10]) and now we know that τHAM 1.26575. Adjusting the lower bound from [14]
seems challenging and technical so we only report trivial lower bounds using the results
from Section 3: τHAM(k) τP2(k). The gap between the upper and lower bounds gets small
as k gets large. In fact, τHAM(k) → 1 as k → ∞ (see Subsection 5.2).

Table 3: Hamilton Cycles—numerical upper and lower bounds of τHAM(k) for 1 k 10.
Stronger upper and lower bounds for k = 1 follow from [10] and [14] respectively.

lower bound upper bound lower bound upper bound
k = 1 1.21974 (1.26575) 1.87230 (1.81701) k = 6 1.05075 1.13325
k = 2 1.12498 1.39618 k = 7 1.04426 1.11534
k = 3 1.09081 1.26077 k = 8 1.03924 1.10180
k = 4 1.07184 1.19615 k = 9 1.03525 1.09115
k = 5 1.05947 1.15827 k = 10 1.03199 1.08254

5.1 Upper bound for τHAM(k)

In this subsection, we adjust a slightly easier version of the algorithm from [9] to deal
with the k-process for any k ∈ N. For k = 1, it yields a bound of 1.87230 which is slightly
worse than the one reported in [9] (1.84887) and in [10] (1.81696) but is easier to analyze.
For k 2 the difference would be even smaller, but with substantially larger effort one
may do it.

The algorithm builds a path that eventually becomes a Hamiltonian path and then it
is turned into a Hamiltonian cycle. Let X(t) be the number of vertices that belong to
the path Pt that is present at time t. Some of the vertices outside of Pt will be matched
with each other and will form a matching. Let Y (t) be the number of vertices outside
of Pt that are matched. The remaining vertices (not on the path Pt nor matched) are
unsaturated. Let U(t) be the number of unsaturated vertices.

It is convenient to colour some of our vertices and edges red. Vertices on the path Pt

are red if they are adjacent to precisely one red edge of Gt (this edge will not belong to
Pt). Let R(t) be the number of red vertices. It will be useful to maintain the property

the electronic journal of combinatorics 31(1) (2024), #P1.11 17

that no two red vertices are at the path distance less than 3 from each other. Assume
then that this property is satisfied at time t. Clearly, there are 2R(t)+O(1) vertices of Pt

that are at distance 1 from the set of red vertices; we colour such vertices green. (Note
that it is possible that one or both of the endpoints of the path are red and such vertices
have only one neighbour on the path. This explains additional O(1) term.) Moreover,
there are at most 2R(t) vertices that are at distance 2 (the distance along the path) from
the set of red vertices and are not green (nor red, of course, as no two red vertices are
at distance 2 from each other); we call them useless. The reason to introduce useless
vertices is to make sure that each red vertex (except possibly two red vertices at the end
of the path) is surrounded by unique two green vertices. If, at some point of the process,
the square lands on a green vertex, then the player can extend the path by placing a circle
at the endpoint of the associated red edge that does not belong to the path. To simplify
the analysis, we arbitrarily select more vertices on the path that are not red nor green
and call them useless so that there are 2R(t) +O(1) useless vertices. Vertices on Pt that
are not coloured nor useless are called permissible.

Note that in each step of the process the set of vertices is partitioned into 6 sets:
red vertices, green vertices, useless vertices, permissible vertices, matched vertices, and
unsaturated vertices. We will track the length of the path Pt (random variable X(t)),
the number of red vertices (random variable R(t)) and the number of matched vertices
(random variable Y (t)). By design, the number of green and useless vertices are both equal
to 2R(t) +O(1) so there is no need to track them. Similarly, the number of permissible
vertices is equal to X(t) − 5R(t) + O(1). Finally, the number of unsaturated vertices is
equal to n−X(t)− Y (t).

Suppose that at time t, k squares land on vertices u1
t , . . . , u

k
t . We consider a few cases.

The algorithm performs the first case that holds.

Case (a): At least one square lands on an unsaturated vertex. We arbitrarily select one
of them to be ut and let vt be a uniformly random unsaturated vertex. If ut = vt,
then we do nothing; otherwise, we extend the partial matching by adding the edge
utvt we just created to it.

Case (b): At least one square lands on a matched vertex. We arbitrarily select one of the
matched vertices to be ut and let vt be one of the two endpoints of the path. We
greedily extend Pt−1 by adding vtut and the edge containing ut from the matching to
the path. If some red vertex x is adjacent to either of the two absorbed vertices by
a red edge, then we uncolour this red edge and uncolour x. This, in turn, uncolours
green neighbours of x.

Case (c): At least one square lands on a green vertex. We arbitrarily select one of these
green vertices to be ut and let y be the unique red neighbour of ut. We augment
Pt−1 via the unique red edge yz. If z is unsaturated (sub-case (c’)), then we let
vt = z, add edges utvt = utz, vty = zy, and remove edge uty from Pt−1 to form Pt.
On the other hand, if z is matched to vertex q (sub-case (c”)), then we let vt = q,
add edges utvt = utq, qz = vtz, zy, and remove edge uty. If some red vertex x is

the electronic journal of combinatorics 31(1) (2024), #P1.11 18

adjacent to the absorbed vertex z (or the absorbed vertices z and q in the second
sub-case) by a red edge, then we uncolour this red edge and uncolour x. As before,
this uncolours green neighbours of x.

Case (d): At least one square lands on a permissible vertex. We arbitrarily select one of
these vertices to be ut. Then, we choose vt uniformly at random amongst matched
and unsaturated vertices, and colour utvt red. This case creates one red vertex,
namely, vertex ut, and two green vertices (or one if ut is one of the endpoints of the
path).

Case (e): All squares land on useless or red vertices. In this case, we choose vt arbitrarily
and interpret the algorithm as passing on this round, meaning the edge utvt will not
be used to construct a Hamiltonian cycle.

The analysis of the above algorithm is the main ingredient of the proof of the next
result. Let us note that one may consider different orders of the above five cases yielding
5! = 120 greedy algorithms. We selected the order that gives the strongest upper bound.

Theorem 9. Let k ∈ N. Then, τHAM(k) uk, where uk ∈ [1, 3) is a constant that is
derived from a system of differential equations. The numerical bounds for 1 k 10 are
presented in Table 3.

Proof. Let Ai
t+1 be the event that Case (i) occurred at step t+ 1. It follows that

P(Aa
t+1) = 1−

X(t) + Y (t)

n

k

P(Ab
t+1) =

X(t) + Y (t)

n

k

−

X(t)

n

k

P(Ac
t+1) =

X(t)

n

k

−

X(t)− 2R(t) +O(1)

n

k

P(Ad
t+1) =

X(t)− 2R(t) +O(1)

n

k

−

3R(t) +O(1)

n

k

P(Ae
t+1) =

3R(t) +O(1)

n

k

.

We first need to estimate the expected change in the three random variables we track.
Let us denote Ht = (X(i), R(i), Y (i))0it. Note that Ht does not encompass the entire
history of the random process after t rounds (that is, G0, . . . , Gt). This deferred informa-
tion exposure permits a tractable analysis of the random positioning of vt when ut is red.
In particular, as we only expose R(t) instead of the exact locations of the red edges, their
endpoints which are not on the path are random vertices in [n] \ V (Pt). Similarly, as we
only expose Y (t) instead of the exact locations of the edges that form a matching, these
edges have the same distribution (conditional on Ht) as first exposing the set of vertices
in [n] \ V (Pt), then uniformly selecting a subset of vertices in [n] \ V (Pt) of cardinality

the electronic journal of combinatorics 31(1) (2024), #P1.11 19

Y (t), and then finally taking a uniformly random perfect matching over the Y (t) vertices
(that is, pair the Y (t) vertices into Y (t)/2 disjoint edges of the matching).

We observe the following expected difference equations. Let us start from X(t), which
is the easiest to deal with. X(t) changes only when case (b) or case (c) occurs; it increases
by 2 in case (b) and increases by 1 or 2 in case (c). Conditioning on case (c) occurring,
since the endpoint of the red edge we augment via is a random vertex in [n] \ V (Pt), sub-
case (c’) occurs with probability (n −X(t) − Y (t))/(n −X(t)) and sub-case (c”) occurs
with probability Y (t)/(n−X(t))—we expect to absorb 1+ Y (t)/(n−X(t)) vertices. We
get that

E[X(t+ 1)−X(t) | Ht] = 2 · P(Ab
t+1) +

1 +

Y (t)

n−X(t)

· P(Ac

t+1). (10)

Investigating the behaviour of Y (t) is also relatively easy to do. Y (t) increases by 2 in
case (a) and decreases by 2 in case (b). In case (c), it may decrease by 2 but only when
the endpoint of a red edge is matched (sub-case (c”)). We get that

E[Y (t+ 1)− Y (t) | Ht] = 2 · P(Aa
t+1)− 2 · P(Ab

t+1)− 2 · P(Ac
t+1) ·

Y (t)

n−X(t)
. (11)

The most challenging part is to understand the behaviour of R(t). The contribution to
the expected change comes from two sources. In case (c) we augment via a red edge so
one red vertex gets uncoloured and in case (d) we create one red vertex. The second
source is associated with the fact that when one or two vertices get absorbed into the
path all red edges incident to them get uncoloured. The expected number of vertices
that get absorbed is already computed in (10). Each vertex that gets absorbed uncolours
(R(t) +O(1))/(n−X(t)) red vertices. We get that

E[R(t+ 1)−R(t) |Ht] = −P(Ac
t+1) + P(Ad

t+1)

−

2 · P(Ab

t+1) +

1 +

Y (t)

n−X(t)

· P(Ac

t+1)

·R(t) +O(1)

n−X(t)

= − 2R(t)

n−X(t)
· P(Ab

t+1) (12)

−

(n−X(t) + Y (t)) · (R(t) +O(1))

(n−X(t))2
+1

·P(Ac

t+1)+P(Ad
t+1).

After rescaling, (10), (11), and (12), we get the following set of DEs:

x′ = 2

(x+ y)k − xk

+

1 +

y

1− x

xk − (x− 2r)k

y′ = 2

1− (x+ y)k

− 2

(x+ y)k − xk

− 2

xk − (x− 2r)k

 y

1− x

r′ = − 2r

1− x

(x+ y)k − xk

−

(1− x+ y)r

(1− x)2
+ 1

xk − (x− 2r)k

+

(x− 2r)k − (3r)k

, (13)

the electronic journal of combinatorics 31(1) (2024), #P1.11 20

with the initial conditions x(0) = 0, y(0) = 0, and r(0) = 0.
As usual, we need to check that the assumptions of the DEs method are satisfied. Let

ε > 0 be an arbitrarily small constant. Initially, X(0) = Y (0) = R(0) = 0 so the ‘Initial
Condition’ trivially holds. The right hand sides of all equations in (13) are continuous,
bounded, and Lipschitz in the connected open set

Dε = {(s, x, y, r) : −1 < s < 3,−1 < x < 1− ε,−1 < y, r < 2},

which contains the point (0, 0, 0, 0). (Note that we need to restrict the interval for x due
to a singularity point x = 1.) Define

TDε = min{t 0 : (t/n,X(t)/n, Y (t)/n,R(t)/n) /∈ Dε}.

The ‘Trend Hypothesis’ holds with δ = O(1/n). The ‘Boundedness Hypothesis’ requires
more investigation. Random variables X(t) and Y (t) can change by at most 2 in each
round. To estimate the maximum change for the random variable R(t), we need to upper
bound the number of red edges adjacent to any unsaturated or matched vertex v. Observe
that at any step t 3n, since we have assumed that there are at least εn unsaturated or
matched vertices, the number of red edges adjacent to v is stochastically upper bounded by
Bin(3n, 1/(εn)) with expectation 3/ε. It follows immediately from Chernoff’s bound (1)
that with probability 1 − O(n−3), the number of red vertices adjacent to v is at most
β = O(log n). Hence, the ‘Boundedness Hypothesis’ holds with probability at least 1− γ
with γ = O(n−1) by taking the union bound over all 3n2 vertices and steps.

We conclude, based on Theorem 1, that for every τ > 0, a.a.s. for any 0 t
(σ(ε)− τ)n,

max

|X(t)− x(t/n)n|, |Y (t)− y(t/n)n|, |R(t)− r(t/n)n|

= O(λn) = o(n),

where x, y, r are the unique solutions of the above DEs satisfying the desired initial con-
ditions, and σ(ε) is the supremum of s to which the solution can be extended before
reaching the boundary of TDε . As Dε ⊆ Dε′ for every ε > ε′ > 0, σ(ε) is monotonely
nondecreasing as ε → 0. Thus,

uk := lim
ε→0+

σ(ε)

exists. It is obvious that |Y (t)/n| and |R(t)/n| are both bounded by 1 for all t and thus,
when t/n approaches uk, either X(t)/n approaches 1 or t/n approaches 3. If follows that
a.a.s. either X(t) > (1− ε)n for all t (uk − δ)n or uk = 3. The above DEs do not have
an analytical solution but numerical solutions show that uk u1 < 1.87230. Hence, by
the end of the execution of the algorithm, there are εn unsaturated or matched vertices
remaining for some ε = o(1).

The clean-up algorithm analyzed in [14] (see also [10]) absorbs the remaining εn = o(n)
vertices into the path to form a Hamiltonian path, after which a Hamiltonian cycle is
constructed. The whole procedure takes O(

√
εn+n3/4 log2 n) = o(n) further steps, which

finishes the proof of the theorem.

the electronic journal of combinatorics 31(1) (2024), #P1.11 21

5.2 Large value of k

In this subsection, we show that τHAM(k) → 1 as k → ∞.

Theorem 10. The following bounds hold:

1 τHAM(k) 1 +O(

log k/k).

Proof. The proof is almost the same as the proof of Theorem 8. The lower bound is
trivial: one cannot create a Hamilton cycle in less than n rounds.

As before, during the first phase that lasts for n steps, a greedy algorithm is used that
extends a path whenever at least one square lands on a vertex that is not on the path.
At the end of this phase, a.a.s. a path of length at least n− n log k/k is created.

During the second phase, another clean-up algorithm can be used (analyzed in [14])
to finish the job and to absorb the remaining ε = ε(k) = log k/k fraction of vertices. It
was proved in [14] that a.a.s. this algorithm takes O(

√
εn) = O(n

log k/k) steps, which

finishes the proof of the theorem.

References

[1] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced allocations.
In Proceedings of the twenty-sixth annual ACM symposium on theory of computing,
pages 593–602, 1994.

[2] Natalie Behague, Trent Marbach, Pawel Pralat, and Andrzej Ruciński. Subgraph
games in the semi-random graph process and its generalization to hypergraphs.
arXiv:2105.07034, 2022.

[3] Omri Ben-Eliezer, Lior Gishboliner, Dan Hefetz, and Michael Krivelevich. Very fast
construction of bounded-degree spanning graphs via the semi-random graph process.
Proceedings of the 31st Symposium on Discrete Algorithms (SODA’20), pages 728–
737, 2020.

[4] Omri Ben-Eliezer, Dan Hefetz, Gal Kronenberg, Olaf Parczyk, Clara Shikhelman,
and Miloš Stojaković. Semi-random graph process. Random Structures & Algorithms,
56(3):648–675, 2020.

[5] Laurent Bernardin, Paulina Chin, Paul DeMarco, Keith O Geddes, DEG Hare,
KM Heal, G Labahn, JP May, J McCarron, MB Monagan, et al. Maple programming
guide. Maplesoft, a Division of Waterloo Maple Inc., Waterloo, 2016.

[6] Tom Bohman and Alan Frieze. Hamilton cycles in 3-out. Random Structures &
Algorithms, 35(4):393–417, 2009.

[7] Sofiya Burova and Lyuben Lichev. The semi-random tree process, 2022.

[8] Devdatt Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
Random Structures & Algorithms, 13(5):99–124, 1998.

[9] Alan Frieze and Gregory B. Sorkin. Hamilton cycles in a semi-random graph model.
arXiv:2208.00255, 2022.

the electronic journal of combinatorics 31(1) (2024), #P1.11 22

https://arxiv.org/abs/2105.07034
https://arxiv.org/abs/2208.00255

[10] Alan Frieze, Gregory B. Sorkin, Pu Gao, CalumMacRury, and Pawel Pralat. Building
hamiltonian cycles in the semi-random graph process in less than 2n rounds. preprint,
2023.

[11] Alan M Frieze. Maximum matchings in a class of random graphs. Journal of Com-
binatorial Theory, Series B, 40(2):196–212, 1986.

[12] David Gamarnik, Mihyun Kang, and Pawel Pralat. Cliques, chromatic number, and
independent sets in the semi-random process. arXiv:2303.13443, 2023.

[13] Pu Gao, Bogumil Kamiński, Calum MacRury, and Pawel Pralat. Hamilton cycles
in the semi-random graph process. European Journal of Combinatorics, 99:103423,
2022.

[14] Pu Gao, Calum MacRury, and Pawel Pralat. A fully adaptive strategy for hamilto-
nian cycles in the semi-random graph process. In Amit Chakrabarti and Chaitanya
Swamy, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022,
University of Illinois, Urbana-Champaign, USA (Virtual Conference), volume 245 of
LIPIcs, pages 29:1–29:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[15] Pu Gao, Calum MacRury, and Pawel Pralat. Perfect matchings in the semirandom
graph process. SIAM Journal on Discrete Mathematics, 36(2):1274–1290, 2022.

[16] Svante Janson, Tomasz Luczak, and Andrzej Ruciński. Random graphs, volume 45.
John Wiley & Sons, 2011.

[17] Michal Karoński and Alan Frieze. Introduction to Random Graphs. Cambridge
University Press, 2016.

[18] Michal Karoński, Ed Overman, and Boris Pittel. On a perfect matching in a random
digraph with average out-degree below two. Journal of Combinatorial Theory, Series
B, 143, 03 2020.

[19] Hidde Koerts. k-connectedness and k-factors in the semi-random graph process.
Master’s thesis, University of Waterloo, 2022.

[20] Calum MacRury and Erlang Surya. Sharp thresholds in adaptive random graph
processes. CoRR, 2022.

[21] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random
choices: A survey of techniques and results. Combinatorial Optimization, 9:255–304,
2001.

[22] Lutz Warnke. On Wormald’s differential equation method. CoRR, abs/1905.08928,
2019.

the electronic journal of combinatorics 31(1) (2024), #P1.11 23

https://arxiv.org/abs/2303.13443

