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Abstract. Efficient and accurate 3D reconstruction is crucial for various applica-
tions, including augmented and virtual reality, medical imaging, and cinematic spe-
cial effects. While traditional Multi-View Stereo (MVS) systems have been funda-
mental in these applications, using neural implicit fields in implicit 3D scene mod-
eling has introduced new possibilities for handling complex topologies and con-
tinuous surfaces. However, neural implicit fields often suffer from computational
inefficiencies, overfitting, and heavy reliance on data quality, limiting their prac-
tical use. This paper presents an enhanced MVS framework that integrates multi-
view 360-degree imagery with robust camera pose estimation via Structure from
Motion (SfM) and advanced image processing for point cloud densification, mesh
reconstruction, and texturing. Our approach significantly improves upon traditional
MVS methods, offering superior accuracy and precision as validated using Cham-
fer distance metrics on the Realistic Synthetic 360 dataset. The developed MVS
technique enhances the detail and clarity of 3D reconstructions and demonstrates
superior computational efficiency and robustness in complex scene reconstruction,
effectively handling occlusions and varying viewpoints. These improvements sug-
gest that our MVS framework can compete with and potentially exceed current
state-of-the-art neural implicit field methods, especially in scenarios requiring real-
time processing and scalability.
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1. Introduction

The pursuit of realistic and accurate 3D reconstruction has long been a focal point in
the field of computer vision and graphics, finding applications across a spectrum of in-
dustries, including augmented and virtual reality (AR/VR), medical imaging, and spe-
cial effects in media production. Historically, the development and implementation of
Multi-View Stereo (MVS) systems [1,2] have been central to these efforts. MVS, leverag-
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ing photometric consistency [3], has enabled the reconstruction of complex scenes from
multiple images by assessing and integrating the geometric and photometric information
captured from different viewpoints.

Despite the robustness and extensive application of MVS in various scenarios, the
advent of neural implicit fields [4,5] has ushered in a transformative era in 3D scene re-
construction. These methods utilize deep learning to create implicit models of scenes, es-
sentially learning continuous volumetric fields that represent complex surfaces and struc-
tures. While they offer the advantage of handling intricate topologies and continuous sur-
face representations without the need for explicit mesh construction, they are not with-
out limitations. Neural implicit fields often require extensive computational resources for
training and are sensitive to the diversity and quality of training data, issues that can lead
to overfitting and generalized inaccuracies in practical applications.

Given the computational inefficiencies and practical limitations of neural implicit
fields, there remains a significant opportunity to advance MVS techniques, especially in
contexts demanding high precision, real-time processing, and efficient resource utiliza-
tion. This paper introduces an enhanced MVS framework that significantly refines the
traditional approach by integrating the latest advancements in camera pose estimation
and sophisticated image processing techniques. By employing a structured pipeline that
includes camera pose estimation via Structure from Motion (SfM), followed by point
cloud densification, mesh reconstruction, and texture mapping, our method retains and
enhances the practical virtues of MVS.

Our comparative studies, grounded in rigorous evaluations using the Realistic Syn-
thetic 360 dataset [6] and Chamfer distance metrics, demonstrate the superior perfor-
mance of our proposed method over existing state-of-the-art techniques, including those
based on neural implicit fields. This paper details a novel MVS-based approach that ef-
fectively combines scalability, accuracy, and computational efficiency.

The remainder of this paper is organized as follows: Section 2 reviews the relevant
literature, Section 3 describes our methodology, Section 4 discusses the experimental
setup and presents our results, and Section 5 concludes with a summary of our findings
and discusses avenues for future research.

2. Related Work

Pursuing realistic and accurate 3D reconstruction has been a focal point in computer vi-
sion and graphics, with applications in augmented and virtual reality, medical imaging,
and media production. MVS systems and neural implicit fields have significantly con-
tributed to advancing 3D reconstruction techniques. Moreover, despite these advance-
ments, time complexity, detailed and accurate reconstruction, and the training time for
neural implicit fields are still in open discussion.

MVS is a well-established technique to reconstruct dense 3D scene representa-
tions from overlapping images. Traditional MVS methods typically rely on comparing
RGB image patches using metrics such as Normalized Cross-Correlation (NCC), Sum
of Squared Differences (SSD), or Sum of Absolute Differences (SAD) [7]. In recent
years, PatchMatch-based MVS approaches [8] have become popular due to their high
parallelism and robust performance [9,10].

The emergence of deep learning has resulted in significant progress in MVS. MVS-
Net [11] constructs cost volumes by warping feature maps from neighboring views and
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utilizes 3D Convolutional Neural Networks (CNNs) to regularize the cost volumes. To
address the memory consumption of 3D CNNs, R-MVSNet [12] sequentially regularizes
2D cost maps using a gated recurrent network. Other approaches [13,14] incorporate
coarse-to-fine multi-stage strategies to refine the 3D cost volumes progressively. Patch-
matchNet [15] introduces an iterative multiscale PatchMatch strategy in a differentiable
MVS architecture. More recently, TransMVSNet [16] integrates Transformers to aggre-
gate long-range context information within and across images. Still, matching pixels in
low-texture or non-Lambertian areas remains challenging, and errors can accumulate
from the subsequent point cloud fusion and surface reconstruction steps.

2.1. Neural Implicit Fields

In recent years, neural implicit fields have become increasingly popular for multi-view
3D surface reconstruction. The reason for this growth can be attributed to the introduc-
tion of differentiable rendering of implicit functions training methods. In early works,
surface rendering procedures were relied upon, wherein the color of a pixel was esti-
mated using the radiance of a single point in the volume [17,18]. However, these methods
have been surpassed by training procedures based on volume rendering, with multiple
samples being taken via ray marching.

The technique of volumetric ray marching, introduced in the pioneering research on
Neural Radiance Fields (NeRFs) [19], has been adapted to surface modelling, leading
to significant improvements in reconstruction quality. This method estimates the color
along the ray using the volume rendering integral, approximated as a sum of weighted
radiances at multiple points throughout the volume. To increase the accuracy of the ap-
proximation, researchers have employed methods based on importance [20,21], uncer-
tainty [22], or surface intersection-based [23] sampling, which have outperformed sim-
pler strategies such as uniform sampling.

Recent advancements in neural implicit fields have introduced hybrid surface rep-
resentations that enhance ray marching [24]. These representations limit the sampling
space to a volume that roughly encompasses the scene in conjunction with the method
of the base neural reconstruction. Researchers have optimized the selection of samples
surrounding the reconstructed surface [24], which led to a superior reconstruction. More-
over, these hybrid surface representations have been used to guide the sampling of train-
ing rays, resulting in better reconstructions within the same training time. The progress in
neural implicit fields has been driven by the development of more accurate and efficient
sampling strategies, along with integrating these hybrid surface representations.

The main contributions of our paper are as follows: 1. We propose a robust MVS
framework that integrates multi-view 3600 imagery with advanced processing tech-
niques to produce detailed and accurate 3D point clouds and meshes; 2. We achieve su-
perior performance in terms of accuracy and precision, outperforming existing neu-
ral implicit field approaches and traditional MVS methods, as demonstrated through ex-
tensive testing with Chamfer distance metrics on a comprehensive dataset. 3. We demon-
strate a high computational efficiency by optimizing each stage of the MVS process,
leading to a substantial reduction of the computational resources required, facilitating
faster processing and greater efficiency; 4. We illustrate the robustness of our ap-
proach on complex scene reconstruction: since our method exhibits exceptional capa-
bility in handling occlusions and adapting to varying viewpoints, ensuring reliable and
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comprehensive scene reconstructions. 5. Our method achieves scalability and appli-
cation versatility: designed to accommodate both bounded and unbounded scenes with-
out specific image-capturing patterns, the proposed framework adapts seamlessly across
various scales and environments, making it suitable for various applications.

3. Proposed Methodology

Our study focuses on achieving precise point cloud-based 3D reconstruction of objects
from multiple views. This section introduces our novel pipeline, which embodies our key
contributions to the field. Central to our approach is the innovative integration of camera
pose estimation (SfM) with subsequent stages: Densify Point Cloud, Mesh Reconstruc-
tion, Mesh Refinement, and Texture Mesh. By meticulously coordinating these modules,
we have achieved superior performance in terms of accuracy and precision compared
to existing state-of-the-art methods. Our pipeline not only enhances computational effi-
ciency but also demonstrates robust capability in handling complex scene reconstruction.

Figure 1. This figure illustrates the proposed multi-phases framework, where (a) takes multi-view 360-degree
images with transparent background (i.e; object-centric RGBA images); pass them to (b) Camera Pose and
Point Cloud Estimation phase, which estimates a point cloud and camera poses based on the extracted SIFT
features from RGBA inputs; the point cloud passed to (c) Densify Point Cloud for obtaining a complete and
accurate as possible point-cloud; (d) Mesh Reconstruction for estimating a mesh surface that explains the best
the input point-cloud; (e) Mesh Refinement for recovering all fine details; (f) Texture Mesh for computing a
sharp and accurate texture to color the mesh; finally (j) is the output mesh.

3.1. Overview

Our framework aims to achieve high-quality 3D reconstruction of objects in real scenar-
ios by a given set of RGB images. Our framework relies on three distinct phases: 1. Input
Images, 2. Camera and Point Cloud Estimation, and 3. 3D Reconstruction.
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Fig. 1 shows a diagram representing the general overview of our proposed frame-
work. In the first phase, (Fig. 1(a)), our framework accepts a 3600 scene as a set of in-
put RGBA images. The next phase (Fig. 1(b)) extracts the SIFT features from the given
images, triangulates matches of similar features where it helps to estimate the camera
locations (i.e. poses), and returns a point cloud. The last phase (Fig. 1(c-f)) relies on four
distinct phases. In Densify Point Cloud (Fig. 1(c)), our framework obtains a complete
and accurate possible point cloud from the given point cloud by recovering the missing
parts of the scene using a Patch-Match [8] approach. In the Mesh Reconstruction (Fig.
1(d)) phase, our framework uses the dense point cloud obtained from the previous steps
as its input resulting in a rough mesh. In the Mesh Refinement phase (Fig. 1(e)), the
rough mesh is refined to recover fine details and larger missing parts of objects. Finally,
in the Texture Mesh phase (Fig. 1(f)), the mesh is colored based on the input images.

3.2. Our Proposal: MVSBoost

Our framework aims to propose rich and expressive meshes from a set of NI input im-
ages I = {Ii|i = 1 . . .NI}. In this section, we present the Camera Pose and Point Cloud
Estimation. Secondly, we present the Densify Point Cloud, Mesh Reconstruction, Mesh
Refinement, and Texture Mesh as 3D reconstruction using Point Cloud phases.

3.3. Camera Pose and Point Cloud Estimation

SfM [25] is a sequential process that reconstructs 3D structures from multiple images
taken from different viewpoints. It typically involves feature extraction, feature match-
ing, geometric verification, and an iterative reconstruction stage. The initial step involves
searching for correspondences to identify scene overlap in a set of input images I and
determining the projections of common points in overlapping images. This process re-
sults in a collection of geometrically verified image pairs C̄ and a graph representing
the projections of each point in the images. In the feature extraction step, SfM in-
volves detecting local features Fi = {(x j, f j)| j = 1...NFi} in each image Ii, where x j
represents the location and f j is the appearance descriptor. These features should be in-
variant to radiometric and geometric changes to ensure unique recognition across mul-
tiple images. SIFT and its derivatives and learned features are considered the most ro-
bust options, while binary features offer better efficiency at the cost of reduced robust-
ness. In the feature matching step, SfM identifies images capturing the same scene
elements by utilizing features Fi as descriptors of image appearances. Instead of ex-
haustively comparing all image pairs for scene overlap, SfM matches features between
images Ia and Ib by assessing the similarity of feature appearances, f j. This direct ap-
proach has a computational complexity of O(N2

I ×N2
Fi
), which becomes impractical for

large image datasets. Various methods have been developed to address the challenge of
efficient and scalable matching. The outcome is a set of potentially overlapping image
pairs C = {{Ia, Ib}|Ia, Ib ∈ I ,a < b} along with their corresponding feature matches
Mab ∈ Fa ×Fb. In the geometric verification step, the third stage in SfM verifies po-
tentially overlapping image pairs C by estimating transformations using projective ge-
ometry to ensure corresponding features map to the same scene point. Different map-
pings, such as homography H for planar scenes, epipolar geometry with essential ma-
trix E or fundamental matrix F for moving cameras, and trifocal tensor for three views,
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are used based on the spatial configuration. Robust techniques like RANSAC handle
outlier-contaminated matches, resulting in geometrically verified image pairs C̄ with in-
lier correspondences M̄ab and their geometric relations Gab. Decision criteria like GRIC
or methods like QDEGSAC aid in determining the appropriate relation, forming a scene
graph with images as nodes and verified pairs as edges, resulting in a point cloud data
structure, as shown in Fig. 1(b).

3.4. 3D Reconstruction

(a) Densify Point Cloud (b) Mesh Reconstruction (c) Mesh Refinement (d) Texture Mesh

Figure 2. An illustration on the 3D reconstruction module on the Chair scene.

In Densify Point Cloud, the dense point cloud extraction involves the process of
enhancing a sparse point cloud created through SfM by utilizing depth map computation
and Depth map fusion techniques. Depth map fusion works by generating depth maps
for individual input images through feature matching across adjacent perspectives; the
feature matching is conducted at various resolution levels until a detailed set of dense
depth maps is obtained. Let Di represent the depth map for image Ii, computed through
feature matching: Di = f (Ii, Iad j,R). Where Iad j denotes the set of adjacent images and
R represents the resolution and different levels of detail. Subsequently, these depth maps
are consolidated into a unified dense point cloud Pd , effectively eliminating superfluous
points and noise during the fusion process: Pd = g(Di), as shown in Fig. 2 (a).
Mesh reconstruction uses an MVS approach to create a mesh from a dense point cloud.
The point cloud is first transformed into a tetrahedral mesh T through f D Delaunay tri-
angulation function: T = f D(Pd). Then, a graph-cut optimization f G determines whether
each tetrahedron is inside or outside the object: L = f G(T ). Finally, the marching cubes
algorithm M extracts the mesh surface from the labeled tetrahedra: M =M(T,L). The re-
sulting mesh M is a seamless and accurate representation of the object’s geometry based
on the original point cloud data, as shown in Fig. 2 (b).
Mesh refinement is a set of techniques used to improve the quality of reconstructed
meshes. These techniques include mesh simplification f S, which reduces the number
of vertices while preserving important details: Ms = f S(M), and mesh smoothing f S

m,
achieved using Laplacian or bilateral filtering to eliminate noise and outliers: Msm =
f S
m(Ms). Additionally, mesh denoising f D

e is used further to enhance the mesh quality
through normal voting tensor filtering: Md = f D

e (Msm). Mesh optimization techniques
f̂ , such as vertex relaxation and edge flipping, are employed to refine the quality of the
triangles: M̂ = f̂ (Md). These refinement processes create a clean and precise mesh M̂
that accurately represents the object’s surface characteristics, as shown in Fig. 2 (c).
Texture mesh involves mapping images onto the 3D model to create a realistic and
detailed surface representation. This process significantly enhances the visual quality of
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the 3D model, making it suitable for various applications like virtual reality, gaming,
and visualization. Texture mapping involves associating 2D image coordinates (texture
coordinates) with the vertices of the 3D mesh: Tc = {(ui,vi)|i = 1, ...,Nv}. Apply the
texture coordinates f T to the mesh M̂ to obtain the textured mesh: Mt = f T (M̂,Tc,I ).
Texture mapping is crucial for adding color, patterns, and details to the mesh, providing a
more immersive and realistic experience when interacting with the 3D model, as shown
in Fig. 2 (d).

4. Experimental Results

To evaluate our proposed approach, we use the Chamfer distance [24] metric, a com-
monly used measure for assessing the quality of surface reconstruction. This metric cal-
culates the average distance between each point in one point set (e.g., the reconstructed
surface) and its nearest neighbor in another point set (e.g., the ground truth surface). By
combining this distance metric with the Realistic Synthetic 360 dataset, we can compre-
hensively assess the performance of our proposed method for 3D reconstruction tasks.
These benchmark datasets provide a standardized and challenging environment to test
the accuracy and robustness of our approach, ensuring that our findings are reliable and
comparable to other state-of-the-art methods in the field, as shown in Table. 1.

4.1. Evaluation protocol

We followed the same evaluation protocol of Sphere NeuralWarp [24] for a fair compari-
son. Notably, since the Chamfer distance is sensitive to rotation, translation, and orienta-
tion between meshes, the baselines use extra information to register the predicted mesh
with the ground truth mesh such as camera intrinsics information. In contrast, we use
Iterative Closest Point (ICP) [26] to rigidly align the groundtruth and the reconstructed
mesh avoiding the need of additional information such as camera intrinsics.

4.2. Implementation settings

We used GeForce GTX 1080 Ti/12G to run our experiments. For the Camera Pose and
Point Cloud estimation phase (Fig. 1(a)), we use COLMAP [27,28]. For the feature ex-
tractor, we set a single camera option, maximum image size as 1000, default focal length
as 5.2, maximum number of SIFT features as 2048, BA global function tolerance as
0.000001, and focal length ratio in range [0.1 . . .10]. For the 3D reconstruction phase
(Fig. 1(c-f)), we use OpenMVS [29]. We set the close-holes parameter as 400, mesh
smooth parameter as 5, and the maximum resolution parameter as 512.

4.3. Datasets

Our primary experiments use the widely recognized 3D reconstruction benchmark
datasets, Realistic Synthetic 360 [19]. The Realistic Synthetic 360 dataset was created
for novel view synthesis [19]. Recently, it has been repurposed to evaluate 3D recon-
struction algorithms. The dataset contains eight scenes (400 images per scene; each im-
age is 800× 800 px, including masks and depth images) with complex geometries and
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Figure 3. A side-by-side comparison of our method’s results with the ground truth from the Realistic Syn-
thetic 360 dataset. The figure illustrates significant differences and improvements in the presented scenes: the
Chair, Hotdog, and Ship. Our reconstruction exhibits superior precision, refinement, detail, and texture fidelity
compared to existing methods, as evidenced by the clear visual distinctions.

non-Lambertian materials, making it a challenging benchmark. The ground truth meshes
are filtered to remove non-visible internal surfaces to ensure fair comparisons. Similarly,
the reconstructed meshes also undergo a similar process.

4.4. Comparative Analysis

We compared our method to seven state-of-the-art methods on eight scenes of the Real-
istic Synthetic 360 dataset, each presenting unique structural complexities in the recon-
structed surface. These complexities challenge standard methods in accurately estimat-
ing the locations of high-density regions. This limitation hinders the optimization process
and diminishes reconstruction quality and rendering performance.
Quantitative Results: Our proposed method was evaluated against seven state-of-the-
art methods (COLMAP [30], NeuS [31], Sphere NeuS [24], NeuS w/ masks [31], Sphere
NeuS w/ masks [24], NeuralWarp [4], and Sphere NeuralWarp [24]) using the Realis-
tic Synthetic 360 dataset. The results are shown in Table 1, indicating that our method
significantly outperforms all scenes compared to the state-of-the-art.

Methods Chair Drums Ficus Hotdog Lego Mats Mic Ship Mean

COLMAP [30] 0.77 1.26 0.96 1.95 1.36 2.19 1.33 1.00 1.42
NeuS [31] 0.38 1.88 0.51 0.52 0.68 0.40 0.60 0.60 0.70
Sphere NeuS [24] 0.39 1.20 0.40 0.57 0.61 0.31 0.67 0.54 0.59
NeuS w/ masks [31] 0.40 0.90 0.41 0.58 0.67 0.28 0.59 0.73 0.57
Sphere NeuS w/ masks [24] 0.45 0.94 0.32 0.54 0.67 0.27 0.57 0.71 0.56
NeuralWarp [4] 0.43 3.00 0.94 1.65 0.81 1.02 0.75 1.27 1.23
Sphere NeuralWarp [24] 0.41 2.67 0.61 1.44 0.76 0.92 0.80 1.07 1.09
Ours 0.22 0.16 0.17 0.26 0.06 0.07 0.22 0.16 0.16

Table 1. A quantitative comparison of our proposed method with the state-of-the-art methods on the Realistic
Synthetic 360 dataset using Chamfer distance (the lower the better).

Qualitative Results: Fig. 3 compares our method with the ground truth on the Real-
istic Synthetic 360 dataset. It demonstrates that our reconstructions are more accurate
and closer to the ground truth than state-of-the-art methods. The dataset provides high-
precision 3D surface models, allowing us to evaluate 3D reconstruction algorithms quan-
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Figure 4. A detailed comparison showcasing selected mesh parts from ground truth, our method, and previous
state-of-the-art methods, demonstrating robustness by preserving a high level of details in challenging areas
where previous methods struggle, as highlighted in this figure.

titatively. By comparing our reconstructions with the ground truth, we can assess the
accuracy and completeness of our results. The figure shows that our method closely
matches the ground truth’s detailed geometry and surface properties, highlighting its ef-
ficiency in reconstructing 3D objects from multi-view images.

4.5. Discussion

The results validate our hypothesis that augmenting traditional MVS techniques with
modern computational methods and 360-degree camera technologies can surpass recent
neural approaches in real-world applications. Our integration of SfM algorithms and 360-
degree cameras enhances reconstruction quality, with substantial potential for further
optimization in real-time processing and dynamic scene handling.
Complexity: Our MVS framework optimizes the reconstruction process through GPU
acceleration and improved algorithms for image processing and mesh reconstruction,
significantly reducing computational time and memory consumption compared to tradi-
tional state-of-the-art methods. We re-trained the state-of-the-art approaches on their de-
fined settings using the same machine for a fair comparison. The state-of-the-art meth-
ods of the neural implicit field with which we are comparing take considerably longer:
Sphere Neus [24] takes 4 hours, 17 minutes, and 26.411 seconds, and Sphere NeuralWarp
[24] takes 9 hours, 29 minutes, and 47.156 seconds. In contrast, our proposed method
takes only around 9 minutes and 19.85 seconds. This substantial reduction in computa-
tional time proves our claim that our proposed method significantly improves efficiency
and minimizes memory consumption, thereby enhancing the system’s capacity to handle
larger datasets effectively.
Corner cases: Our method excels in reconstructing complex scenes with significant oc-
clusions and diverse viewpoints. The robustness of our approach is evident in its con-
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sistent detail and accuracy, attributed to comprehensive scene coverage from 360-degree
imagery and refined camera pose estimation techniques, as shown in Fig. 4.
Limitations: Despite its advantages, our method has some limitations: 1. Requires a
high number of images for perfect reconstruction. 2. Struggles with high-frequency areas
such as reflections. 3. May not perform well under varying lighting conditions.

5. Conclusions and Future Work

This study demonstrates the significant advantages of our proposed MVS framework
over existing neural implicit field methods. Using the Realistic Synthetic 360 dataset and
Chamfer distance metrics, our method proves to be more accurate, precise, and com-
putationally efficient. The integration of multi-view 360-degree imagery with advanced
SfM techniques, point cloud densification, mesh reconstruction, and texturing processes
results in high-quality 3D models that effectively handle complex scenes, occlusions,
and diverse viewpoints. Our findings highlight the practicality of MVS in real-time and
large-scale applications, making it suitable for AR/VR, medical imaging, and media pro-
duction. Future work will aim to refine the MVS process, explore more efficient algo-
rithms for image processing, and extend applicability to more challenging environments,
maintaining its relevance and superiority in 3D reconstruction technologies.
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